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ABSTRACT

In this paperwe proposea new framawork for utilizing fre-
gueng informationfrom the short-termpower spectrunof
speech.Featureextractionis basedon the cepstralcoefi-
cientsderivedfrom the histogramsf subbandpectraken-
troids(SSC).Two new featureextractionalgorithmsarepro-
posed,one basedon frequeng informationalone,andthe
otherwhich efficiently combinesthe frequeny andampli-
tudeinformationfrom the speechpower spectrum.Exper
imental study on an automaticspeechrecognitiontask has
shawvn that the proposedmethodsoutperformthe cornven-
tional speecHront-endsin presencef additive white noise,
while they performcomparablyin thenoise-freeconditions.

1. INTRODUCTION

Signal parameterizatiotechniquesusedfor speechrecog-
nition are basedon extractinginformationfrom the short-
term power spectrumestimatesof speech.However, they
utilize only amplitudeinformationprovidedby power spec-
trum, while the frequeny informationis left unexplored.
For examplein MFCC, we useonly theinformationon the
total powerin eachsubbandbut we do notkeeptrackof the
dominantsubbandrequencies.

Several attemptshave recentlybeenmadeto incorpo-
ratethe frequeng informationfrom the power spectrumn
the speechfeaturevectors[1, 2, 3, 4, 5]. They arebased
on computingsubbandspectralcentroids(SSC)and using
them asadditionalfeaturesin the MFCC-basedront-end.
It hasbeenshowvnin [1] thatSSCsarecloselyrelatedto po-
sition of spectralpeaks(formants)of speectsounds.Since
spectrapeakpositionsremainpracticallyunafectedin pres-
enceof additive noise, it is expectedthat an SSC-based
front-endwould have a potentialof improving the robust-
nessof automaticspeechrecognition(ASR) systems.

The aim of this study wasto find an effective way of
utilizing the frequeng information from the power spec-
trum, bothaloneandin combinationwith theamplitudein-
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formation. It hasbeenachievedthroughcomputingthe his-
togramsof the SSCs.

This paperis organizedasfollows. In Section2 we de-
fine the SSCs,and proposetwo methodsfor their usein
featureextraction. A discussionof the choiceof free pa-
rameterss givenin Section3. Section4 presentsheresults
of an evaluationof the methodson an ASR task. Finally,
Section5 highlights someimportantaspectsonnectedo
the proposednethodsandgivesthe mainconclusions.

2. SSC HISTOGRAMS

Subbandspectralcentroidsare found by applying a filter-

bankto the pawer spectrunof the signal,andthencalculat-
ing the first moment(or centroid)for eachsubband.Thus,
the SSCof the m-th subbandcanbe computedas

JE fWo (F) P (f)df
S W ()P (f)df

whereFy is signalsamplingfrequeng, P(f) is short-term
power spectrumWV,,, (f) is frequeng responsef the m-th
bandpasdilter, and~ is a constantusedfor controllingthe
dynamicrangeof the power spectrum.

In the following we proposetwo featureextractional-
gorithmsbasedon accumulatinghe SSCvaluesacrossall
subbandef a givenspeecHrameinto asinglehistogram.

Method 1 This method,referredto as SSCH, consistsof
thefollowing steps:

Cm =

1)

1. Estimatepower spectrum.

2. Apply afilterbankto divide the power spectrum
into a numberof overlappingfrequeny bands.

3. Findthecentroidfor eachsubband.

4. Partitiontheentiresignalfrequeng rangeinto a
numberof bins.

5. Findthecorrespondingin for eachcentroidand
increasets countby one.

6. Calculatecepstrakoeficientsby computingthe
DCT of the histogram.



L I I I o I
0 500 1000 1500 2000 2500 3000 3500 4000

I I
3000 3500 4000

I I I
0 500 1000 1500 2000 2500

I I I
1500 2000 2500
frequency [Hz]

I I
3000 3500 4000

I
0 500 1000

Fig. 1. Differentrepresentationsf a 25 msframeof sound
/eel: a) FFT-basedpower spectrumwith threeSSCs.SSCs
are shavn with dottedvertical lines, and subbandbound-
arieswith solid verticallines. b) SSCHandc) SSCHP

Method 2: This methoddiffers from the first one only in
step5. Insteadof increasingbin countsby one,they
areincreaseddy log(1 + P /bwy), where Py, is the
power of thek-th subbandignalgivenby thedenom-
inatorof theexpressionn Eq. 1, bwy, isthebandwidth
of the k-th bandpasdilter in the filterbank, and the
unity termis addedto preventfrom addingnegative
valuesto the bin counts. In this way power informa-
tion is efficiently incorporatednto SSChistograms.
We refer to this algorithm as Paver WeightedSSC
Histogram(SSCHP).

