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ABSTRACT

In this paperwe proposea new framework for utilizing fre-
quency informationfrom theshort-termpower spectrumof
speech.Featureextraction is basedon the cepstralcoeffi-
cientsderivedfrom thehistogramsof subbandspectralcen-
troids(SSC).Two new featureextractionalgorithmsarepro-
posed,onebasedon frequency informationalone,andthe
otherwhich efficiently combinesthe frequency andampli-
tudeinformationfrom the speechpower spectrum.Exper-
imentalstudyon an automaticspeechrecognitiontaskhas
shown that the proposedmethodsoutperformthe conven-
tionalspeechfront-endsin presenceof additivewhitenoise,
while they performcomparablyin thenoise-freeconditions.

1. INTRODUCTION

Signalparameterizationtechniquesusedfor speechrecog-
nition arebasedon extracting informationfrom the short-
term power spectrumestimatesof speech.However, they
utilize only amplitudeinformationprovidedby powerspec-
trum, while the frequency information is left unexplored.
For examplein MFCC, we useonly theinformationon the
totalpowerin eachsubband,but wedonotkeeptrackof the
dominantsubbandfrequencies.

Several attemptshave recentlybeenmadeto incorpo-
ratethefrequency informationfrom thepower spectrumin
the speechfeaturevectors[1, 2, 3, 4, 5]. They arebased
on computingsubbandspectralcentroids(SSC)andusing
themasadditionalfeaturesin the MFCC-basedfront-end.
It hasbeenshown in [1] thatSSCsarecloselyrelatedto po-
sition of spectralpeaks(formants)of speechsounds.Since
spectralpeakpositionsremainpracticallyunaffectedin pres-
enceof additive noise, it is expectedthat an SSC-based
front-endwould have a potentialof improving the robust-
nessof automaticspeechrecognition(ASR) systems.

The aim of this study was to find an effective way of
utilizing the frequency information from the power spec-
trum,bothaloneandin combinationwith theamplitudein-�
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formation.It hasbeenachievedthroughcomputingthehis-
togramsof theSSCs.

This paperis organizedasfollows. In Section2 we de-
fine the SSCs,and proposetwo methodsfor their usein
featureextraction. A discussionof the choiceof free pa-
rametersis givenin Section3. Section4 presentstheresults
of an evaluationof the methodson an ASR task. Finally,
Section5 highlightssomeimportantaspectsconnectedto
theproposedmethodsandgivesthemainconclusions.

2. SSC HISTOGRAMS

Subbandspectralcentroidsare found by applyinga filter-
bankto thepowerspectrumof thesignal,andthencalculat-
ing thefirst moment(or centroid)for eachsubband.Thus,
theSSCof them-th subbandcanbecomputedas
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where ��� is signalsamplingfrequency, � � ��� is short-term
power spectrum,� ��� ��� is frequency responseof them-th
bandpassfilter, and  is a constantusedfor controlling the
dynamicrangeof thepowerspectrum.

In the following we proposetwo featureextractional-
gorithmsbasedon accumulatingthe SSCvaluesacrossall
subbandsof a givenspeechframeinto asinglehistogram.

Method 1 This method,referredto as SSCH,consistsof
thefollowing steps:

1. Estimatepowerspectrum.

2. Apply afilterbankto divide thepowerspectrum
into anumberof overlappingfrequency bands.

3. Find thecentroidfor eachsubband.

4. Partitiontheentiresignalfrequency rangeinto a
numberof bins.

5. Findthecorrespondingbin for eachcentroidand
increaseits countby one.

6. Calculatecepstralcoefficientsby computingthe
DCT of thehistogram.
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Fig. 1. Dif ferentrepresentationsof a 25 msframeof sound
/ee/: a) FFT-basedpower spectrumwith threeSSCs.SSCs
are shown with dottedvertical lines, andsubbandbound-
arieswith solidverticallines.b) SSCHandc) SSCHP

Method 2: This methoddiffers from the first oneonly in
step5. Insteadof increasingbin countsby one,they
are increasedby !#"�$ �&%(' �
)�*,+.-/)0� , where �
) is the
powerof thek-th subbandsignalgivenby thedenom-
inatorof theexpressionin Eq.1, +1-2) is thebandwidth
of the k-th bandpassfilter in the filterbank,and the
unity term is addedto prevent from addingnegative
valuesto thebin counts.In this way power informa-
tion is efficiently incorporatedinto SSChistograms.
We refer to this algorithm as Power WeightedSSC
Histogram(SSCHP).

