MATLAB BASED CODESIGN FRAMEWORK FOR WIRELESS BROADBAND
COMMUNICATION DSPS

\Volker Aue, Johannes Kneip, Matthias Weiss, Michael Bolle, and Gerhard Fettweis

Systemonic AG, Am Waldschlésschen 1
D-01099 Dresden, Germany
info@systemonic.de

ABSTRACT

We provide an overview of a novel MATLAB™ based
Hardware-Software design flow that has been applied to
the design of a platform based SoC for the HiperLAN/2
and IEEE 802.11a wideband wireless communication stan-
dards. Starting from a high-level algorithmic description,
the MATLAB™ environment serves as a “golden model”
and universal, cycle-true testbench for the embedded hard-
ware and software implementation. A universal interface
concept allows the exchange of modules with different ab-
straction levels in a cosimulation. This way, a high confi-
dence level for the design validation is achieved, and both
design and validation time is substantially reduced.

1. INTRODUCTION

With the ongoing trend to always shortening product life
spans and development cycles the efficiency of the devel-
opment and validation process of application-specific stan-
dard processors (ASSPs) and their firmware is of increas-
ing importance. The complexity of today’s communication
systems does not allow the application of the classic devel-
opment and validation environment consisting of models of
different abstraction levels and a customized testbench for
each level.

In this paper we present a case study for a platform based
communication processor design targeting HiperLAN/2 and
IEEE 802.11a applications. The processor consists of a pro-
grammable SIMD core and a number of dedicated building
blocks. For this ASSP, a MATLAB™ based design flow
has been developed that allows the codesign and covalida-
tion of the algorithmic model, the embedded hardware and
firmware in a single test environment and the same test data
and channel models.

The following prerequisites had to be met when the code-
sign/covalidation environment was developed:

e The environment should provide the information nec-
essary to allow the partitioning between the pro-
grammable core and dedicated blocks. This includes a

first assessment of the algorithmic complexity, but also
the influence of algorithmic changes onto the system
behavior and complexity.

e After partitioning the parallel development of hard-
ware and software requires very close interaction. In-
teroperability and interfacing of hardware and software
modules have to be checked on any stage of model-
ing. Model layers include the algorithmic MATLAB™
model, a System-C software model of the ASSP, RTL
and netlist models and the embedded firmware exe-
cuted by the hardware models.

e Effects caused by embedded implementation, e.g.
word length effects and delays caused by processing
were to be taken into account. Bit- and cycle-true sim-
ulation results need to be fed back to the system model
to assess (and probably correct) these effects. This
step must be possible for both modules implemented
in hardware and modules implemented in software.

e The equivalence of hardware and software models or
implementations on different levels of abstraction has
to be validated by simulations with realistic data. This
has proven to be a nontrivial task, since timing behav-
ior and output results may differ between the levels due
to word length and timing effects discussed above.

e Input and output reference data gained from the high
level simulation model should be accessible from any
implementation or modeling level. Ideally, test bench
frameworks should also be reusable between the levels
to reduce overall engineering effort.

MATLAB™ has been chosen as basis for the platform be-
cause it is wide spread, shows a high level of interactivity
and provides interfaces for script based execution and ex-
change of data with other applications.

This paper discusses several aspects of our codesign
methodology with a focus on the HiperLAN/2 and IEEE



802.11a application case study. We start with a short de-
scription of the platform approached used for the proces-
sor. Section 3 discusses the design flow that leads from a
high-level algorithmic description via system partitioning to
an optimized embedded implementation. Finally, Section 4
presents the results of the application of our methodology
for the case of the HiperLAN/2 ASSP.

2. THE OnDSP™ PLATFORM

To combine high performance and economy of a platform,
the OnDSP™ platform allows the generation of parallel DSP
derivatives, but also the corresponding code development
and simulation tools. Derivatives are widely configurable in
terms of the memory system configuration, arithmetic func-
tionality and word length, communication structure and in-
terfacing.