Figurel shows four differentrepresentationsf a25 ms
frameof sound/ee/. In thefirst plot, the FFT-basedpower
spectrumestimateis shovn togetherwith the three SSCs
(dotted vertical lines) obtainedusing a rectangularBark-
spacedfilterbank (filter cut-off frequenciesare shovn as
solid vertical lines). The secondandthird plots showv the
SSCHand SSCHP respectiely. We obsenre a closere-
lationship betweenthe histogramrepresentationand the
powerspectrumThisis especiallyinterestingor theSSCH,
sinceit doesnotexplicitly useary powerinformation.

3. CHOICE OF PARAMETERS

The algorithmsproposedn Section2 dependon a number
of free parametersin this section,we presenta discussion
on the choiceof the parametersyhile Section4.2 presents
theresultsof anexperimentaktudyof theeffectof different

parametechoiceson therecognitionperformance.

Power spectrum estimation method: Wehaveachoicebe-
tween using FFT-basedunsmoothedspectrumesti-
matesand LP-basedspectrumenvelopes.Intuitively,
spectrakrvelopesseento bebetterstartingpointsfor
computingSSCs. However, sincelLP basedspectral
ernvelopeestimatedecomeunreliablein thepresence
of noise, the FFT-basedpower spectrumwas used
throughouthis study

Dynamic range: Thedynamicrangeof the spectrunused
in thecomputatiorof SSCds controlledby parameter
~ (asshawvn in Equationl). If  is too low (near0),
SSCswill besimply at the centerof their subbands,
and thus containno information. If it is too large
(nearoc), SSCswill correspondo locationsof the
peaksf theFFT-basedowerspectrumandwill thus
benoisyestimates.

Filterbank: We decidecdto usefilters with rectangulafre-
queng responsei thisstudy Any othershapgsuch
as triangular) would favor somefrequencieswithin
the subbandmore thanthe others,and thus give an
biasedSSCestimate.

Filter bandwidthshaveto belargeenoughto suppress
appearancef local peakdn thehistogram However,
they shouldbe small enoughto preventinclusion of
morethanoneformantinto a singlesubband.

Numberof filters shouldbe chosersuficiently large
to provide enoughpointsin the histogram. Too low
bin countdeadto unreliablehistogramsOntheother
hand thecomputationatostincreasegroportionally
with numberof filters.

Frequency bins: In orderfor centroidgto provide ary use-
ful information, eachfilter muststretchover several
frequeng bins. Thus,it is of crucialimportancethat
theratio betweerfilter andbin bandwidthss chosen
sufficiently high. For givenfilter bandwidthsthis is
achievedby increasinghetotal numberof frequeny
bins. However, toosmallbinsmightcausehistograms
to becometoo sensitve to small fluctuationsof the
spectrapeakpositions.

Filter and bin placement: Filterscanbedistributedlinearly
alongthe Hertz scaleor alonga perceptuallybased
frequeny scalesuchas Bark or Mel. In ary case,
it is importantthat bin distribution is in accordance
with thefilter distributionin orderto obtainunbiased
histograms.

4. EXPERIMENTAL STUDY

This sectionis dividedinto threeparts.Firstwe describehe
recognitiontaskusedfor performancevaluationof the pro-



posedalgorithms.Then,we presentheresultsof anexper
imentalstudyof theeffectof differentparametechoiceson
recognitionperformanceFinally, we comparehe recogni-
tion performancef the SSC-basetkatureextractionmeth-
odswith thecorventionalfront-endspothin cleanandnoisy
ervironments.

