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ABSTRACT

In this paper, we propose a new design approach to implement
FIR filter using CSD multipliers based on Modified Decorrelat-
ing transformation (MDECOR). The direct CSD approach will in-
troduce serious quantization errors since the distribution of CSD
numbers is very non-uniform. The proposed MDECOR tranfor-
mation provides a systematic solution to reduce the dynamic range
effectively. By combining the proposed MDECOR transformation
followed by CSD quantization, we can avoid the aforementioned
quantization problem. As a result, we do not need to employ
additional non-zero bits to compensate for the distortion caused
by direct CSD quantization, which helps to save the number of
adders in VLSI implementations. Furthermore, the MDECOR
transformation offers more design of freedom in the filter design. It
can achieve high-precision performance under the same hardware
complexity as the direct CSD approach. Our simulation results
show that we can save 20% number of adders compared with the
direct CSD approach.

1. INTRODUCTION

FIR filter is one of the key functional blocks in many digital sig-
nal processing (DSP) applications. The hardware complexity of
the FIR filter can be very high when the filter is implemented with
array multipliers. Many researches are devoted to reduce the hard-
ware complexity of the FIR filter. Among them, the Canonical
Sign Digit (CSD) approach is one of the most popular approaches
[1][2]. In CSD approach, each coefficient is represented/quantized
as the sum of Signed Power-of-Two (SPT) terms. For example,
�0:37521 can be re-formulated as 0:�101 for 2 non-zero digits. By
doing so, the implementation of multipliers can be accomplished
with only shift-and-add operations. Hence, the cost can be reduced
significantly in ASIC designs.

However, the major problem of CSD approach is that the dis-
tribution of CSD coefficients is highly non-uniform, which limits
the precision performance of the CSD multipliers. In Fig. 1, we
demonstrate the distribution of 2-nonzero-digit CSD numbers be-
tween 0.0 and 1.0 for wordlength 6, 7, and 8, respectively. As
we can see, the gaps of the CSD distribution cannot be reduced
even if the wordlength of the CSD numbers increases. To achieve
higher precision performance (reducing the gaps), we have to em-
ploy more non-zero digits. However, increasing the non-zero digit
has the effect of increasing the number of adders in each filter tap.
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Figure 1: The distribution of 2-nonzero-digit CSD numbers be-
tween 0.0 and 1.0 (wordlength = 6,7,8). Each circle denotes the
location/value that can be represented by the CSD number.

In this paper, we propose a new CSD approach in FIR filter
implementation based on reduction of dynamic range. This can be
achieved by modifying the Differential Coefficient Method (DCM)
[3] and Decorrelating transformation (DECOR) [4]. That is, we
transform the original coefficients into a new set of coefficients
with much smaller dynamic range than the original ones. Then,
CSD quantization process is applied to these transformed coeffi-
cients.

In addition, to prevent from the stability problem, we also
make some modifications on the DECOR transformation, called
Modified DECOR (MDECOR) transformation. It introduces more
degrees of freedom in the filter designs, which helps to further re-
duce the dynamic range of coefficients. As will shown in this pa-
per that by combining the proposed MDECOR followed by CSD
quantization, we can save 20% number of adders compared with
direct CSD approach.

2. REVIEW OF DCM AND DECOR TRANSFORMATION

2.1. Time-domain Representation

Mathematically, an N -tap FIR filter performs the following con-
volution

y(n) =

N�1X

k=0

hkx(n� k); (1)

where hk is the k-th coefficient of the FIR filter; x(n) and y(n)

denote the input and the output signals at time instance n, respec-
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Figure 2: FIR filter structure based on 1st-order DCM.

tively. In 1st-order DCM, Eq. (1) can be reformulated as [3]

y(n) =

N�1X

k=0

[(hk � hk�1) + hk�1]x(n� k)

= h0x(n) +

N�1X

k=1

�
�

1

kx(n� k)
�
+

y(n� 1)� hN�1x(n�N); (2)

where
�

1

k

4

= hk � hk�1: (3)

The “1st-order” operation denotes that we take difference between
the contiguous coefficients only once. The corresponding structure
of the DCM-based FIR filter is depicted in Fig. 2. As we can see
from Fig. 2, the extra cost of the 1st-order DCM is one additional
tap and one accumulator (circled by the dotted line). For mth-
order DCM, the coefficients are generated by taking the difference
of the (m� 1th)-order DCM coefficients as

�

m
k

4

= �

m�1
k � �

m�1
k�1 : (4)

To see the effectiveness of the DCM, we apply the 1st and
2nd DCM on the coefficients of a 101-tap low-pass FIR filter with
cutoffs frequency of �0:0945fs=2. The original coefficients as
well as the coefficients after 1st and 2nd order DCM are shown
in Fig. 3. For the 1st-order DCM, we find the magnitude of co-
efficients is reduced significantly; all the values of processed co-
efficients are suppressed within 20% compared with the original
coefficients. Similarly, the coefficients of the 2nd-order DCM are
further reduced within 10% of the original dynamic range. The
reduction of dynamic range of FIR filter imply that the wordlength
can be reduced. Hence, a lower cost of hardware complexity can
be achieved when we apply the DCM to FIR filter implementation.

