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ABSTRACT

This paper presents a new framework for a biorthogonal lapped
transform that consists of long and short basis functions called the
VLLBT. It is shown that when the biorthogonal long basis func-
tions of the VLLBT are given, the optimal short basis functions in
the energy compaction sense are derived by solving an eigenvalue
problem without iterative searching techniques. We also provide
design and image coding examples of the VLLBT. The resulting
VLLBT attains high coding gain comparing to other lapped trans-
forms. Moreover, experimental results show that the proposed
VLLBT is superior to other conventional transforms in terms of
PSNR at high compression ratio. Furthermore, it significantly re-
duces the annoying blocking artifacts.

1. INTRODUCTION

Transform coding is one of the most efficient methods for data
compression of images. However, it is extensively known that at
high compression ratios, reconstruction from compressed data re-
sults in low-quality images. More specifically, one of the most
noticeable artifacts that these images exhibit is theblocking effect.
This effect manifests itself as an artificial discontinuity between
adjacent blocks and is a direct result of the independent processing
of the blocks. It has been reported that the blocking effects can be
reduced with the use of lapped transforms (LTs) [1] instead of the
use of block-independent transforms such as the DCT. For blocks
with lengthM , the lapped orthogonal transform (LOT), which is
one of the most fundamental LTs, hasM basis functions of length
2M , so that the functions overlap across block boundaries. These
overlapping basis functions result in reducing the blocking effects.
In addition, the LOT has been extended to the GenLOT whose ba-
sis functions have lengthLM [2, 3]. Although lapped transforms
reduce the blocking effects, due to their long basis functions, the
quantization error is spread out over adjacent blocks. To avoid the
spread of high frequency noise, recently, the LOT with variable
length functions (VLLOT) has been proposed [4, 5]. The VLLOT
consists of overlapping (long) basis functions, which can reduce
the blocking artifacts, and block-independent (short) basis func-
tions, which can restrict the ringing artifacts around edges. The
VLLOT is based on GenLOT’s lattice structure, where the initial
building block is usually assumed to be the DCT. Thus, the short
basis functions of the VLLOT are chosen from the DCT basis func-
tions, directly.
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In the lapped transform or subband transform case, however, it
has been reported that biorthogonal lapped transforms show higher
coding gain than orthogonal ones [6]. In this paper, therefore, we
provide a novel lapped biorthogonal transform with the optimal
short basis functions, which is called theVLLBT, and its design
method based on an eigenvalue problem.

1.1. Notation and Preliminaries

Bold-faced characters are used to denote vectors and matrices. The
following conventions are adopted in terms of notation:RN de-
notes theN -dimensional Euclidean space.IN , JN , and0N stand
for the identity, the reversal, and the null matrices of sizeN ×N ,
respectively. AT stands for the transposition of the matrixA.
〈f , g〉 stands for the inner product of the vectorsf andg. ‖f‖
stands for the Euclidean norm of the vectorf . en denotes then-th
“canonical" vector.

2. LAPPED ORTHOGONAL TRANSFORM – REVIEW

The lapped orthogonal transform (LOT) is a powerful tool for im-
age compression [1] since it can reduce the blocking effect, which
is a serious drawback in transform coding of images. Let us first
review the LOT.

LetA =

[
A0

A1

]
be a2M ×M matrix whereA0 andA1

contain the firstM rows and the lastM rows ofA, respectively.
When the matrixA satisfies

AT
0A0 +AT

1A1 = A0A
T
0 +A1A

T
1 = IM , (1)

AT
1A0 = A1A

T
0 = 0M , (2)

A is called the lapped orthogonal transform (LOT) [1]. Each col-
umn vector ofA corresponds to the LOT basis function, whose
length is2M . Equation (1) forces orthogonality of the basis func-
tions, whereas (2) forces orthogonality of the overlapping parts of
the basis functions of adjacent blocks.

