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ABSTRACT In the lapped transform or subband transform case, however, it
has been reported that biorthogonal lapped transforms show higher
coding gain than orthogonal ones [6]. In this paper, therefore, we
provide a novel lapped biorthogonal transform with the optimal
short basis functions, which is called th&LBT, and its design
énethod based on an eigenvalue problem.

This paper presents a new framework for a biorthogonal lapped
transform that consists of long and short basis functions called the
VLLBT. It is shown that when the biorthogonal long basis func-
tions of the VLLBT are given, the optimal short basis functions in
the energy compaction sense are derived by solving an eigenvalu
problem without iterative searching techniques. We also provide
design and image coding examples of the VLLBT. The resulting 1.1. Notation and Preliminaries
VLLBT attains high coding gain comparing to other lapped trans-
forms. Moreover, experimental results show that the proposed
VLLBT is superior to other conventional transforms in terms of
PSNR at high compression ratio. Furthermore, it significantly re-
duces the annoying blocking artifacts.

Bold-faced characters are used to denote vectors and matrices. The
following conventions are adopted in terms of notati®®” de-

notes theV-dimensional Euclidean spacEy, J n, andOy stand

for the identity, the reversal, and the null matrices of Sizex N,
respectively. AT stands for the transposition of the mattik.

(f,g) stands for the inner product of the vectgtsandg. || f||

1. INTRODUCTION stands for the Euclidean norm of the vecfore,, denotes the-th

L . “canonical” vector.
Transform coding is one of the most efficient methods for data

compression of images. However, it is extensively known that at

high compression ratios, reconstruction from compressed data re- 2. LAPPED ORTHOGONAL TRANSFORM — REVIEW

sults in low-quality images. More specifically, one of the most ) )
noticeable artifacts that these images exhibit isileeking effect The lapped orthogonal transform (LOT) is a powerful tool for im-
This effect manifests itself as an artificial discontinuity between 29€ compression [1] since it can reduce the blocking effect, which
adjacent blocks and is a direct result of the independent processingS & Serious drawback in transform coding of images. Let us first
of the blocks. It has been reported that the blocking effects can beféview the LOT.

reduced with the use of lapped transforms (LTs) [1] instead of the | gt A = 120 be a2M x M matrix whereAo and A,

use of block-independent transforms such as the DCT. For blocks 1

with length M, the lapped orthogonal transform (LOT), which is ~contain the firstM rows and the lasd/ rows of A, respectively.
one of the most fundamental LTs, h#6basis functions of length ~ When the matrixA satisfies

2M, so that the functions overlap across block boundaries. These T T T T

overlapping basis functions result in reducing the blocking effects. Ag Ao+ A1 Ay = AgAp + AL Ay =T, ()

In addition, the LOT has been extended to the GenLOT whose ba- ATA, = A AT =0y, 2)

sis functions have length M [2, 3]. Although lapped transforms

reduce the blocking effects, due to their long basis functions, the A is called the lapped orthogonal transform (LOT) [1]. Each col-
quantization error is spread out over adjacent blocks. To avoid theumn vector ofA corresponds to the LOT basis function, whose
spread of high frequency noise, recently, the LOT with variable length is2M. Equation (1) forces orthogonality of the basis func-
length functions (VLLOT) has been proposed [4,5]. The VLLOT tions, whereas (2) forces orthogonality of the overlapping parts of
consists of overlapping (long) basis functions, which can reduce the basis functions of adjacent blocks.

the blocking artifacts, and block-independent (short) basis func-  Let D be an orthogonal matrix of siz& x M, and letU/; and
tions, which can restrict the ringing artifacts around edges. The V1 be orthogonal matrices of sizef/2 x M /2. Then, with an
VLLOT is based on GenLOT'’s lattice structure, where the initial orthogonal projection matri®, the LOT matrixA can be rewrit-
building block is usually assumed to be the DCT. Thus, the short ten [6] as

basis functions of the VLLOT are chosen from the DCT basis func-

tions, directly. A— [ Ao } _ [ D(DP } { Ui Onye } )