4.1. Task and database

The proposednethodsvereevaluatedon anisolatedword,
spealkerindependentask,with thevocahulary consistingof
26 lettersfrom English alphabet. Two repetitionsof each
word were recordedfor eachspealer. Spealerswere di-
videdinto two sets,90 for trainingand 30 for testing. One
hiddenMarkov model(HMM) with 5 statesand5 Gaussian
mixtureswas usedto model eachvocahulary word. Both
trainingandtestingwereperformedusingthespeectrecog-
nition toolkit HTK. Although the vocahulary is relatively
small, this is a ratherdifficult taskasall vocalulary words
arevery shortandhighly confusable.The baselineperfor
mancefor MFCC andLPCC front-ends measuredsword
accurag (WAC), is givenin Table1.

Table 1. Baselineperformance

| Method | WAC | Parameters |

MFCC | 77.76 | 12cep.coef
LPCC | 74.49| 12cep.coef.

4.2. Experimenting with parameter values

In the following we presentthe resultsof an experimental
studyaimedat finding the effect of differentparametewal-
ueson the recognitionperformance. All the experiments
weredoneusingthe SSCHmethod,but it is reasonabléo
expectthatthey would generalizéo SSCHPmethodtoo.
First,weinvestigatedheimportancenf choosinghebin
bandwidthssufiiciently small comparedo the filter band-
widths. This wasachieved by varying the total numberof
bins,while keepindfilter bandwidthsonstantRecognition
performancedor differentchoicesof theratio betweerfilter
andbin bandwidthsis shovn in Table2. We obsene that

Table 2. Performancdor differentchoicesof ratio between
filter andbin bandwidths

| Filter BW [Bark] | #Bins | Filt BW/Bin BW | WAC |

choosingheratiocloseto 4 givesthebestperformanceToo
small valuesdegradethe performanceconsiderablywhich
is in agreementvith the discussionin Section3. We re-
peatedthe experimentfor differentchoicesof filter band-
widths,andfoundout thatchoosingheratio betweer3 and
5 alwaysmaximizedthe performance.

Next, we investigatedheinfluenceof filter bandwidths
to theperformancef SSChistogramsTheresultsaresum-
marizedin Table 3. We concludethat the choiceof filter
bandwidthsis not critical aslong asthe numberof binsis
adjustedto achieve an appropriateratio betweerfilter and
bin bandwidths.Similar resultswere obtainedwhenfilters
wereuniformly spacedalongthe Hertz scale.We obsened
little changein performancdor filter bandwidthsbetween
200 Hz and400 Hz, with gradualdecreasén performance
with furtherincreaseof the bandwidths.

Table 3. Performancdor differentfilter bandwidths
| Filter BW [Bark] | #Filters | FiltBW/BinBW | WAC |

1 200 3 73.46
2 150 4 74.29
3 100 4 73.72

Next, we investigatedhe importanceof parametety in
Equationl, thatdetermineshedynamicrangeof the power
spectrunmusedin SSCcomputation.Settingy to 0.5, 1 and
1.5ledto thesimilarrecognitionperformancewith thecase
of v = 1 beingslightly betterthanthe othertwo. Thus,
~ = 1 wasusedin all furtherexperiments.

At the end,we comparedhe performanceor uniform
filter spacingalongtheHertzandBark scales.Thefirst two
rows of Table4 shav the bestperformanceschieved us-
ing Bark and Hertz scalesrespectiely. In an attemptto

Table 4. Performancdor differentfilter spacings

| Scale | FiltBW | #Filters | #Bins | WAC |
Bark 2 Bark 150 30 74.29
Hertz 308Hz 247 50 76.15
Hz/Bark | 300Hz/2 Bark 130 26 75.83

2 16 21 69.87
2 21 2.8 71.92
2 30 4 74.29
2 50 6.2 73.78

retainthe goodperformancef the Hertzscale,andthelow
computationatostof the Bark scale we combinedthetwo
scalesby applying the Hertz scalein the low frequencies
and the Bark scalein the high frequencies. The bound-
ary betweerthetwo scaleds choserto provide the smooth
transition. The recognitionperformanceor the combined
approachs showvn in the lastrow of Table4. As it gives
the bestcompromisebetweerrecognitionperformancend
computationakost, it hasbeenusedin all further experi-
ments.



