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ABSTRACT

A parametric model for the infrared signature caused by a
buried land mine is presented. Further, a detector is cal-
culated for the case where the background noise can be
described by an autoregressive process. The detector sepa-
rately estimates the parameters of the mine and the noise
in an alternating fashion. The estimates are then used in
the likelihood ratio test. Simulations show that significant
gains in performance can be achieved as compared to the
standard detector used, which correlates the infrared image
with the known mine shape and thresholds the square of
the output.

1. INTRODUCTION

Detection of land mines recently has gained considerable
interest in the research community. The quest for removal
of buried mines is driven by the fact that most victims are
innocent people suffering long after the battles have ended.
Traditional techniques are both dangerous and time con-
suming, urging the need for more effective methods. Tech-
niques such as Ground Penetrating Radar(GPR), advanced
metal detectors, acoustic sensing, have among others been
investigated for this task. A description of different evolv-
ing methods can be found in [1]. One of the techniques
that has gained the most interest is the use of optical sens-
ing. Detection of buried land mines using optical methods
is possible principally by using the infrared wavelengths.

In short, the thermal contrast appearing on the sur-
face due to a buried land mine is caused mainly by three
phenomena. First, the mine and soil have different ther-
modynamical properties. Thus, as the soil is heated up in
the morning, or cooled down in the afternoon, the soil and
the mine will react differently. Secondly, the presence of the
mine interferes with the heat flow constantly moving up and
down down through the soil as the surface is either heated
up by solar radiation, or is cooled down due to the lack
of solar radiation. Thirdly, the presence of the mine pre-
vents the natural moisture flow in the soil. For instance
if it has been raining, the soil above the mine contains
more moisture than the soil in the surroundings, chang-
ing the thermal properties of the soil above the mine. For a
thorough description of the physical processes that govern
the mine signature, see [5]. Problems occur when design-
ing a detector, since the signature of a buried land mine
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varies significantly depending on external parameters such
as weather, soil moisture, solar radiation, burial depth, and
time of burial, among others.

In this paper we present a way of circumventing this
problem by modeling the variety of mine signatures in a
parametric way. Subsequently, the paper presents a test
that detects the proposed signature model, if it is embedded
in spatially colored noise. To enable implementation of such
a detector, the noise properties are also modeled by means
of a set of parameters.

2. DATA MODEL

One of the problems when using infrared imaging to de-
tect land mines is that the infrared signature is embed-
ded in noise caused by fluctuations of the soil and the sur-
face. Assume that we record an infrared image i(x, y), x ∈
−N, ..., N, y ∈ −M, ..., M . Provided that a mine is present,
the infrared image can be modeled as

i(x, y) = s(x, y; θs) + n(x, y; θn) (1)

where s(x, y; θs) is the associated signature of the buried
mine and n(x, y; θn) represents the noise. The noise then
includes all contributions from the background. The varia-
tions of the possible signatures are modeled by means of the
parameter vector θs, while the characteristics of the noise
are modeled by the parameter vector θn.

2.1. Infrared Signature Model

As mentioned, the signature can vary significantly due to
external effects. For the same buried mine, the signature
will have different amplitudes due to external parameters,
such as moisture, burial depth, and solar radiation. For
instance it should be noted that the signature can change
sign due to rain. Further, the shape of the signature is
also affected by the burial depth. This is schematically
illustrated in Figure 1, which shows a cross-section of the
soil, where the temperature is shown as intensities on the
surface. To the left, a mine is buried at a shallow depth,
causing the shape of the signature to look very much like
the shape of the mine, and giving rise to a strong signature.
On the other hand, if the mine is buried at a larger depth,
as shown to the right in the image, the signature is much
weaker, and the shape has been blurred due to the heat and
moisture flow in the soil.

One way of obtaining an approximation of the thermal
signature is to simulate the heat equation, by means of the
Finite Element Method(FEM) [5]. In Figures 2a and 2b, the



Figure 1: A shallowly buried mine has a signature that is
close to the top-view shape of the mine while a mine buried
deeper show a weaker signature that has been smoothed by
the thermal propagation in the soil.

signature of two different scenarios are shown while using
this approach1. The intentional use, as presented in [5],
is mainly to understand which processes contribute to the
signature in order to predict when a signature is detectable.
Nevertheless, by using the surface nodes of such a model,
the apparent temperature at the surface can be modeled
yielding the infrared signature. One of the disadvantages
in obtaining the signature this way is that we need separate
models if the physical parameters, such as the burial depth,
differ. Since we do not know for instance the burial depth
a priori, this approach would require testing the infrared
image to a set of different models.