. . - . Ay I-P) One Vi
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This form gives the factorized LOT. It can easily checked that the and

LOT conditions (1) and (2) are imposed dngiven as in (3). Mal-

var proposed a fast LOT whei@ corresponds to the DCT matrix, B = { Bo } - {

andP is the Haar butterfly [1]. In this fast LOT, the free parameter B

is the orthogonal matriZ . ] . . . )
The lapped orthogonal transform with variable length (VL- respectively, wherelo, A1, Bo, andB, are size of}/ x K, and

LOT) [4, 5] has developed in order to avoid the spread of high- Ao andBy, are size o/ x (M — K). _ .

frequency distortion into neighboring blocks. The most basic VL- Afactorized form of the VLLBT, which is obtained by biorthog-

LOT consists ofK long and(M — K) short basis functions of onalization of the factorized VLLOT, can be achieved by relaxing

length2M and M, respectively. The transform matrix of the VL- ~ Orthogonality of the matrixD in (3). Let H andG be M x M
LOT is given as non-singular matrices such thBfG = GH = I. Then, forward

and inverse transform matricesand B are given as
_ Ag _ Ao Ao

A, O

Bo Bo ] (10)

B, o

_ HP T _ -1 _
A= {H(I_P)} zZ, B"=z"'[PG (I-P)G], (11)
where bothA, and 4, are size qf:]rv[ AXT [g andAAO Is size of A and B construct a pair of lapped biorthogonal transform with
M x (M — K). The columns ofA, A;]" andA correspond  |on4er and shorter basis functions (VLLBT). Let andb; be the
to the long and the short basis functions, respectively. In this type ; t"cojumns of the transform matrices and B, respectively. A
of the VLLOT, according to the necessary conditions for an exist- pair of vector setga; }, and{b; }}, satisfies both biorthogo-
ing linear phase perfect reconstruction (LPPR) filter bank [458], ity and shift-biorthogonality. In the context of filter banks,
must be even. The VLLOT matrix can be also written by the fac- ,nqp, are called analysis and synthesis filters of biorthogonal filter
torized form as given as in (3). In this case, the projection matrix 51s respectively.

P is written by

Ik, 0 —Ig;; O 4. OPTIMAL SHORT FUNCTIONS
P = 0 Trv—x)/2 0 0 (5) . . . . .
~Ig)s 0 Ik, 0 |7 In this section, we discuss the design method for short basis func-
0 0 0 0 tions when the long basis functions are given. [febe a vector
of M consecutive samples of a real wide-sense stationary random
and the orthogonal matrices of the last st@jare given by process. The well-known Karhunen-Loéve transform (KLT) pro-
R . vides the optimal approximation ¢f. Moreover, among all block
U, = {UI 0 ] vV, = {Vl 0 ] ., (6) transforms, the KLT is indeed the best possible transform for min-
0 Tk 0 Ik imizing the overall distortion for a given bit allocation. Therefore,

. . ] the proposed objective function to find short basis functions is also
whereU; andV'; are K/2 x K/2 orthogonal matrices. Some  pased on a notion of optimal approximation.

fast algorithms for the VLLOT has been well studied [4,5]. On the

cher.hand, Tanaka and Ya_mashlta found the optimal shqrt func-4.1_ Formulation

tions in the energy compaction sense, and proposed adaptive trans-

forms with overlapping and non-overlapping basis functions [7]. The problem we want to solve is the following: Given an oblique
projection matrixL whose rank isK' < M, find the matrix that