Figure1 showsfour differentrepresentationsof a25ms
frameof sound/ee/. In thefirst plot, theFFT-basedpower
spectrumestimateis shown togetherwith the threeSSCs
(dottedvertical lines) obtainedusing a rectangularBark-
spacedfilterbank (filter cut-off frequenciesare shown as
solid vertical lines). The secondand third plots show the
SSCHand SSCHP, respectively. We observe a closere-
lationship betweenthe histogramrepresentationsand the
powerspectrum.Thisisespeciallyinterestingfor theSSCH,
sinceit doesnot explicitly useany power information.

3. CHOICE OF PARAMETERS

Thealgorithmsproposedin Section2 dependon a number
of freeparameters.In this section,we presenta discussion
on thechoiceof theparameters,while Section4.2presents
theresultsof anexperimentalstudyof theeffectof different
parameterchoiceson therecognitionperformance.

Power spectrum estimation method: Wehaveachoicebe-
tween using FFT-basedunsmoothedspectrumesti-
matesandLP-basedspectrumenvelopes.Intuitively,
spectralenvelopesseemto bebetterstartingpointsfor
computingSSCs.However, sinceLP basedspectral
envelopeestimatesbecomeunreliablein thepresence
of noise, the FFT-basedpower spectrumwas used
throughoutthis study.

Dynamic range: Thedynamicrangeof thespectrumused
in thecomputationof SSCsiscontrolledbyparameter (asshown in Equation1). If  is too low (near0),
SSCswill be simply at the centerof their subbands,
and thus containno information. If it is too large
(near 3 ), SSCswill correspondto locationsof the
peaksof theFFT-basedpowerspectrum,andwill thus
benoisyestimates.

Filterbank: We decidedto usefilters with rectangularfre-
quency responsesin thisstudy. Any othershape(such
as triangular)would favor somefrequencieswithin
the subbandmore than the others,and thusgive an
biasedSSCestimate.

Filter bandwidthshaveto belargeenoughto suppress
appearanceof localpeaksin thehistogram.However,
they shouldbe small enoughto prevent inclusionof
morethanoneformantinto a singlesubband.

Numberof filters shouldbechosensufficiently large
to provide enoughpoints in the histogram.Too low
bin countsleadto unreliablehistograms.Ontheother
hand,thecomputationalcostincreasesproportionally
with numberof filters.

Frequency bins: In orderfor centroidsto provideany use-
ful information,eachfilter muststretchover several
frequency bins. Thus,it is of crucial importancethat
theratio betweenfilter andbin bandwidthsis chosen
sufficiently high. For givenfilter bandwidths,this is
achievedby increasingthetotal numberof frequency
bins.However, toosmallbinsmightcausehistograms
to becometoo sensitive to small fluctuationsof the
spectralpeakpositions.

Filter and bin placement: Filterscanbedistributedlinearly
along the Hertz scaleor alonga perceptuallybased
frequency scalesuchas Bark or Mel. In any case,
it is importantthat bin distribution is in accordance
with thefilter distribution in orderto obtainunbiased
histograms.

4. EXPERIMENTAL STUDY

Thissectionis dividedinto threeparts.Firstwedescribethe
recognitiontaskusedfor performanceevaluationof thepro-



posedalgorithms.Then,we presenttheresultsof anexper-
imentalstudyof theeffectof differentparameterchoiceson
recognitionperformance.Finally, we comparetherecogni-
tion performanceof theSSC-basedfeatureextractionmeth-
odswith theconventionalfront-ends,bothin cleanandnoisy
environments.