An alternative approach is to model the set of possi-
ble mine signatures by means of a few parameters. This
is attractive since we do not need to find all the param-
eters that govern the signature, but can model the whole
set of possible signatures. Such a model would have to in-
corporate the possibility of different smooth signatures, as
well as the possibility of having different scaling, possibly
negative, of the signature. We propose to model the set of
possible infrared signatures as a scaling with the parame-
ter α of the convolution between the top-view shape of the
buried object, m(x, y) and a smoothing kernel depending
on a smoothing parameter β:

s(x, y : θs) = α · e−1/β(x2+y2) ∗ m(x, y) (2)

Here, ∗ denotes two-dimensional convolution. Also, the
shape of the mine, m(x, y), is assumed to be known, for in-
stance circular shaped for a cylindrical mine. In Figures 2c
and 2d, the deviation from the corresponding FEM model
is shown when the parameters, α and β are fitted to the
corresponding FEM model. As can be seen the differences
is negligible compared to the overall signature.

2.2. Background Model

The noise will inherently be spatially correlated due to ther-
mal propagation and surface structure. We model the col-
ored noise by means of a quarter-plane causal Auto Regres-

1The author would like to thank Stefan Sjökvist for providing
these models.
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Figure 2: From left to right and top to bottom: a)-d). a)
The signature of a Anti-Tank (AT) mine buried at 5cm as
given by FEM modeling. b) The signature of a shallowly
buried (5mm) plastic Anti-Personnel (AP) mine as given
by FEM. c) The error when fitting the parametric model
to the FEM model for the AT mine given in a). d) The
corresponding error when fitting the AP mine in b).

sive (AR) process [2]. The process can be described by

n(x, y) = −
K−1P
k=0

L−1P
l=0

(k,l) 6=(0,0)

ak,l · n(x − k, y − l) + e(x, y), (3)

where e(x, y) is white Gaussian noise. The process is then
described by the parameters θn = [a0,1, a0,2, ..., aK−1,L−1]

T .
Autoregressive models mainly have two advantages:

• The parameters can easily be estimated from data by
means of the least-squares method.

• The whitening of an AR process can be obtained us-
ing an FIR filter.

Both these properties will be explored later when imple-
menting the detector. For the AR model to be appropriate,
the noise has to be stationary and zero-mean. If this is not
satisfied for the disturbances in the infrared image, prepro-
cessing is required. The noise models the infrared image for
the no-mine scenario. For the purpose of modeling the im-
age statistics, there are more accurate methods within the
area of texture analysis [6]. The complexity of such models,
though make them impractible to use for our purposes.

3. DETECTION

Let the hypothesis H1 define the scenario when a mine is
present, and let H0 define the situation where no mine is
present. The detector that, from the infrared image i(x, y),
decides whether a mine is present or not, can be formulated
into the composite hypothesis test [3], deciding between the
hypotheses

H0 : i(x, y) = n(x, y; θn)
H1 : i(x, y, ) = s(x, y; θs) + n(x, y; θn).

(4)

Here, θs = [α β]T represents the unknown parameters of the
mine signature, and θn represents the unknown parameters



of the autoregressive noise. For the case when both the sig-
nal and the noise have unknown parameters, it is difficult to
obtain an analytical solution to the commonly used Gen-
eralized Likelihood Ratio Test (GLRT). Only for specific
signals s(θs), such as DC levels and sinusoids, is it possible
to obtain an analytical GLRT, see [4]. Further, for linear
models, an alternative approach is to use the Rao test [3].
In our case this is not possible since, due to the non-linear
parameterization in s(θs), the Fisher information matrix re-
garding the signal parameters becomes singular under H0.

3.1. Proposed approach

The approach taken in this paper is to estimate the un-
known parameters under the hypothesis H1, then use these
as the true values when applied to the Likelihood Ratio Test
(LRT). To simplify notation, let i be any vectorized version
of i(x, y) and let s and n be defined with the same indexes.