4.3. Comparison with other front-ends

In this sectionwe presentheresultsof acomparatie study
betweencornventionaland SSC basedspeechrecognition
front-endsboth in cleanand noisy ervironments. Noisy
speechwas producedby adding samplesof white Gaus-
sian noiseto the cleanspeechat given signal-to-noisera-
tios (SNR). SNRwascomputeddy dividing thetotal power
of the cleanutteranceby the noisevariance. Recognition
performanceavascomparedor thefollowing front-ends:

e 121 PCCsderivedfrom 12 LP coeficients.
e 12MFCCsderivedfrom 24 Mel-filterbanklog-enegies.

e 3 SSCsderivedfrom the FFT-basedoower spectrum
usingthreerectangulanon-overlappingBark-spaced
filters, asdescribedn [1].

e 12 cepstruncoeficientsderivedfrom SSCHwith pa-
rametevaluesgivenin thelastrow of Table4.

e 12 cepstrumcoeficients derived from SSCHPwith
parametersameasabove.

Table5 summarizesherecognitionperformancesf thefive
frontendshoth on cleanspeechandfor four differentnoise
levels. Comparingthe two corventionalfront-endswe see

Table 5. Performanceeomparisorof differentrecognition
front-endson cleanandnoisy speech

SNR[dB]
Method| clean] 20 | 15 | 10 [ 5
LPCC | 74.49| 60.32| 46.41| 27.50| 14.04
MFCC | 77.76 | 66.28 | 54.29| 34.94| 16.92
SSC 59.10| 40.00| 31.09| 24.17| 15.45
SSCH | 75.83| 65.77| 57.56| 41.35| 23.91
SSCHP| 76.06 | 67.96 | 61.22| 47.37| 28.46

that MFCC outperformsLPCC in all testcondition. The
differenceis especiallypronouncedn moderatenoisy con-
ditions. Further it wasinterestingto seeasurprisinglygood
performanceobtainedusingonly three SSCs. However, it
was still much poorerthanthat of the corventionalfront-
ends. On the other hand, SSC histogrambasedmethods
wereprovento be muchmoreefficientin utilizing SSCin-
formationthanusingSSCasfeaturedirectly. Both, SSCH
and SSCHPwere shovn to be morerobustthan MFCC in
presenceof additive white noise, while exhibiting only a
slightdecreasén performancen the noise-freeconditions.
SSCHPconsistentlyoutperformedSSCHin all testcondi-
tions. Thisis notsurprising sinceSSCHRNcorporatedoth
frequeny andamplitudeinformationfrom the power spec-
trum. Therelative errorreductionobtainedoy SSCHPwith
respecto MFCC wasupto 19%.

5. DISCUSSION AND CONCLUSIONS

In this paperwe proposeda new frameawork for efficient
utilization of frequeng informationfrom the power spec-
trumin the speeclfeatureextraction. It is achiezedthrough
computationof subbandspectralcentroidhistograms.Two
differentmethodsvereproposedThefirst one,SSCH,uses
frequeng informationalone while thesecondne, SSCHP
incorporatesamplitudeinformation in additionto the fre-
gqueng informationinto the histograms.

In anevaluationon an ASR taskthe proposednethods
outperformedthe corventionalfeatureextraction methods
in presenceof additive white noise. This was particularly
pronouncedor SSCHP

It shouldbenotedthatthecorventionalfront-endgMFCC
andLPCC)utilize only amplitudeinformationfrom thespeech
power spectrumwhile the proposedront-ends(SSCHand
SSCHPtilize frequeng informationderivedfrom thepower
spectrum.The SSCHfront-endusesonly frequeng infor-
mationandhasperformedaswell asthe MFCC andLPCC
front-endsfor cleanspeech.For noisy speechijt hasgiven
betterresults. This is very satisfyingasit derivesthe fre-
gueny informationfrom the power spectrumwhich is al-
readycorrupteddueto additive noisedistortionin thespeech
signal. If we haduseda robustestimationmethodto derive
the frequeng information directly from the speechsignal
[6, 7], this front-endwould have resultedmuchbetterper
formancefor noisy speech.We are currently investigating
theuseof suchrobustfrequeny estimationmethods.
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