LetD be an orthogonal matrix of sizeM×M , and letU1 and
V 1 be orthogonal matrices of sizeM/2 ×M/2. Then, with an
orthogonal projection matrixP , the LOT matrixA can be rewrit-
ten [6] as

A =

[
A0

A1

]
=

[
DP

D(I − P )

][
U1 0M/2

0M/2 V 1

]
︸ ︷︷ ︸

Z

. (3)



This form gives the factorized LOT. It can easily checked that the
LOT conditions (1) and (2) are imposed onA given as in (3). Mal-
var proposed a fast LOT whereD corresponds to the DCT matrix,
andP is the Haar butterfly [1]. In this fast LOT, the free parameter
is the orthogonal matrixZ.

The lapped orthogonal transform with variable length (VL-
LOT) [4, 5] has developed in order to avoid the spread of high-
frequency distortion into neighboring blocks. The most basic VL-
LOT consists ofK long and(M − K) short basis functions of
length2M andM , respectively. The transform matrix of the VL-
LOT is given as

A =

[
A0

A1

]
=

[
Â0 Ā0

Â1 0

]
, (4)

where bothÂ0 and Â1 are size ofM × K, andĀ0 is size of
M × (M −K). The columns of[Â

T

0 Â
T

1 ]T andÂ1 correspond
to the long and the short basis functions, respectively. In this type
of the VLLOT, according to the necessary conditions for an exist-
ing linear phase perfect reconstruction (LPPR) filter bank [4,6],K
must be even. The VLLOT matrix can be also written by the fac-
torized form as given as in (3). In this case, the projection matrix
P is written by

P =

 IK/2 0 −IK/2 0
0 I(M−K)/2 0 0

−IK/2 0 IK/2 0
0 0 0 0

 , (5)

and the orthogonal matrices of the last stageZ are given by

U1 =

[
Û1 0
0 I(M−K)/2

]
, V 1 =

[
V̂ 1 0
0 I(M−K)/2

]
, (6)

whereÛ1 and V̂ 1 areK/2 × K/2 orthogonal matrices. Some
fast algorithms for the VLLOT has been well studied [4,5]. On the
other hand, Tanaka and Yamashita found the optimal short func-
tions in the energy compaction sense, and proposed adaptive trans-
forms with overlapping and non-overlapping basis functions [7].

3. THE VLLBT: BIORTHOGONALIZATION OF THE
VLLOT

Consider the use of biorthogonal lapped transforms. In this case,
A given as in (4) is used for the forward transformation. The in-

verse transformation is defined as a matrixB =

[
B0

B1

]
. The

condition for perfect reconstruction is obtained by rewriting the
orthogonal constraints (1) and (2). Thus, the transform matricesA
andB requires

AT
0B0 +AT

1B1 = B0A
T
0 +B1A

T
1 = IM , (7)

AT
1B0 = AT

0B1 = 0M ,B1A
T
0 = B0A

T
1 = 0M , (8)

Equation (7) implies biorthogonality of long basis functions, and
(8) describes biorthogonality of tails. Let us define a biorthogonal
version of the VLLOT, which is called theVLLBT, hereafter. The
transform matrices of the VLLOTA for forward andB for inverse
transformations are given as

A =

[
A0

A1

]
=

[
Â0 Ā0

Â1 0

]
, (9)

and

B =

[
B0

B1

]
=

[
B̂0 B̄0

B̂1 0

]
, (10)

respectively, wherêA0, Â1, B̂0, andB̂1 are size ofM ×K, and
Ā0 andB̄0 are size ofM × (M −K).

A factorized form of the VLLBT, which is obtained by biorthog-
onalization of the factorized VLLOT, can be achieved by relaxing
orthogonality of the matrixD in (3). LetH andG beM ×M
non-singular matrices such thatHG = GH = I. Then, forward
and inverse transform matricesA andB are given as

A =

[
HP

H(I − P )

]
Z, BT = Z−1

[
PG (I − P )G

]
, (11)

A andB construct a pair of lapped biorthogonal transform with
longer and shorter basis functions (VLLBT). Letai andbi be the
i-th columns of the transform matricesA andB, respectively. A
pair of vector sets{ai}Mi=0 and{bi}Mi=0 satisfies both biorthogo-
nality and shift-biorthogonality. In the context of filter banks,ai
andbi are called analysis and synthesis filters of biorthogonal filter
banks, respectively.

