
ABSTRACT

One common method for keyword spotting in unconstrained
speech is based upon a two pass strategy consisting of Viterbi-
decoding to detect and segment possible keyword hits, followed
by the computation of a confidence measure to verify those hits.
In this paper, we propose a simple one-pass strategy where com-
putation of the confidence measure is computed simultaneously
with a Viterbi-like decoding stage. However, backtracking is not
required, which when coupled with the need for only a single
pass through the utterance significantly reduces the memory
requirements of this algorithm. This feature makes it well suited
for devices where processing power and memory are limited.
Experimental results on a connected digits task show that per-
formance of the decoding is comparable to that using a Viterbi
search with backtracking. Experimental results on spotting days
of the week in continuous speech indicate that the confidence
measure calculated is effective in reducing the number of false
alarms.

1. INTRODUCTION

Keyword spotting enables users to speak commands or requests
without concern to the exact syntax of the request, as long as their
utterance contains one or more of the keywords which the system
has been designed to detect.

Many techniques for keyword spotting attack the problem with
two passes through the data, e.g. [1]. The first pass uses Viterbi
decoding to identify the boundaries of potential keywords in the
utterance. The second part takes the boundaries of the keywords
and the hypothesized identity of the keyword and computes a
likelihood ratio between the hypothesized keyword and a filler
model. This likelihood ratio measures the confidence in the key-
word detection.

In this work, we propose a strategy which combines keyword
detection and confidence measure computation in a single pass
thorough the data without backtracking. Section 2 describes the
algorithm. Section 3 shows experimental results from the algo-
rithm on a connected digits task and on a task involving spotting
the days of the week from continuous speech utterances.

2. ALGORITHM

For clarity, we first describe the algorithm as it would operate for
utterances containing a single instance of one of possible key-
words. We then extend the algorithm to handle multiple instances
of those keywords.

2.1 Isolated Keyword Spotting

The algorithm has some similarities with that proposed in [2]. In
that work, each keyword is modelled by a concatenation of pho-
neme HMM. No filler, silence or garbage models are attached to
the beginning or end. At each point in time, emission probabili-
ties within each keyword are normalized by the emission proba-
bility of the best state to give a local score, which is then
accumulated over time using a modified Viterbi algorithm to
compute a normalized score for each state. The normalized score
of the last state of each keyword serves as input to a subsequent
decision stage. Because no backtracking is required, the algo-
rithm has low computational and storage requirements, since only
the last column of the trellis needs to be maintained in memory.

Our algorithm also uses a bank of keyword models consisting of
HMMs with states to . However, each model has a filler
model attached at the beginning and one model at the end.
The filler models are single state multiple mixture HMMs trained
on general speech and background[3]. It is important to note that
the transition and emission probabilities for all of the filler mod-
els are identical. See Figure 1.

The likelihoods of each of the keywords is evaluated independ-
ently using the standard Viterbi algorithm. In initializing the algo-
rithm, we assume that only the initial filler model and the final
filler model have non-zero probability:

, and .

Backtracking is not required, so it is sufficient to store only the
last column of the trellis. Instead, for each keyword model we
compute only the log likelihood ratio between the state probabil-
ity of the end filler model and the beginning filler model :

K

Figure 1. Word network used for isolated keyword spotting and
verification.

n q1 qn

f0 f1

f0 f1q1 qn

Keyword 1

Keyword K

af0 f0,

af0 q1, aqn f1,

P s1 f0=() 0≠ P s1 f1=() 0≠ i∀ P s1 qi=() 0=,

f1 f0

A ONE-PASS STRATEGY FOR KEYWORD SPOTTING AND VERIFICATION

Chak Shun LAI and Bertram E. SHI
Consumer Media Center/Human Language Technology Center, Department of Electrical and Electronic Engineering

Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, HONG KONG

The following proposition indicates that this log likelihood ratio
is closely related to the log likelihood ratio between the keyword
and filler model used in many confidence measures:

Proposition 1:

Define to be the likelihood of the obser-

vations from time to and the best path which starts in state

 and ends in state of a keyword. Let be the log

likelihood ratio between the keyword and filler

For any time , define

Then,

where

and is the state transition probability between the filler
model and the first state of the keyword, is the transition
probability between the last state and the filler model and

 is the transition probability from filler model to itself.

