
DYNAMIC RESOURCE ALLOCATION FOR NETWORK ECHO CANCELLATION

Tomas Gänsler, Jacob Benesty, M. Mohan Sondhi, and Steven L. Gay

Bell Laboratories, Lucent Technologies
600 Mountain Avenue

Murray Hill, New Jersey 07974-0636
{gaensler,jbenesty,mms,slg}@bell-labs.com

ABSTRACT

Network echo canceler chips are designed to handle several chan-
nels simultaneously. With the processing speeds now available, a
single chip might handle several hundred channels. In current im-
plementations, however, the adaptation algorithm is designed for
a single channel, and the computations are replicated Nc times,
where Nc is the number of channels. With such an implementa-
tion, the computational requirement is Nc times the peak load for
a single channel. The number of computations required in each
channel, however, varies widely over time. Therefore, a consider-
able reduction in computational load can be achieved by designing
the system for the average load plus a margin to account for load
variations. The reduction in complexity is achieved by exploit-
ing three features: (a) the inherent pauses in conversations, (b) the
sparseness of network echo paths, and (c) the fact that an adaptive
filter does not need to be updated when the error signal is small. In
this paper it is shown that, in principle, such a design can reduce
the computational load by a very large factor – perhaps as large as
thirty. It remains to be seen whether a customized hardware archi-
tecture can be implemented to fully take advantage of the proposed
algorithm.

1. INTRODUCTION

Current algorithms for network echo cancelers are designed with-
out regard to the fact that, invariably, a single canceler chip han-
dles many conversations simultaneously. This implies that for Nc

channels, the processor must handle Nc times the peak compu-
tational load of a single channel. If the number of channels is
large, however, it should be possible to reduce the demands on
the processor to something close to Nc times the average load.
Some additional computational capacity would, of course, be nec-
essary to take care of statistical fluctuation in the requirements, but
the required safety margin becomes smaller as Nc becomes larger.
(With the speed and memory now available on a chip, the num-
ber of channels can be several hundred, so the safety margin might
not have to be large.) Once the problem is looked upon as that of
dealing with a large number of channels, it is also possible to take
advantage of other knowledge about speech patterns and character-
istics of long distance circuits to further reduce the computational
load. In this paper, we show how the computational requirement
can, in principle, be reduced by a very large factor – perhaps as
large as thirty.

Basically we capitalize on three facts. First, during a tele-
phone conversation, there are many pauses in each speech signal.
These pauses have been exploited to decrease the idle time in tele-

phone connections, so called TASI (time assignment speech inter-
polation) networks, since the 1960s [1]. An echo canceler too can
take advantage of these pauses. Second, network echo paths are
sparse, i.e. only a few coefficients are nonzero. By utilizing this
sparseness property of the responses, it is possible to increase the
convergence rate and decrease the complexity of adaptive filters
[2], [3], [4], [5]. Finally, echo paths do not change much during a
conversation. Hence the adaptive filter need not be updated con-
tinuously. It is estimated that it needs to be updated perhaps only
10% of the time. These three features can be exploited to design
an efficient algorithm.

The paper is organized as follows: In Section 2 the proportion-
ate normalized least mean squares (PNLMS) algorithm is briefly
presented. Section 3 gives some proposals on how to simplify the
PNLMS algorithm, and shows the reduction in complexity that
may be achieved. Performance simulations are presented in Sec-
tion 4, and Section 5 gives a discussion of the results and problems
associated with this approach.

2. THE PNLMS ALGORITHM

In this section, we give a brief description of the PNLMS algo-
rithm; for more details see [6, 7]. In derivations and descriptions,
the following notation is used:

x(n) = Far-end signal,

y(n) = Echo and background noise possibly

including near-end signal,

x(n) = [x(n) · · · x(n − L + 1)]T , Excitation vector,

h = [h0 · · · hL−1]
T , True echo path,

ĥ(n) = [ĥ0(n) · · · ĥL−1(n)]T , Estimated echo path.

Here L is the length of the adaptive filter, and n is the time index.
The PNLMS algorithm was proposed in [6]. In this algorithm,

an adaptive individual step-size is assigned to each filter coeffi-
cient. The step-sizes are calculated from the last estimate of the
filter coefficients in such a way that a larger coefficient receives a
larger increment, thus increasing the convergence rate of that co-
efficient. This has the effect that active coefficients are adjusted
faster than non-active coefficients (i.e. small or zero coefficients).
Hence, PNLMS converges much faster than NLMS for sparse im-
pulse responses (i.e., responses in which only a small percentage
of coefficients is significant). Most impulse responses in the tele-
phone network have this characteristic.