Further, let R = E{nnT }. Given estimates, θ̂ = [θ̂s θ̂n]T ,
the conditional likelihood functions under the two hypothe-
ses equals

f(i;H1, θ̂) = c|R(θ̂n)|−1/2 e−
1
2 (i−s(θ̂s))T R−1(θ̂n)(i−s(θ̂s))

f(i;H0, θ̂) = c|R(θ̂n)|−1/2 e−
1
2 iT R−1(θ̂n)i, (5)

where c is a constant. The LRT, given the estimated pa-
rameters, can then be formulated as

f(i;H1, θ̂)

f(i;H0, θ̂)

H1
>
<
H0

γ ⇔
�
R(θ̂n)−

1
2 s(θ̂s)

�T

R(θ̂n)−
1
2 i

H1
>
<
H0

γ′,

⇔
X
x,y

(âx,y ∗ sx,y;θ̂s
)(âx,y ∗ ix,y)

H1
>
<
H0

γ′ (6)

where âx,y ∗ sx,y;θ̂s
denotes the convolution between sx,y;θ̂s

and the AR model parameters âk,l in θ̂n. The last step

follows from the fact that R(θ̂n)−
1
2 x represents the whiten-

ing of the signal x with respect to the color of n. Since
n(x, y; θ̂n) is modeled as an AR process , the whitening can
be accomplished by convolving the signal x with the autore-
gressive parameters. This can be seen as a matched filter,
where the whitened image, is correlated with the whitened
version of the estimated signal. It should be noted that if
no mine is present, β is unidentifiable. Nevertheless, in this
case α̂ will be small and lead to a very weak signature. The
output of the matched filter will therefore be small in this
case. We remark that obtaining a threshold γ′ that guar-
antees a fixed probability of detection/probability of false
alarm is not straightforward.

3.2. Estimator for the unknown parameters

To implement the detector given by (6) we need to estimate
θ = [θs θn]T under H1. Under H1, i(x, y) is given by (1),
the signature is modeled by (2) and the AR noise is given
by (3). By combining equations (1) and (3), i(x, y) is:

i(x, y) = −
K−1P
k=0

L−1P
l=0

(k,l) 6=(0,0)

ak,l [i(x−k, y − k)−s(x−k, y−l; θs)]

+ s(x, y; θs) + e(x, y). (7)

Since the driving noise, e(x, y) is white, the least-squares
estimator for θ becomes

θ̂ = arg min
θ

X
x,y

(i(x, y) − s(x, y; θs)

+
KP

k=0

LP
l=0

(k,l) 6=(0,0)

ak,l[i(x−k, y−k)−s(x−k, y−l; θs)])
2

(8)

Further, since the driving noise is assumed to be Gaussian
distributed, this also produces the Maximum Likelihood es-
timate. An analytical solution to (8) can be found only for
specific signals s(x, y; θs), see [4]. Otherwise a non-linear
minimization can be used, but since θn may involve many
parameters this is undesirable.

Instead we solve (8) using an alternating approach. First,
we derive an estimator for θn assuming that θs is known,
and then an estimator for θs assuming that θn is known.
We can iterate between the two and use the estimate from
the previous step as values for the assumed known param-
eters. First, to solve for θn given an estimate, θ̂s, de-
fine v(x, y) = i(x, y) − s(x, y; θ̂s) and ϕ(x, y) = [−v(x, y −
1), ...,−v(x−K +1, y−L +1)]T . Now, we can write (8) as
the linear regression

θ̂n = arg min
θn

X
x,y

�
v(x, y) − ϕT (x, y)θn

�2

(9)

which has the solution [2]

θ̂n = R−1
ϕϕrϕv

Rϕϕ =
X
x,y

ϕ(x, y)ϕT (x, y)

rϕv =
X
x,y

ϕ(x, y)v(x, y). (10)

Secondly, to estimate θs = [α β]T given the estimate θ̂n we
write (8) as

θ̂s = arg min
θs

X
x,y

(âx,y∗ix,y−âx,y∗sx,y;θs)2 , (11)

where the convolution
PK−1

k=0

PL−1
l=0 âk,li(x− k, y − l) is de-

noted by âx,y ∗ ix,y, and âx,y ∗ sx,y;θs is defined accordingly.
Note that this corresponds to a whitening with the color of
the autoregressive process. By incorporating the model for
the mine signature given by (2), we get

θ̂s = arg min
θs

X
x,y

�
ax,y∗ix,y−αe

−(x2+y2)
β ∗ax,y∗mx,y

�2

(12)

Since the expression is linear in α, it can be shown that the
value of α that minimizes (12) can be expressed in β as