Proof:

Paths can begin only in either or . However, by the model
topology any path ending in must have started in . Thus,

(1)

Since we use a single state filler model, the state likelihood for
the initial filler model is given by

(2)

where

or equivalently for any ,

(3)

Since we assume that the output and transition probabilities for
all filler models and are identical,

(4)

By definition,

By the optimality principle,

and

Combining these two equations, we obtain

(5)

Combining (3) and (5)

Combining (2) and (4)

Taking logarithms of both sides of (1) does not affect the max
operation. Thus

QED

The quantity is the maximum value of the log likeli-
hood between the keyword and filler model evaluated over all

LLRf1 f0
t() P O1

t st f1=,()log P O1
t st f0=,()log–=

P Oti

tf stf
qn=, sti

q1=()

ti tf

q1 qn LLR ti tf,()

LLR ti tf,() Plog Oti

tf stf
qn=, sti

q1=()=

P Oti

tf stf
f0=, sti

f0=()log–

t

LLRmax t() max1 ti tf, t< < LLR ti tf,()=

LLRf1 f0
t() max LLRmax Θ1+ Θ2,{ }=

Θ1

af0 q1, aqn f1,

af0 f0,
2

-----------------------log= Θ2

P s1 f1=()
P s1 f0=()
-----------------------log=

af0 q1,
f0 aqn f1,

f1

af0 f0, f0

f0 f1

f0 f0

P O1
t st f1=,()

P O1
t st f0=,()

max
P O1

t s1 f0= st f1=, ,()

P O1
t st f0=,()

--- ,




=

P O1
t s1 f1= st f1=, ,()

P O1
t st f0=,()





P O1
t st f0=,() P s1 f0=()P O1

t st f0= s1 f0=,()=

P O1
t st f0= s1 f0=,() bfo

o1() af0 f0, bf0
ot()

t 2=

t

∏
 
 
 
 

=

1 ti tf, t< <

P O1
t st f0=,() P O1

ti 1– s1 f0= s, ti 1– f0=,() ×=

af0 f0, P Oti

tf stf
f0= sti

f0=,() ×

af0 f0, P Otf 1+
t st f0= stf 1+ f0=,()

f0 f1

P O1
t s1 f1= s, t f1=,()

P s1 f1=()P O1
t st f0= s1 f0=,()=

P Oti

tf stf
qn=, sti

q1=()

maxs bq1
oti

() ast 1– st, bst
ot()

t ti 1+=

tf 1–

∏ astf 1– qn,
bqn

otf
()

 
 
 
 
 

=

P O1
tf stf

qn=, s1 f0=()

max1 ti t< < P O1
ti 1– sti 1– f0=, s1 f0=() ×{=

af0 q1, P Oti

tf stf
qn=, sti

q1=() }

P O1
t s1 f0= s, t f1=,()

P s1 f0=()max1 tf t< < P O1
tf stf

qn=, s1 f0=() ×{=

aqn f1, P Otf 1+
t st f1=, stf 1+ f1=() }

P O1
t s1 f0= s, t f1=,()

max1 ti tf, t< < P O1
ti 1– s1 f0= s, ti 1– f0=,() ×{=

af0 q1, P Oti

tf stf
qn=, sti

q1=() ×

aqn f1, P Otf 1+
t st f1=, stf 1+ f1=() }

P O1
t s1 f0= st f1=, ,()

P O1
t st f0=,()

af0 q1, aqn f1,

af0 f0,
2

----------------------- 
  max1 ti tf, t< <

P Oti

tf stf
qn=, sti

q1=()

P Oti

tf stf
f0= sti

f0=,()
--=

P O1
t s1 f1= st f1=, ,()

P O1
t st f0=,()

P s1 f1=()
P s1 f0=()
-----------------------=

P O1
t st f1=,()log P O1

t st f0=,()log–

max LLRmax t() Θ1+ Θ2,{ }=

LLRmax t()

possible keyword boundaries up to time . Thus, this algorithm
allows us to search simultaneously for the boundaries of the key-
word and to evaluate the log likelihood between the keyword and
filler over those boundaries in a single pass through the data. The
two quantities and set a threshold on the minimum value
of which can be measured by . If

, then . Otherwise,
 is affine in . Note that while is set by the

model parameters, the value of can be controlled by the
choice of the relative probabilities of starting in the beginning and
ending filler states.