The PNLMS algorithm is described by the following equa-
tions:

e(n) = y(n) − ĥT (n − 1)x(n), (1)

ĥ(n) = ĥ(n − 1) +
µG(n)x(n)

xT (n)G(n)x(n) + δ
e(n), (2)

G(n) = diag{g0(n), . . . , gL−1(n)}. (3)

G(n) is a diagonal matrix which adjusts the step-sizes of the indi-
vidual taps of the filter, µ is the overall step-size parameter, and δ
is a regularization parameter which prevents division by zero and
stabilizes the solution when speech is used as the input (far-end)
signal. The diagonal elements of G(n) are calculated as follows
[6]:

γl(n + 1) =

max{ρmax{δp, |ĥ0(n)|, . . . , |ĥL−1(n)|}, |ĥl(n)|},(4)

0 ≤ l ≤ L − 1,

gl(n + 1) = Lγl(n + 1)/

L−1∑
i=0

γi(n + 1), (5)

0 ≤ l ≤ L − 1.

Parameters δp and ρ are positive numbers with typical values δp =
0.01, ρ = 5/L. ρ prevents coefficients from stalling when they
are much smaller than the largest coefficient and δp regularizes the
updating when all coefficients are zero at initialization.

3. PROPOSALS FOR REDUCED COMPLEXITY

In this section, we outline the principles of a simplified algorithm
that exploits properties of network echo cancellation described in
the previous section. We also present the theoretical complexity
gains one can achieve. It is assumed that one or more computation
engines serve the channels and some logic has been designed to
control and distribute the resources. Decisions, e.g., which chan-
nels should be updated, are based on results from voice activity
and double-talk detection.

An algorithm that takes advantage of the sparseness of the im-
pulse response to improve convergence rate is the PNLMS algo-
rithm [7]. However, its complexity is greater by a factor of 2 com-
pared to that of the standard NLMS algorithm. In the following,
we show that we can do much better than these algorithms from a
complexity point of view.

3.1. A simple algorithm to update only active channels and
coefficients

In a two-way conversation each talker is active only about half
of the time; additionally, there are pauses between sentences and
syllables. During these inactive time slots no coefficient updating
is needed. Furthermore, since network echo path responses are
sparse, we can focus computations on only the active (non-zero)
coefficients. The following algorithm saves a large number of mul-
tiplications at the expense of some additional overhead compared
to current implementations of NLMS and PNLMS. The key fea-
tures are: (1) No coefficient is updated if the channel is inactive
or double-talk has been detected. (2) No coefficient is updated if
the residual error is sufficiently small. (3) Step-sizes for the active
taps can all be made equal instead of the step-sizes specified by the

matrix G(n). (4) All coefficients are updated (i.e., an NLMS itera-
tion is made), every M th iteration. Only the active coefficients are
updated at all other iterations. (5) The index of active coefficients
is updated every M th iteration.

Periods of inactivity are easily identified with a look-ahead
of one, or a few, samples at the outputs of the voice activity and
double-talk detectors. Hence the first item is easily implemented.
The implementation of item 2 is explained in the next subsection.
Items 3–5 are implemented as follows:

Let us first define an “active set,” i.e., the set of active tap
weights. To this end, define a threshold T , and sort the tap weights
in descending order of absolute value. Then define the active set
As as the first La weights in this list, such that their cumulative
magnitude just exceeds T times the cumulative magnitude of all
the L taps of the filter. In symbols

As = {l : min
l∈As

{|ĥl(n)|} > max
l�∈As

{|ĥl(n)|},

T
L−1∑
l=1

|ĥl(n)| ≤
∑
l∈As

|ĥl(n)|

≤ T
L−1∑
l=1

|ĥl,n| + max
k �∈As

{|ĥk(n)|}}. (6)

The threshold T is selected in the range T = [0.9, 1). From an
implementation point of view it may be appropriate to limit the
maximum size of the set to Lmax thus La ≤ Lmax < L. The
maximum load of a channel can thereby be limited. For M − 1
consecutive iterations the coefficients of the active set are updated
as follows:

e(n) = y(n) −
∑
l∈As

ĥl(n − 1)x(n − l), (7)

ĥl(n) = ĥl(n − 1)

+
µx(n − l)∑

l∈As
x2(n − l) + δ

e(n), l ∈ As. (8)

Every M th iteration a full NLMS iteration is made, i.e.,

e(n) = y(n) − ĥT (n − 1)x(n), (9)

ĥ(n) = ĥ(n − 1) +
µx(n)

xT (n)x(n) + δ
e(n). (10)

Increasing M will reduce the average complexity but also worsen
tracking performance. Moreover, with T = 1 the active set cov-
ers all the taps, and we get the standard NLMS algorithm. In the
simulations described in Section 4 we used M = 10.