3. THE VLLBT: BIORTHOGONALIZATION OF THE minimizes a functional
VLLOT JIX] = Eg|f - (L + X)f| (12)

Consider the use of biorthogonal lapped transforms. In this case,

" _ < M — K. Thi
A given as in (4) is used for the forward transformation. The in- under the conditiomank(X) = I forany N' < M — K. This

criterion leads to the KLT’s one if we sdt = O. Therefore, we

verse transformation is defined as a maix= go . The willkcall this X' a subspace Karhunen-Loéve (SKL) projectdr
! rank N.
condition for perfect reconstruction is obtained by rewriting the Fortunately, the analytic solution of the above problem can be

orthogonal constraints (1) and (2). Thus, the transform matices  derived. LetR = Egf [f 7] be the correlation matrix of the input
andB requires vector f. Assume the rank of? is full. Then, there exist the

ATBy+ ATB, = BoAY + B1AT = Iy, @ M — K non-zero eigenvalues of
A?Bo = AgB1 = 0w, B1A0T = BOA1T = 0p, (8) Q=(I-L)R(I - L)T (13)
Equation (7) implies biorthogonality of long basis functions, and such that\¢ > --- > Ay_x-1 > 0, and the corresponding
(8) describes biorthogonality of tails. Let us define a biorthogonal eigenvectorseo, ..., ur—x—1.

version of the VLLOT, which is called théLLBT, hereafter. The
transform matrices of the VLLOZA for forward andB for inverse Theorem 1 The functional/[X ] in (12) is minimized by

transformations are given as N1

Ao A, A X = Z un'u,,’;T7 where u), = (I — P)Tun. (14)
A= Ay = ) (9)

n=0



Proof is omitted here.

Assume that a biorthonormal systefy, } which gen-
erates a subspac® in R, and its duah;}X ;" in R are
given. Using these functiong, and h;, we have a projection
matrix L = Y1 g,k If h; = g,, L gives an orthogonal
projection matrix; otherwise, it gives an oblique projection ma-
trix. If we apply the projection matrixL to Theorem 1, we obtain
a biorthonormal basigu; } ;% ~*, which spans a complement
S, of the subspacé,, that is, RM = S, & S, and its dual

{u yM K1 Fori=0,...,M — K — 1, vectorsu,; andu} de-

K-1
i=0

rived by using Theorem 1 can be regarded as functions of the given

biorthogonal systerlig,, h;} =, ". Finally, fori = K,..., M —1,
settingh; = u;_x andg, = u;—x gives the biorthonormal ba-
sis{g;} ;" and its dual{h;}M ' for R™. Consequently, the
forward and the inverse transform matridlsand G are defined
as

M-—1 M—1

H = Z hiel, and G = Z eig?»
i=0 =0

respectively. Substituting (15) into (11), we obtain the transform
matricesA and B. It should be noted that when we find the long
basis functionga;, b; }X,', we need not determine all columns
of H andG.

(15)

5. DESIGN METHOD

Since the optimal short basis functions with respect to a given set
of long basis functions have been found, we only need to determine

suitable long basis functions. For application in image coding, we

use coding gain as the cost function. Higher coding gain correlates

most consistently with higher PSNR. Assume that the signal is
the first-order Markov process with the correlation coefficiert
0.95, which is widely used in image processing. The correlation
matrix is given by(R); ; = o%p/* =7, fori,j =0,...,2M — 1.
Coding gain for a biorthogonal transform is given by [6]:

M~—1

II

=0

—1/M
Jea = 10log, ( <ai,Ra¢>|bi|2> . (16)

In particular, the number of free parameters can be reduced be
cause of symmetric properties and no DC leakage.

5.1. A Design Example
Using these properties, consider the cASe- 2 andM = 8. Set-
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(a) The basis functiona; of
the forward transform

(b) The basis functions; of
the inverse transform

Fig. 1. A design exampleM =8, K = 2

Table 1. Comparison of coding gain in dB: We choaké = 8 for
all cases and< = 2 for the VLLOT and the VLLBT.