Fig. 1 shows an example of a core generated from the
framework for the HiperLAN/2 application. It consists of a
program control unit (PCU) and, in this case, eight parallel
data paths. Data paths (DPUs) are single instruction multi-
ple data (SIMD) controlled and consist of a RISC like reg-
ister file and an arithmetic unit, in this example containing a
40 bit ALU, a barrel shift unit, and a 17-by-17 bit MAC with
40 bit accu. The DPUs have access to a wide memory via
an interconnection unit that also allows broadcast and ex-
change of data between the data paths. Special instructions
have been introduced to speed up important algorithms like
FFT, filters and QAM modulation and demodulation. The
core itself is supplemented with application specific build-
ing blocks for the algorithmic parts of the system. This may
either be algorithms that do not require the flexibility of the
programmable platform or where a dedicated implementa-
tion promises significant advantages in area or power con-
sumption compared to a software based implementation.

10 and on-chip i
peripherals I
I

DATA RAM |

I

|

i

i

! :

o — \ struction | |

RAM !

¥ |

Reg. e | [ Ren.Fie Reg e | [ Feg Fie !

(RFU) (RFU) (RFU) (RFU) |

i

|

i

- Program | 1

control (PCU) |

oru opu ory oru |

r r3 3 ¥ |

i

DP[7]  DP[6]  DP[S] DP[1]  DP[O] !
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 1. Example for a core with 8 parallel data paths derived
from the OnDSP™ framework.

The programming of the DSP core starts from a high level
language description of the algorithm to be implemented.
This may either be C, C++, or a Matlab reference imple-
mentation. The target is an optimized assembly code gener-

ation, utilizing the DSP’s parallel data paths and the VLIW
instruction word.

HLL C/C++, Matlab

function call C-Compiler

Design
Assistant

struction Set
Simulator
(ISS)

Operator
Overload

Simulation

ic-C Compiler

Code Wizard

Simulation

Special

Instruction Assembler

PM-Client
essor Data Base)

GUI Code Generation

Simulation

Fig. 2. Overview of the OnDSP™ code generation process
and tool environment.

Fig. 2 provides an overview of the tool hierarchy. The
main tool is the Design Assistant, an integrated framework
for all underlying development tools and the corresponding
processor architecture data base. This framework not only
helps to generate robust firmware development tools (an-
other approach is given in [2]) but also automatically derives
optimized core algorithms. Programming of the DSP core
is mainly done in Systemonic-C, a C++ class library reflect-
ing both the DSP’s instruction set and parallelism to allow
the application of known optimization techniques (e.g. loop
transformations) [5].

3. DESIGN FLOW

The DSP software code development process described in
Section 2 is integrated in our MATLAB™ based system de-
sign flow. After the target system on chip (SoC) device has
been identified, at first a model of the wireless system, of
which the SoC device is a part of, is created. The design
flow consists of the following steps.

1. Create a system model according to the system stan-
dard specification.

2. Refine the model of the SoC device.
3. Hardware — software partitioning.

4. Hardware - software codevelopment using the
OnDSP™ platform.

5. Integration of hardware and software, and co-
simulation.

6. Chip and board level tests.



The first system model is created in MATLAB™ relying
mostly on MATLAB™ script functions. Floating point pre-
cision is used at this modeling stage. Modeling the sys-
tem begins with describing the transmitter signals, where
the transmitter signals are typically defined in the specifica-
tion. Either system standard channel models (AWGN) are
used or models created from real measured data. Using the
channel models, the receiver demodulation routines can be
refined, and the synchronization algorithms, i.e., acquisi-
tion and tracking algorithms can be developed. After the
system has been modelled and is well understood, the SoC
algorithms are further refined. This step includes a con-
version from floating to fixed point, and an algorithm op-
timization with respect to expected memory consumption,
and computational complexity. In particular, the algorithms
are modified to explicitly expressed parallelism that later
on can be exploited by the OnDSP™ signal processor ar-
chitecture. For fixed point modeling, a MATLAB™ DSP
fixed point class library has been developed. This library
contains special data types for 8, 16, and 32 bit data types
to model 16 bit DSP fixed point behavior with single and
double precision, and split mode capabilities. An additional
40 bit type exists to model accumulator behavior. Fractional
integer classes such as Q15 are also introduced. Operators
are overloaded to ease programming. Converter functions
from one class to another including conversion to floating
point are also defined. The DSP class library facilitates
floating point to fixed point conversion of the target algo-
rithms, since fixed point arithmetic can be easily expressed.
Even though the algorithms are modified from the original
floating model, the interfaces of the SoC model are kept.
This way, the fixed point model can always be simulated
or compared against the floating point model, or it can be
simulated in the context of the entire system.