3.2. Stopping adaptation when small residual error is detected

Echo paths on the network vary slowly, in general. Hence adap-
tation is needed only at a small percentage of iterations, perhaps
no more than 10%. This would yield a huge reduction in compu-
tations, since on a vast majority of iterations we need to compute
only the convolution with the small number (La) of coefficients in
the set As. Therefore we propose that when the error signal is suf-
ficiently small, we do not update or sort the tap weights. Asymp-
totically, for network echo cancelers, the complexity of this algo-
rithm would thus be reduced essentially to the computation of a
convolution on the active taps only.

A good decision variable, to decide if the residual error is
small enough, is the normalized mean square error (in dB) defined
as follows:

ξr(n) = 10 log10

(
< e2(n) >Nr

< y2(n) >Nr +δy

)
, (11)

where

< e2(n) >Nr=
1

Nr

n∑
n−Nr+1

e2(n) (12)

is the mean square error and < y2(n) >Nr is analogously defined.
The regularization parameter δy prevents division by zero during
silences between words, and Nr is the length of the window used
to estimate energy. Nr should preferably be chosen small in order
not to degrade the tracking performance of the adaptive algorithm
when the echo path changes.

The adaptive algorithm proceeds as follows: at each iteration
n, (11) is computed and ξr(n) is compared to a threshold Tr (a
typical range is Tr = [−40,−30]). The decision rule is simple: if
ξr(n) ≥ Tr, then the residual error is not considered small enough
and the algorithm continues to update; If ξr(n) < Tr, then the
residual error is considered negligible and the algorithm neither
updates nor sorts the taps of the filter. However, the convolution
on the active taps is still performed.

3.3. Theoretical reduction in complexity

The complexity of the proposed algorithm is compared to a PNLMS
implementation with respect to multiplications and other required
computations. Computations required for the various steps of the
proposed algorithm are: Eq. (6): k0L log2(L) + 2L + La (sorting
instructions) 1, Eq. (7): La (multiplications), Eq. (8): 2La (multi-
plications), Eq. (9): L (multiplications), Eq. (10): 2L (multiplica-
tions), where k0 is a proportionality constant for the sorting algo-
rithm. Let the probability of active speech be denoted by ps and
the probability of active adaptation by pa. Then, assuming equal
weight for multiplications and sorting instructions, the average re-
quired number of computations is

C0 = pspa
3L

M
, full NLMS update, (13)

C1 = ps
(M − 1)(1 + 2pa)La

M
, (14)

update of active coefficients,

C2 = pspa
L + La + k0L log2(L)

M
, (15)

update of the active set,

and the average total number of computations is

Cp.alg = C0 + C1 + C2. (16)

For comparison, note that the implementation of NLMS and PNLMS
requires (with equal weight for multiplications and comparisons):

CNLMS = 2L + 1, (17)

CPNLMS = 6L. (18)

1This assumes that an algorithm like quicksort is used.

(a)

0 10 20 30 40 50 60

(b)

ms

Fig. 1. Impulse responses of the two hybrids used in our simula-
tions.

As an illustration, assuming the expected typical values: ps =
0.5, pa = 0.1, La = 100, k0 = 1, M = 10, L = 768, we find
that

Cp.alg ≈ 70, (19)

CNLMS = 1537, (20)

CPNLMS = 4608, (21)

which shows that the average complexity of the proposed algo-
rithm could be drastically less than that of NLMS or PNLMS.
However, for various reasons, the estimate in (19) should not be
taken literally. First, it does not allow for a safety margin, and it is
not yet clear how large that needs to be made. Second, at present
there is no hard evidence to justify the estimate pa ≈ 0.1. Third,
the estimate of complexity of the sorting algorithm is not rigorous.
Finally, the choice of M = 10, that controls the initial conver-
gence rate has not yet been optimized. Nevertheless, a reduction
in complexity by a factor as large as 20 or 30 appears to be possi-
ble.

4. SIMULATIONS OF THE PROPOSED ALGORITHM

In this section we compare the performance, in terms of conver-
gence rate and tracking, of our proposed algorithm vs. NLMS and
PNLMS. We also compare the difference in performance for the
proposed algorithm when the adaptation is halted according to the
criterion in Section 3.2. Figure 1 shows impulse responses of the
hybrids used in our simulations. These represent two generic types
of responses that can be expected in practice. Speech is used as ex-
citation signal.