2.2. z-domain Representation

From z domain point of view, we can represent the 1st-order DCM
of the FIR filter as

H

0

(z) =
H(z)

�
1� z

�1
�

(1� z
�1)

; (5)

where H(z) denotes the original FIR filter response. In [4], Eq. (5)
is generalized to the DECOR, in which the transfer function is
rewritten as

H

0

(z) =
H(z)

�
1 + �z

��
�m

(1 + �z
��)

m : (6)
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Figure 3: Dynamic range reduction after applying DCM.

Filter Type � � f(z)

Low-pass -1 1
�
1� z

�1
�m

High-pass 1 1
�
1 + z

�1
�m

Band-pass (!c: center freq.) 1 �=!c

�
1� z

��=!c
�m

Band-stop -1 2
�
1� z

�2
�m

Table 1: Setting of � and � for different types of FIR filters in
DECOR transform.

The parameters of � and � are chosen depending on the filter type,
and m denotes the order (iteration numbers of coefficient opera-
tion) of DECOR as listed in Table 1. Note that, when m = � = 1,
DECOR is reduced to 1st-order DCM of Eq. (5).

3. THE PROPOSED MDECOR-BASED CSD
QUANTIZATION PROCESS

In general, in the CSD-based FIR filter design, the coefficients are
quantized to the nearest CSD numbers. Recall in Fig. 1 that the
distribution of CSD numbers is denser for smaller values, and the
distribution is sparser for larger values. As one can expect, the
quantization error can be higher for those coefficients in the sparse
region of the CSD distribution. Consequently, in [5], the authors
suggested that we can add one more non-zero digit in CSD rep-
resentation when the magnitudes of FIR filter coefficients exceed
0.5. In fact, this approach can increase the distribution density
of CSD number, resulting in smaller quantization errors. How-
ever, the reduction of quantization error is gained at the expense
of hardware complexity. More adders are required in FIR filter
implementation due to the increased non-zero digits. Moreover,
since more number of adders of each filter tap is employed, the
critical path is also increased correspondingly, which will degrade
the operation speed of the filter.

Instead of employing additional non-zero digits, in this pa-
per, we propose a cost-efficient solution to enhance the precision
performance. Our idea is to move those large-valued coefficients
into the region with dense CSD distribution. By doing this, we
can avoid the serious quantization errors that are resulted from the
large gap of the highly non-uniform CSD distribution. As a con-
sequence, we can improve the overall precision performance of
FIR filter in practical fixed-point implementation without increas-
ing the hardware complexity.
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Figure 4: Frequency response of (a) Quantization followed by co-
efficients compression, (b) Quantization of the compressed coeffi-
cients.

3.1. CSD Problems in DECOR Transformation

From Eq. (6), we can see that the DECOR transformation is equiv-
alent to inserting m pole-zero pairs at z = �e

�j� on the z-plane.
In Table 1, all �’s are set to 1 or -1, i.e., all the inserted poles and
zeros lie on the unit circle. In fact, to retain the stability of the IIR
filter, the inserted poles must be exactly cancelled with the inserted
zeros.

To avoid the aforementioned stability problem, in applying
CSD to the DECOR transformation, we perform the following pro-
cedures:

1. Quantize the filter coefficients into CSD numbers.

2. Reduce the dynamic range of filter coefficients into a smaller
set by using DECOR transformation.

That is, we first quantize H(z) as a quanitzed ~
H(z), followed by

the multiplication of
�
1 + �z

��
�m

.
The resulting frequency response of the filter is shown in Case

(a) of Fig. 4. It can still maintain the filter response since the zero-
pole pairs will not be drifted from the original location. On the
contrary, quantizing the compressed coefficients after the DECOR
transformation leads to the imperfect cancellation of inserted pole-
zero pairs. Therefore, frequency response of the filter will be
changed as shown in Case (b).

3.2. Modified DECOR (MDECOR) Transformation

As one can expect, the aforementioned DCM and DECOR trans-
formation provide a good solution in transforming the original co-
efficients into a new coefficients set with smaller values. However,
as will be described later that some basic operations of DCM and
DECOR make it difficult to apply DCM and DECOR to CSD pro-
cess directly. To facilitate the proposed operation, we make two
modifications on DECOR transformation, as described below:

A. Interchange the Quantization Process

In the DCM and DECOR approaches, we quantize the original co-
efficients before compressing the quantized coefficients into smaller
values. Combined with CSD quantization, these coefficients to be
quantized cannot avoid the large gap in CSD distribution. On the
contrary, in our approach, the operation of moving those large-
valued coefficients into the dense region must be processed before
CSD quantization.
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Figure 5: Location of pole-zero pairs of 2nd-order MDECOR
while j�1j = 0:9 and j�2j = 0:5.