4.1. Task and database

Theproposedmethodswereevaluatedon anisolatedword,
speaker independenttask,with thevocabularyconsistingof
26 lettersfrom Englishalphabet.Two repetitionsof each
word were recordedfor eachspeaker. Speakers were di-
vided into two sets,90 for trainingand30 for testing.One
hiddenMarkov model(HMM) with 5 statesand5 Gaussian
mixtureswasusedto modeleachvocabulary word. Both
trainingandtestingwereperformedusingthespeechrecog-
nition toolkit HTK. Although the vocabulary is relatively
small, this is a ratherdifficult taskasall vocabulary words
arevery shortandhighly confusable.Thebaselineperfor-
mancefor MFCC andLPCCfront-ends,measuredasword
accuracy (WAC), is givenin Table1.

Table 1. Baselineperformance

Method WAC Parameters

MFCC 77.76 12 cep.coeff
LPCC 74.49 12cep.coeff.

4.2. Experimenting with parameter values

In the following we presentthe resultsof an experimental
studyaimedat finding theeffect of differentparameterval-
ueson the recognitionperformance.All the experiments
weredoneusingthe SSCHmethod,but it is reasonableto
expectthatthey wouldgeneralizeto SSCHPmethodtoo.

First,weinvestigatedtheimportanceof choosingthebin
bandwidthssufficiently small comparedto the filter band-
widths. This wasachievedby varying the total numberof
bins,while keepingfilter bandwidthsconstant.Recognition
performancefor differentchoicesof theratiobetweenfilter
andbin bandwidthsis shown in Table2. We observe that

Table 2. Performancefor differentchoicesof ratiobetween
filter andbin bandwidths

Filter BW [Bark] # Bins Filt BW/Bin BW WAC

2 16 2.1 69.87
2 21 2.8 71.92
2 30 4 74.29
2 50 6.2 73.78

choosingtheratiocloseto 4givesthebestperformance.Too
small valuesdegradethe performanceconsiderably, which
is in agreementwith the discussionin Section3. We re-
peatedthe experimentfor differentchoicesof filter band-
widths,andfoundout thatchoosingtheratiobetween3 and
5 alwaysmaximizedtheperformance.

Next, we investigatedthe influenceof filter bandwidths
to theperformanceof SSChistograms.Theresultsaresum-
marizedin Table3. We concludethat the choiceof filter
bandwidthsis not critical aslong asthe numberof bins is
adjustedto achieve an appropriateratio betweenfilter and
bin bandwidths.Similar resultswereobtainedwhenfilters
wereuniformly spacedalongtheHertzscale.We observed
little changein performancefor filter bandwidthsbetween
200Hz and400Hz, with gradualdecreasein performance
with furtherincreaseof thebandwidths.

Table 3. Performancefor differentfilter bandwidths

Filter BW [Bark] # Filters FiltBW/BinBW WAC

1 200 3 73.46
2 150 4 74.29
3 100 4 73.72

Next, we investigatedthe importanceof parameter in
Equation1, thatdeterminesthedynamicrangeof thepower
spectrumusedin SSCcomputation.Setting  to 0.5,1 and
1.5ledto thesimilarrecognitionperformance,with thecase
of  �4%

being slightly betterthan the other two. Thus, �5%
wasusedin all furtherexperiments.

At the end,we comparedthe performancefor uniform
filter spacingalongtheHertzandBarkscales.Thefirst two
rows of Table4 show the bestperformancesachieved us-
ing Bark and Hertz scalesrespectively. In an attemptto

Table 4. Performancefor differentfilter spacings

Scale FiltBW # Filters # Bins WAC

Bark 2 Bark 150 30 74.29
Hertz 308Hz 247 50 76.15

Hz/Bark 300Hz/2Bark 130 26 75.83

retainthegoodperformanceof theHertzscale,andthelow
computationalcostof theBark scale,we combinedthetwo
scalesby applying the Hertz scalein the low frequencies
and the Bark scalein the high frequencies. The bound-
ary betweenthetwo scalesis chosento provide thesmooth
transition. The recognitionperformancefor the combined
approachis shown in the last row of Table4. As it gives
thebestcompromisebetweenrecognitionperformanceand
computationalcost, it hasbeenusedin all further experi-
ments.