The performance of the algorithms is evaluated by using the
misalignment (MIS) which is given by,

MIS(n) = ‖ĥ(n) − h‖/‖h‖, (22)

where h is the impulse response of the true echo path.

(a)

0 2 4 6 8 10 12 14 16 18 20
−35

−30

−25

−20

−15

−10

−5

0

5

M
is

al
ig

nm
en

t (
dB

)

(b)

s

Fig. 2. (a) Echo and background noise, y(n). (b) Behavior of the
misalignment of the proposed algorithm, with adaptation stopped
according to decision variable (11) (solid), and without stopping
adaptation (dash-dotted), NLMS (dash), and PNLMS (dotted).
The echo path changes at time 10 s from the one in Fig. 1a to
the one in Fig. 1b.

All algorithms are tuned to achieve approximately the same
minimum mean square error in order to fairly compare conver-
gence rate.

The following parameters are used: µ = 0.2, L = 512 (64
ms), δ = 4 · 106. Tr = −38.5 dB, Nr = 40, δy = 1 · 106.
T = 0.98, Lmax = 200. σx = 1900, SNR ≈ 39 dB. Hybrid
attenuation: 6 dB. h(−1) = 0.

Figure 2 shows the misalignment for three different algorithms
when the input is speech. In order to study tracking of the algo-
rithm, i.e., how the algorithm behaves when the echo path changes,
we swap echo path at 10 seconds from that of Fig. 1a to the one in
Fig. 1b. We find for both initial convergence and tracking, the pro-
posed algorithm is considerably faster than NLMS but somewhat
slower than PNLMS. With longer echo paths, the performance im-
provement compared to NLMS will be even greater.

Also seen in Fig. 2, is that when we compare the proposed

algorithm without stopping adaptation during periods of small resid-
ual error (i.e. with Tr set to −∞) with the same algorithm when
adaptation is indeed stopped, i.e. Tr selected such that the adap-
tation was halted more than 45% of the time, there is not a great
difference in performance. We can see that the proposed algorithm
(whether or not adaptation is stopped) outperforms the NLMS al-
gorithm.

5. DISCUSSION

In this paper, a number of proposals have been made for decreasing
the complexity of the adaptive algorithm in a multi echo canceler
system. Emphasis has been placed on finding simple procedures
for choosing active regions of the impulse response and halting
adaptation when the residual error is small. Though more careful
analysis and development of the algorithms are needed, these pro-
posals give some idea of what can be done from an algorithm point
of view in order to improve the efficiency of the implementations.

An important aspect of the problem that we have not discussed
here is the possibility of reducing the requirement of storage capac-
ity. Reduction in storage requirements is necessary if the reduction
of computational complexity is to be fully exploited.

One possibility for reducing storage requirements is to store
the La coefficients in the set As with full precision, and the rest
with reduced precision. Another possibility is to store Lmax co-
efficients with full precision and the rest with reduced precision.
Since the inactive coefficients are, in general, much larger in num-
ber, this procedure can significantly reduce the memory require-
ment. What remains to be seen is how few bits can be used for the
inactive taps without degrading performance.

6. REFERENCES

[1] K. Bullington and J. M. Fraser, “Engineering aspects of
TASI,” Bell Syst. Tech. J., pp. 353–364, Mar. 1959.

[2] S. Kawamura and M. Hatori, “A tap selection algorithm for
adaptive filters,” in Proc. IEEE ICASSP, 1986, pp. 2979–2982.

[3] V. Madisetti, D. Messerschmitt, and N. Nordström, “Dynam-
ically reduced complexity implementation of echo cancelers,”
in Proc. IEEE ICASSP, 1986, pp. 1313–1316.

[4] A. Sugiyama et al., “A fast convergence algorithm for adaptive
FIR filters under computational constraint for adaptive tap-
position control,” IEEE Trans. Circuits Syst. II, vol. 43, pp.
629–636, Sept. 1996.

[5] J. Homer, I. Mareels, R. R. Bitmead, B. Wahlberg, and
A. Gustafsson, “LMS estimation via structural detection,”
IEEE Trans. Signal Processing, vol. 46, pp. 2651 –2663, Oct.
1998.

[6] D. L. Duttweiler, “Proportionate normalized least mean
squares adaptation in echo cancelers,” IEEE Trans. Speech
Audio Processing, vol. 8, pp. 508–518, Sept. 2000.

[7] T. Gänsler, S. L. Gay, M. M. Sondhi, and J. Benesty, “Double-
talk robust fast converging algorithms for network echo can-
cellation,” IEEE Trans. Speech Audio Processing, Nov. 2000.