4. OPTIMAL SHORT FUNCTIONS

In this section, we discuss the design method for short basis func-
tions when the long basis functions are given. Letf be a vector
of M consecutive samples of a real wide-sense stationary random
process. The well-known Karhunen-Loève transform (KLT) pro-
vides the optimal approximation off . Moreover, among all block
transforms, the KLT is indeed the best possible transform for min-
imizing the overall distortion for a given bit allocation. Therefore,
the proposed objective function to find short basis functions is also
based on a notion of optimal approximation.

4.1. Formulation

The problem we want to solve is the following: Given an oblique
projection matrixL whose rank isK < M , find the matrix that
minimizes a functional

J [X] = Ef ‖f − (L+X)f‖2 (12)

under the conditionrank(X) = N for anyN ≤ M − K. This
criterion leads to the KLT’s one if we setL = O. Therefore, we
will call this X a subspace Karhunen-Loève (SKL) projectorof
rankN .

Fortunately, the analytic solution of the above problem can be
derived. LetR = Ef [ffT ] be the correlation matrix of the input
vectorf . Assume the rank ofR is full. Then, there exist the
M −K non-zero eigenvalues of

Q = (I −L)R(I −L)T (13)

such thatλ0 ≥ · · · ≥ λM−K−1 > 0, and the corresponding
eigenvectorsu0, . . . ,uM−K−1.

Theorem 1 The functionalJ [X] in (12) is minimized by

X =

N−1∑
n=0

unu
∗
n
T
, where u∗n = (I − P )Tun. (14)



Proof is omitted here.
Assume that a biorthonormal system{gi}

K−1
i=0 , which gen-

erates a subspaceS1 in RM , and its dual{hi}K−1
i=0 in RM are

given. Using these functionsgi andhi, we have a projection
matrix L =

∑K−1

i=0
gih

T
i . If hi = gi, L gives an orthogonal

projection matrix; otherwise, it gives an oblique projection ma-
trix. If we apply the projection matrixL to Theorem 1, we obtain
a biorthonormal basis{u∗i }M−K−1

i=0 , which spans a complement
S2 of the subspaceS1, that is,RM = S1 ⊕ S2, and its dual
{ui}M−K−1

i=0 . For i = 0, . . . ,M −K − 1, vectorsui andu∗i de-
rived by using Theorem 1 can be regarded as functions of the given
biorthogonal system{gi,hi}

K−1
i=0 . Finally, fori = K, . . . ,M−1,

settinghi = u∗i−K andgi = ui−K gives the biorthonormal ba-
sis {gi}

M−1
i=0 and its dual{hi}M−1

i=0 for RM . Consequently, the
forward and the inverse transform matricesH andG are defined
as

H =

M−1∑
i=0

hie
T
i , and G =

M−1∑
i=0

eig
T
i , (15)

respectively. Substituting (15) into (11), we obtain the transform
matricesA andB. It should be noted that when we find the long
basis functions{ai, bi}K−1

i=0 , we need not determine all columns
ofH andG.

5. DESIGN METHOD

Since the optimal short basis functions with respect to a given set
of long basis functions have been found, we only need to determine
suitable long basis functions. For application in image coding, we
use coding gain as the cost function. Higher coding gain correlates
most consistently with higher PSNR. Assume that the signal is
the first-order Markov process with the correlation coefficientρ =
0.95, which is widely used in image processing. The correlation
matrix is given by(R)i,j = σ2

f ρ
|i−j|, for i, j = 0, . . . , 2M − 1.

Coding gain for a biorthogonal transform is given by [6]:

JCG = 10 log10

(
M−1∏
i=0

〈ai,Rai〉‖bi‖2
)−1/M

. (16)

In particular, the number of free parameters can be reduced be-
cause of symmetric properties and no DC leakage.