Moreover, it is hard to assign the number of adders precisely
in FIR filter implementation based on DECOR-based CSD pro-
cess. In fact, it may be easy to assign number of adders in each tap
while we quantize filter coefficients into CSD numbers, however,
the number of adders may be increased after we take the opera-
tion of CSD quantized coefficient by following Eqs. (3) and (4).
As a result, DCM and DECOR transformation cannot be applied
to CSD implementation directly. To facilitate the proposed CSD
operation, we interchange operation of the coefficient quantization
and dynamic range compressing process, as described below.

1. Compress the dynamic range of filter coefficients into a
smaller set.

2. Quantize these pre-processed coefficients, which are gener-
ated by step 1, into CSD numbers.

B. A Generalized Value of �i

In high-order DECOR transformation, all � are determined as the
same value (see Eq.(6)). In our proposed scheme, we relax the op-
eration of DECOR by modifying the transfer function in Eq. (6).
The transfer function of themth-order Modified DECOR (MDECOR)
is represented as

H

0

(z) = H(z)

Qm�1

i=1

�
1 + �iz

��
�m

Qm�1

i=1
(1 + �iz

��)
m
: (7)

where �i has the constraint

�1 � �i � 1: (8)

Note that the value of � and sign of �i are still determined de-
pending on filter types listed in Table 1. However, the value of �i
can be chosen as an arbitrary value with absolute value less than 1.
By doing this, the poles in Eq. (7) will not cause serious distortion
even the zeros drift away from the original location.

Furthermore, in the mth-order MDECOR transformation dif-
ferent values of �i can be assigned to optimize filter performance,
as shown in Fig. 5. This phenomenon may result in smaller dy-
namic range of coefficients, implying that we may use fewer adders
to implement FIR filter for the same design specification. Under
the same hardware complexity, the proposed operation increases
the degree of freedom in FIR filter design; hence a better Signal-
to-Quantize Noise Ratio (SQNR) performance can be expected.
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Figure 6: Frequency response of MDECOR-based CSD approach
and direct CSD approach.

4. SIMULATION RESULTS AND PERFORMANCE
COMPARISON

Fig. 6 shows the frequency responses of a narrow-band low-pass
FIR filter using CSD multipliers and the specification is mentioned
in section 2. All CSD multipliers employ 3 non-zero digits and
12 bits coefficient wordlength. As one can see, direct CSD quan-
tization of coefficients results in serious distortion in frequency
response. On the contrary, the difference between the proposed
MDECOR-based CSD approach and ideal frequency response is
much smaller.

Fig. 7 shows the SQNR values for different coefficient wordlength.
Note that in this simulation, we also consider the truncation error
caused by shifters of CSD multiplier. While direct CSD quantiza-
tion and the proposed MDECOR-based CSD quantization process
are all employed 3 non-zero digits in their CSD representation.
From Fig. 7, we can make the following observations:

1. SQNR of the proposed method is about 10 dB higher than
the direct CSD quantization approach.

2. The wordlength of direct CSD approach reaches its satura-
tion value, which is smaller than the saturation wordlength
of the proposed scheme.

3. The topmost curve in Fig. 7 represents the precision per-
formance of the direct CSD approach with 4 non-zero dig-
its. It can achieve a higher SQNR value but the complex-
ity is higher than the proposed approach under the same
specification. As a result, if the performance of direct CSD
approach cannot satisfy the specification under a specified
number of non-zero digits. We can try to pre-process filter
coefficients by using the proposed MDECOR-based CSD
approach to achieve the SQNR requirement, instead of us-
ing more non-zero digits in practical implementations.

Fig. 8 shows the SQNR values of the FIR filter with 1st-order
and 2nd-order MDECOR transformation under the same hardware
complexity. As we expect, 2nd-order MDECOR transformation
has a better SQNR performance. The reason is that we have more
design freedom to search for the optimized value of �i in fixed-
point filter design.

From the above simulation results, we can conclude that when
the processed coefficients are used, FIR filter realization with CSD
multiplier evinces a better performance. That is, we can use fewer
adders to realize FIR filter with CSD multipliers.
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Figure 7: SQNR results of MDECOR-based implementation (3
non-zero digits) and direct CSD approach (3 and 4 non-zero dig-
its).
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Figure 8: SQNR results of the coefficients by applying 1st-order
and 2nd-order MDECOR.

5. CONCLUSIONS

In this paper, we introduced a MDECOR transformation to reduce
the serious quantization error caused by non-uniform distribution
of CSD numbers. The MDECOR compresses the magnitude of co-
efficients before quantizing them. Suppose that we want to imple-
ment a FIR filter by CSD multipliers but the performance cannot
satisfy the specification under limited numbers of non-zero dig-
its. We can employ the proposed MDECOR to achieve the target
precision performance, instead of using more adders in practical
implementation. Hence, a lower cost can be achieved in designing
the multiplier-less FIR filters.
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