DCT
8.826

KLT
8.846

LOT [1]
9.219

VLLOT [5]
8.954

VLLBT
9.282

For all cases as shown above, we use the same coding method.
To be fair, we use a uniform step quantizer with the same step
size for each coefficient. In the code assignment step, the same
Huffman codebooks as the baseline-JPEG [8] are utilized.

The images used for the experiments are Barbara, Lena, and
Pepper, which are standard, well-knowih2 x 512 8-bit gray-
scale test images. Table 2 contains the peak signal to noise ratios
(PSNRs) for decoded images at various bit rates. Moreover, the
original and the decoded images for Barbara at 0.25 bpp are shown
in Figure 7. Table 2 shows that at 1.00 bpp and 0.50 bpp, compar-
atively higher bit rates, the coding performance of the DCT based
method is superior to those of the other methods. At bit rates lower
than 0.50 bpp, the VLLOT and the VLLBT work well, and the
proposed VLLBT outperforms the VLLOT in PSNR. It should be
noted that the blocking artifacts of the VLLBT-decoded image are
much less visible than those of the DCT- and the VLLOT-decoded
images. This property is caused by the fact that end values of long
basis function®y andb; of the inverse transform are almost zero.

7. CONCLUSIONS

This paper has presented a new framework for a biorthogonal lapped

ting K = 2 gives the minimum number of the long basis functions  yansform that consists of long and short basis functions called
because of the existing condition as mentioned previously. In this the v LBT. We have shown that when the biorthogonal long ba-
case, the VLLBT consists of two long basis functions and six short sis functions of the VLLBT are given, the optimal short basis
basis functions. Figures 1(a) and 1(b) illustrate the basis functions¢nctions in the energy compaction sense is derived by solving an
a; andb; of the forward and the inverse transforms, respectively. gjgenvalue problem. Therefore, we can find the short basis func-
Table 1 shows comparison of coding gain of several transforms.  ions uniquely without iterative searching, if the long basis func-
tions are determined once.

We have also provided design and image coding examples of
the VLLBT. Coding gain of the VLLBT is higher than that of the
An image coding comparison is carried out in order to evaluate VLLOT. Moreover, experimental results show that the proposed
the performance of the proposed VLLBT. The transforms to be VLLBT is superior to other conventional transforms in terms of
compared are 1) the DCT, 2) the VLLOT [5], and 3) the proposed PSNR at high compression ratio. Furthermore, it significantly re-
VLLBT with no DC leakage. duces the annoying blocking artifacts. These results may imply

6. IMAGE CODING APPLICATIONS



Table 2. Comparison of PSNR (dB) results fot2 x 512 “Bar-
bara”,512 x 512 “Lena”, and512 x 512 “Pepper" images at dif-
ferent bit rates (bpp)

[BitRate | 1.00 | 0.50 [ 0.25 [ 0.20 |

512 x 512 “Barbara”
DCT 3490 | 29.09 | 24.49| 23.14
VLLOT | 33.75| 28.67 | 24.50 | 23.28
VLLBT | 33.61| 28.55| 24.56 | 23.42

512 x 512 “Lena”
DCT 38.52 | 34.99| 30.73 | 29.18
VLLOT | 38.25| 34.74 | 30.65| 29.24
VLLBT | 38.12| 34.84 | 30.85| 29.47

512 x 512 “Pepper"
DCT 36.00 | 33.88 | 30.49 | 28.95
VLLOT | 35.58| 33.57 | 30.37 | 28.89
VLLBT | 35.58| 33.68 | 30.85| 29.57

that the proposed VLLBT is a promising technique in the field of
image coding.

The VLLBT designed by the method demonstrated in this pa-
per includes a potential for image coding using adaptive trans-
forms, which would be constructed by changing the correlation
matrix R in (13), adaptively. This problem will be addressed in
future.
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(b) The VLLOT (PSNR = 24.50 dB)

(c) The VLLBT (PSNR = 24.56 dB)

Fig. 2. Comparison of the decoded images