5.1. A Design Example

Using these properties, consider the caseK = 2 andM = 8. Set-
tingK = 2 gives the minimum number of the long basis functions
because of the existing condition as mentioned previously. In this
case, the VLLBT consists of two long basis functions and six short
basis functions. Figures 1(a) and 1(b) illustrate the basis functions
ai andbi of the forward and the inverse transforms, respectively.
Table 1 shows comparison of coding gain of several transforms.

6. IMAGE CODING APPLICATIONS

An image coding comparison is carried out in order to evaluate
the performance of the proposed VLLBT. The transforms to be
compared are 1) the DCT, 2) the VLLOT [5], and 3) the proposed
VLLBT with no DC leakage.
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(a) The basis functionsai of
the forward transform
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(b) The basis functionsbi of
the inverse transform

Fig. 1. A design example:M = 8,K = 2

Table 1. Comparison of coding gain in dB: We chooseM = 8 for
all cases andK = 2 for the VLLOT and the VLLBT.

DCT KLT LOT [1] VLLOT [5] VLLBT
8.826 8.846 9.219 8.954 9.282

For all cases as shown above, we use the same coding method.
To be fair, we use a uniform step quantizer with the same step
size for each coefficient. In the code assignment step, the same
Huffman codebooks as the baseline-JPEG [8] are utilized.

The images used for the experiments are Barbara, Lena, and
Pepper, which are standard, well-known512 × 512 8-bit gray-
scale test images. Table 2 contains the peak signal to noise ratios
(PSNRs) for decoded images at various bit rates. Moreover, the
original and the decoded images for Barbara at 0.25 bpp are shown
in Figure 7. Table 2 shows that at 1.00 bpp and 0.50 bpp, compar-
atively higher bit rates, the coding performance of the DCT based
method is superior to those of the other methods. At bit rates lower
than 0.50 bpp, the VLLOT and the VLLBT work well, and the
proposed VLLBT outperforms the VLLOT in PSNR. It should be
noted that the blocking artifacts of the VLLBT-decoded image are
much less visible than those of the DCT- and the VLLOT-decoded
images. This property is caused by the fact that end values of long
basis functionsb0 andb1 of the inverse transform are almost zero.

7. CONCLUSIONS

This paper has presented a new framework for a biorthogonal lapped
transform that consists of long and short basis functions called
the VLLBT. We have shown that when the biorthogonal long ba-
sis functions of the VLLBT are given, the optimal short basis
functions in the energy compaction sense is derived by solving an
eigenvalue problem. Therefore, we can find the short basis func-
tions uniquely without iterative searching, if the long basis func-
tions are determined once.

We have also provided design and image coding examples of
the VLLBT. Coding gain of the VLLBT is higher than that of the
VLLOT. Moreover, experimental results show that the proposed
VLLBT is superior to other conventional transforms in terms of
PSNR at high compression ratio. Furthermore, it significantly re-
duces the annoying blocking artifacts. These results may imply



Table 2. Comparison of PSNR (dB) results for512 × 512 “Bar-
bara",512× 512 “Lena", and512× 512 “Pepper" images at dif-
ferent bit rates (bpp)

Bit Rate 1.00 0.50 0.25 0.20

512× 512 “Barbara"
DCT 34.90 29.09 24.49 23.14
VLLOT 33.75 28.67 24.50 23.28
VLLBT 33.61 28.55 24.56 23.42

512× 512 “Lena"
DCT 38.52 34.99 30.73 29.18
VLLOT 38.25 34.74 30.65 29.24
VLLBT 38.12 34.84 30.85 29.47

512× 512 “Pepper"
DCT 36.00 33.88 30.49 28.95
VLLOT 35.58 33.57 30.37 28.89
VLLBT 35.58 33.68 30.85 29.57

that the proposed VLLBT is a promising technique in the field of
image coding.

The VLLBT designed by the method demonstrated in this pa-
per includes a potential for image coding using adaptive trans-
forms, which would be constructed by changing the correlation
matrixR in (13), adaptively. This problem will be addressed in
future.
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(a) The DCT (PSNR = 24.49 dB)

(b) The VLLOT (PSNR = 24.50 dB)

(c) The VLLBT (PSNR = 24.56 dB)

Fig. 2. Comparison of the decoded images