The next step in the SoC design is partitioning of the
SoC device into hardware and software. Here, required
computational power and memory are estimated from the
MATLAB™ SoC model. The OnDSP™ core parameters are
entered into the processor data base, and a corresponding
ISS is generated. The DSP core hardware-software code-
sign flow described in Section 2 fits well into the design
flow, since the ISS is provided with interfaces to communi-
cate with MATLAB™. MATLAB™ models can be substi-
tuted by their ISS equivalent counter parts.

For modeling dedicated logic, the fixed point algorithms
from the previous development stage are converted into cy-
cle true models. Here, we use the SystemC class library.
Like the 1SS models, the cycle true dedicated hardware
models can interface with the MATLAB™ system simula-
tion. This way, embedded software on the ISS, dedicated
hardware models, and other MATLAB™ models can run all
in the same simulation. After the routines have been indi-
vidually validated, the MATLAB™ glue code is then con-

SoC system
requirements standard

system SoC Matlab
float float
development
bench

%.

Matlab
fixed point system
fixed poin
HW/SW
pienng | (-
system

HW SwW
code
SystemC)  (Systemonic wizard

[S—

algorithm|

database|
¥

. . HW SW
implementation peripheral DSP Systemonic
system logic core C
co-verification
& & ﬂ SW Tools
. X peripher-| psp object
system
integration Y als core code

Fig. 3. Matlab based design flow.

verted into DSP assembly language.

Finally, the behavioral model of the entire hardware, or
the RTL model are equipped with a test bench that can in-
terface with MATLAB™. Furthermore these models can be
substituted for the fixed point model, or compared against
it.

The design flow described so far is shown in Fig. 3.

After the chip has been manufactured, the original system
model is used to generate test signals, and to verify hard-
ware and software. The test board is equipped with a special
driver that allows for interfacing with the system simulation.
Signal input patterns from the system simulation are sent to
the board or can be downloaded into an arbitrary waveform
generator. Digital output signals from the chip are uploaded
to the simulator and validated against the simulated signals.

4. CASE STUDY HIPERLAN/2

The design flow described in Section 3 has been suc-
cessfully applied to in the development of a baseband
application-specific signal processor (ASSP) targeted to-
wards HiperLAN/2 and IEEE 802.11a applications. The
HiperSonic™ uses the OnDSP™ platform to perform all
modulation, demodulation, and synchronization routines on
a fully programmable DSP core. Furthermore, it includes



Table 1. Implementation data of the HiperSonic™ ASSP
Process technology | 0.18 um, 4LM standard cell
Core supply voltage | 1.8V core, 3.3V /O

Operating frequency | 120 MHz
Power consumption | less than 1 Watt
Transistor count 7.6 Mio

Pin count 176

MBGA 176, 15x 15 mm?

40/80 MHz sampling frequency,
10 bit resolution

IEEE 802.11a, HiperLAN/2

60 Mbit/s

Packaging
A/D, D/A converter

Supported Standards
Maximum data rate

on chip A/D and D/A converters, digital pre and post fil-
ters, and dedicated logic for channel coding and decoding
as well as for basic MAC layer functions such as cyclic re-
dundancy check (CRC) and data encryption. The chip can
be used with a 5 GHz RF front-end chip and an off-the-
shelf microprocessor, and an Ethernet or IEEE 1394 con-
troller, to build modems for HiperLAN/2 office and home
environments [1, 4], and wireless LAN modems compli-
ant with the IEEE 802.11a standard [3]. By employing
this codesign framework we were able to design the com-
plex HiperSonic™ ASSP within a short time frame of several
months. Details are given in Table 1.