α̂(β) =
f(β)

g(β)
(13)

where

f(β) =
X
x,y

(ax,y ∗ ix,y)·
�

e
−(x2+y2)

β ∗ ax,y ∗ mx,y

�

g(β) =
X
x,y

�
e

−(x2+y2)
β ∗ ax,y ∗ mx,y

�2

. (14)



By straightforward calculations the solution for the param-
eter β can be found by a one-dimensional maximization

β̂ = arg max
β

(f(β))2

g(β)
. (15)

To initiate the iterations, one can either start by estimating
θs assuming {ak,l} = 0, or start by estimating θn, assuming
α = 0. The first approach is preferable for high Signal-to-
Noise Ratio(SNR), while the second is better for low SNRs.

4. PERFORMANCE SIMULATIONS

In the first example, low-frequency noise was generated us-
ing (3) with θn = [a0,1, a1,0, a1,1]

T = [−0.3, −0.3, −0.4]T

and the variance of the driving noise e(x, y) was set to
one. Further, the size of the background image was set
to (95 × 95), or M = N = 47, and when estimating the
noise parameters it is assumed that K = L = 3, i.e., we
estimate eight noise parameter. The scenario was set up to
resemble the case where the mine is deeply buried, i.e, char-
acterized by a weak signature (small α) which is blurred
(large β). In the example α = 0.009 and β = 40. The
mine shape, m(x, y) was chosen as a filled circle of radius
10 pixels, emulating a cylindrical shaped mine. Here the
signal to noise-variance is low and both the signal and the
noise have low-frequency characteristics. Hence, estimat-
ing the involved parameters is hard. The more similar the
spectra are to each other, the more difficult it will be to
estimate the parameters. Figure 3a shows the Receiver-
Operating Characteristics(ROC) of three different detectors
for the above described scenario. The ideal detector, imple-
ments the optimal LRT, using the true values for θs and
θn. The squared matched filter is the detector that corre-
lates the received image i(x, y), with the known mine shape
m(x, y) and then threshold the square of the correlation.
Note that the standard matched filter can not be used, be-
cause the sign of the amplitude is not known and can be
negative. This detector actually equals the GLRT, assum-
ing s(x, y) = αm(x, y) with unknown amplitude α, under
white noise assumption[3]. The third detector is the pro-
posed detector, as given by (6). Two iterations was used
when estimating the unknown parameters, and the itera-
tions where initiated by estimating the noise parameters.
It can be seen that the proposed detector, for these param-
eters outperforms the squared matched filter, while it can
not approach the performance of the ideal detector employ-
ing perfect parameter knowledge.

The performance of the proposed detector even as com-
pared to the squared matched filter, varies with the under-
lying parameters. One can not claim that the proposed de-
tector always outperforms the squared matched filter. This
can be seen by simulating the same scenario as above but
using N = M = 1, i.e., white noise, and a very small value
of β. In this case, the squared matched filter is the GLRT.
The simulations in Figure 3b show the scenario where a
signature with parameters α = 0.07 and β = 10−6 was em-
bedded in white noise of variance one. In this case the per-
formance of the proposed detector actually equals that of
the squared matched filter implementing the GLRT. This
indicates that we do not loose significantly by estimating
additional parameters and that the detector seems to be
robust against different parameter values.
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Figure 3: From left to right: a)-b). a) Receiver-Operating-
Characteristics(ROC) for the case modeling a deeply buried
mine, in colored noise. b) ROC for the case of a shallowly
buried mine in white noise

5. CONCLUSIONS

Depending on physical parameters such as weather, soil
type, burial depth, and time of burial, the infrared signa-
ture of buried land mines varies drastically. We proposed
to use a parametric model where the signature is modeled
by means of two parameters, one modeling the scaling, and
one modeling the smoothing of the mine shape mainly due
to burial depth. Based on the mine model and the assump-
tion that the mine is embedded in autoregressive noise, a
detector was derived. The performance of the detector was
compared mainly that of the squared matched filter and
indicates that for colored noise, the proposed detector out-
performs the squared matched filter, while for white noise
the performance of the two are the same. This indicates
robustness as the the squared matched filter for white noise
implements the GLRT. One problem of the proposed detec-
tor as to compared to the squared matched filter is that it
is difficult to calculate the threshold given a certain proba-
bility of false alarm/probability of detection.
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