One possible way to do keyword spotting for an utterance which
is known to contain at most one keyword is to evaluate

 for each keyword, where is the length of the utter-
ance. The keyword with the maximum score could be chosen as
the putative keyword within that utterance and the value of

 for that keyword used as a confidence measure. How-
ever, instead of pursing this approach, we describe in the next
section an approach which enables us to detect multiple or
repeated keywords within an utterance.

2.2 Multiple Keyword Spotting

The architecture is shown in Figure 2. As in the isolated keyword
detection case, each keyword/filler block runs Viterbi scoring
independently to compute . These scores are then
passed to the decision block which performs both detection and
verification.

Suppose that in an utterance of length , the optimal breakpoints
determined by are given by and . Suppose also
that . Proposition 1 indicates that the

 is constant for all such that . This suggests
that we can detect the endpoints of a keyword by detecting
regions of length at least where is constant.

By itself, this strategy could not detect multiple instances of a
keyword because as increases, it simultaneously raises
the threshold for detection of keywords with starting points .
This is because plays the role of in Proposition 1
for those keywords. To handle this, we propose a strategy to reset

 after detection of a keyword.

Another problem in applying this algorithm to the detection of
multiple keywords is removal of overlapping keywords, which is
not an issue for two pass strategies due to the Viterbi decoding.
We handle this by treating the most recently detected keyword as
a tentative result which is either discarded if an overlapping key-
word with higher confidence is detected later, or validated if the
end of the utterance is reached or another non-overlapping key-
word is found.

Our algorithm is implemented based on the token-passing
model[4]. At each frame , tokens are propagated from one state
to the next. When a token is propagated from to the first state

 of any keyword, it contains not only the starting point of the
path (i.e. the path id) and the best score, but also the offset
between and ,
which we denote by . This is required for correct
computation of the confidence measure due to the reset operation.

The operation of the decision block in integrating the tokens
passed from the keyword models and is described in detail below:

For each frame and each keyword ,

1. Compute .

2. Detect possible keyword endpoints by checking for each key-

word whether is greater than and whether it

has been constant for at least frames.

3. If any endpoints are detected, choose the one with highest
confidence measure calculated by the difference between

 and the offset from the token. Otherwise go to the

next frame.

4. Compare the result with that stored as TEMP.

a. If TEMP is empty, store the keyword along with its start
point, end point and confidence measure as TEMP.

b. If the keyword does not overlap TEMP, change TEMP to
a permanent result and store the keyword as TEMP.

c. If the keyword overlaps TEMP and has a higher confi-
dence measure, then replace TEMP with the new key-
word.

5. Pass the token of the detected keyword back to and set

This resets the threshold for all subsequent keywords.

3. EXPERIMENTS AND RESULTS

We carried out two experiments to demonstrate the effectiveness
of the proposed algorithm. In both experiments, we used 39 ele-
ment feature vectors with 39 elements consisting of 12 MFCC,
frame energy and delta and acceleration coefficients computed

Figure 2. Network used for multiple keyword spotting and
verification.

t

Θ1 Θ2

LLRmax t() LLRf1f0
t()

LLRmax t() Θ2 Θ1–< LLRf1f0
t() Θ2=

LLRf1 f0
t() LLRmax t() Θ1

Θ2

LLRf1 f0
T() T

LLRf1 f0
T()

LLRf1f0
t()

f0

f1

Keyword 1

Keyword K

D
E

C
ISIO

N

f2

K
eyw

ord L
ist

T
LLRmax T() ti tf

LLRmax T() Θ2 Θ1–>
LLRf1 f0

t() t tf t< T≤

Tmin LLRf1f0
t()

LLRf1 f0
t()

ti t>
LLRf1f0

t() Θ2

LLRf1f0
t()

t
f0

q1

P O1
t 1– st 1– f2=,()log P O1

t 1– st 1– f0=,()log
LLRf2f0

t 1–()

t k

LLRf1 f0
t()

LLRf0 f1
t() Θ2

Tmin

LLRf1f2
t()

f0

P O1
t st f0=,()log P O1

t st f1=,()log Θ2+=

from 26 filter bank coefficients. Frame size was 25ms. Frame
shift was 10ms.