4.3. Comparison with other front-ends

In thissectionwepresenttheresultsof acomparativestudy
betweenconventionaland SSC basedspeechrecognition
front-endsboth in cleanand noisy environments. Noisy
speechwas producedby adding samplesof white Gaus-
sian noiseto the cleanspeechat given signal-to-noisera-
tios (SNR).SNRwascomputedby dividing thetotalpower
of the cleanutteranceby the noisevariance. Recognition
performancewascomparedfor thefollowing front-ends:6 12LPCCsderivedfrom 12LP coefficients.

6 12MFCCsderivedfrom24Mel-filterbanklog-energies.
6 3 SSCsderivedfrom theFFT-basedpower spectrum

usingthreerectangularnon-overlappingBark-spaced
filters,asdescribedin [1].

6 12cepstrumcoefficientsderivedfrom SSCHwith pa-
rametervaluesgivenin thelastrow of Table4.

6 12 cepstrumcoefficients derived from SSCHPwith
parameterssameasabove.

Table5 summarizestherecognitionperformancesof thefive
frontendsbothon cleanspeech,andfor four differentnoise
levels. Comparingthetwo conventionalfront-ends,we see

Table 5. Performancecomparisonof differentrecognition
front-endson cleanandnoisyspeech

SNR[dB]
Method clean 20 15 10 5

LPCC 74.49 60.32 46.41 27.50 14.04
MFCC 77.76 66.28 54.29 34.94 16.92
SSC 59.10 40.00 31.09 24.17 15.45

SSCH 75.83 65.77 57.56 41.35 23.91
SSCHP 76.06 67.96 61.22 47.37 28.46

that MFCC outperformsLPCC in all test condition. The
differenceis especiallypronouncedin moderatenoisycon-
ditions.Further, it wasinterestingto seeasurprisinglygood
performanceobtainedusingonly threeSSCs.However, it
wasstill muchpoorerthan that of the conventionalfront-
ends. On the other hand,SSChistogrambasedmethods
wereprovento bemuchmoreefficient in utilizing SSCin-
formationthanusingSSCasfeaturesdirectly. Both,SSCH
andSSCHPwereshown to be morerobust thanMFCC in
presenceof additive white noise,while exhibiting only a
slight decreasein performancein thenoise-freeconditions.
SSCHPconsistentlyoutperformedSSCHin all testcondi-
tions.Thisis notsurprising,sinceSSCHPincorporatesboth
frequency andamplitudeinformationfrom thepowerspec-
trum. Therelativeerrorreductionobtainedby SSCHPwith
respectto MFCC wasup to 19%.

5. DISCUSSION AND CONCLUSIONS

In this paperwe proposeda new framework for efficient
utilization of frequency information from the power spec-
trum in thespeechfeatureextraction.It is achievedthrough
computationof subbandspectralcentroidhistograms.Two
differentmethodswereproposed.Thefirst one,SSCH,uses
frequency informationalone,while thesecondone,SSCHP,
incorporatesamplitudeinformation in addition to the fre-
quency informationinto thehistograms.

In anevaluationon anASR tasktheproposedmethods
outperformedthe conventionalfeatureextraction methods
in presenceof additive white noise. This wasparticularly
pronouncedfor SSCHP.

It shouldbenotedthattheconventionalfront-ends(MFCC
andLPCC)utilizeonly amplitudeinformationfrom thespeech
power spectrum,while theproposedfront-ends(SSCHand
SSCHP)utilize frequency informationderivedfromthepower
spectrum.TheSSCHfront-endusesonly frequency infor-
mationandhasperformedaswell astheMFCC andLPCC
front-endsfor cleanspeech.For noisyspeech,it hasgiven
betterresults. This is very satisfyingas it derivesthe fre-
quency informationfrom the power spectrumwhich is al-
readycorrupteddueto additivenoisedistortionin thespeech
signal. If we haduseda robustestimationmethodto derive
the frequency informationdirectly from the speechsignal
[6, 7], this front-endwould have resultedmuchbetterper-
formancefor noisy speech.We arecurrentlyinvestigating
theuseof suchrobustfrequency estimationmethods.
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