At first, a system model has been created in Matlab. For
HiperLAN/2 the model includes MAC frame generation,
channel models that have been used by ETSI in the develop-
ment of the HiperLANY/2 standard, and the impact of analog
and digital filters. Sampling rate mismatch and frequency
offsets are also included in the model. Modem algorithms
have been converted to fixed point and optimized to reduce
computational complexity while at the same time maintain-
ing high performance. From the model, the system on chip
hardware-software partitioning has been realized. It turned
out that the OnDSP™ platform yields adequate performance
to compute all modulation and demodulation routines on
a single DSP core. This includes FFT/IFFT processing,
frequency error correction, OFDM symbol (de)mapping,
QAM mapping, and soft-bit QAM demapping. The DSP
contains three different data memories. One block of RAM
is used for storing variables and temporary data. The other
two RAM blocks are used for DMA data input and output,
respectively, in order to provide a high speed 1/O interface
to the DSP core. Channel coding is better performed in pe-
ripheral (side) units, since this involves bit-wise processing,
and algorithms here need to be less flexible.

In the subsequent development, the DSP core and periph-
eral units are modelled and simulated at different levels of
abstraction (see Section 2 and 3). All models are provided
with an interface to MATLAB™.

Data that are read into Matlab are converted to Matlab
matrices. In particular, memories are represented as matri-
ces, where each element represents a 16 bit word. Thus, a
convenient method is established to analyze and manipulate
data. Using these interfaces, routines originally described
in Matlab, are successively exchanged by their hardware or
software equivalences. Simulations are run on different in-
tegration levels, and compared with the original fixed point
model. This way, regression tests can be easily performed.

5. CONCLUSION

With the system driven design flow shown in this paper we
present a homogenous design environment that spans from
system-level simulation to embedded system implementa-
tion. Due to a highly automated design flow and interop-
erability of simulation models and pattern on differing lev-
els of abstraction, design validation is made possible at any
stage of the design process. Implementation effects caused
by word length limitations and processing latency can be
directly analyzed in a system level simulation. With the ap-
plication of the design framework and a platform based pro-
cessor architecture, only seven months were required from
first system evaluation to tapeout of the HiperLAN/2 ASSP,
called HiperSonic™. This demonstrates the potential of our
approach to reduce design time and cost, while maintain-
ing a high confidence level for the hardware and software
quality.

6. REFERENCES

[1] European Telecommunications Standards Institute (ETSI).
Broadband Radio Access Network (BRAN); Hiperlan Typ 2;
Physial (PHY) Layer, Apr. 2000. TS 101 475.

[2] A. Hoffmann, S. Pees, and H. Meyr. “a retargetable tool-
suite for exploration of programmable architectures in SOC-
design”. In ICSPAT’99, Orlando, USA, Nov. 1998.

[3] The Institute of Electrical end Electronics Engineers, Inc.
Supplement to IEEE Standard for Information technology —
Telecommunications and information exchange between sys-
tems — Local and Metropolitan area networks — Specific re-
quirements — Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) specifications: High-speed
Physical Layer in the 5 GHz Band, first edition, 1999. Inter-
national Standard, ANSI/IEEE Std 802.11a.

[4] M. Johnsson. HiperLAN/2 — the broadband radio transmis-
sion technology operating in the 5 GHz frequency band. In
www.hiperlan2.com/site/home.htm, 1999.

[5] M. Weiss, D. Fimmel, R. Merker, and G. Fettweis. Designing
Performance Enhanced Digital Signal Processors Using Loop
Transformations. In PACT’98, pages 90-94, Paris, France,
1998.