The first experiment is designed to measure performance degra-
dation due to the lack of backtracking in the one-pass algorithm,
in comparison with the results by the Viterbi decoder supplied by
HTK. We use the TIDIGITS corpus. The eleven keywords used
were the digits “zero” to “nine” and “oh.” In this case, none of the
utterances contain any out of vocabulary words. Thus, the experi-
ment is specifically tailored to test the decoding performance.

Each keyword was modelled by a 9 state single mixture HMM.
The filler model was single state with four mixtures. The same
3850 utterances from the TIDIGITS training corpus spoken by
both male and female speakers were used to train both the key-
words and the filler model. The algorithm was tested on a sepa-
rate set of 3850 utterances from the TIDIGITS testing corpus.
The word network used by the Viterbi decoder consisted of a free
digit loop with filler models at the beginning and the end. Inser-
tion penalties were tuned to optimize performance. Table 1 shows
that the performance of the proposed algorithm is comparable to
that obtained that from Viterbi decoding.

The second experiment was designed to validate the efficacy of
the confidence measure computed by the algorithm. We chose
1081 utterances from the WSJ1 database containing days of
week, corresponding to about 2.5 hours of speech. The distribu-
tion of keywords are listed in Table 2. Note that some of the utter-
ances contain more than one keyword. Each keyword model was
constructed by concatenating phoneme models trained on the
WSJ1 corpus and not specifically for this task. Each phoneme
model was three state left-to-right and single mixture. Approxi-
mately one hour of speech (500 utterances) randomly chosen
from the WSJ1 corpus was used for training the filler model,
which was single state with four mixtures. Figure 3 plots the
detection rate versus the false alarms per keyword per hour.

4. CONCLUSION

In this paper, we have presented an algorithm that detects multi-
ple occurances of keywords and computes confidence measures
associated with each detection in a single pass through the utter-
ance. Despite the lack of backtracking, the results from running
the spotting algorithm on connected digit strings yield accuracies
comparable to that obtained using a Viterbi decoder. Experimen-
tal results in spotting days of the week indicate that the confi-
dence measure calculated can be effective in reducing the number
of false alarms. Due to the low memory and computational
requirements, this algorithm may be well suited for applications
where these resources are limited.

ACKNOWLEDGEMENTS

This research was supported by the Hong Kong Government
Industry Department under the Innovation and Technology Fund
Grant AF/264/97 and by the Hong Kong Research Grants Coun-
cil under grant number RGC CA97/98.EG02.

REFERENCES

[1] R. C. Rose, “Keyword detection in conversational speech
utterances using hidden Markov model based continuous
speech recognition,” Computer, Speech and Language, vol.
9, pp. 309-333, 1995.

[2] J. Junkawitsch, L. Neubauer, H. Hoge, G. Ruske, “A New
Keyword Spotting Algorithm with Pre-Calculated Optimal
Thresholds,” Proc. Fourth Intl. Conf. on Spoken Language
Processing, vol.4, pp.2067-70, Philadelphia, PA, 1996.

[3] J. G. Wilpon, L. R. Rabiner, C. H. Lee, E. R. Goldman,
“Automatic Recognition of Keywords in Unconstrained
Speech Using Hidden Markov Models,” IEEE Transactions
on Acoustics, Speech and Signal Processing, vol. 38, no. 11,
pp. 1870-1878, Nov. 1990

[4] S. J. Young, N. H. Russel, and J. H. S. Thornton, “Token
Passing: a Simple Conceptual Model for Connected Speech
Recognition System, Cambridge University Engineering
Department, Tech, Report No. TR. 38, July, 1989

Gender
Viterbi

Accuracy (%)
One Pass

Accuracy (%)

Male 98.0 97.6

Female 97.8 97.4

Average 97.9 97.5

TABLE 1. Performance Comparison of the Proposed Algorithm
with Viterbi Decoding and Back Tracking on a connected digits
task using gender independent models.

Keyword Count Keyword Count

MONDAY 317 FRIDAY 436

TUESDAY 293 SATURDAY 116

WEDNESDAY 165 SUNDAY 68

THURSDAY 176 TOTAL 1571

TABLE 2. Keyword distribution of the testing data used in the
second experiment

Figure 3. ROC for spotting 7 days of the week from continuous
speech utterances from the WSJ1 corpus.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
7 8

8 0

8 2

8 4

8 6

8 8

9 0

9 2

9 4

9 6

9 8

1 0 0

de
te

ct
io

n
ra

te
 (

%
)

fa/kw/hr

