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ABSTRACT

The work described in this paper explores the use of Pois-
son point processes and stochastic arithmetic to perform signal
processing functions. Our work is inspired by the asynchrony
and fault tolerance of biological neural systems. The essence of
our approach isto code the input signal as the rate parameter of a
Poisson point process, perform stochastic computing operations
on the signd in the arrival or “pulse” domain, and decode the
output signal by estimating the rate of the resulting process. An
analysis of the Poisson pulse frequency modulation encoding
error is performed. Asynchronous, stochastic computing opera-
tions are applied to the impulse stream and analyzed. A specia
finite impulse response (FIR) filtering scheme is proposed that
preserves the Poisson properties and allows filters to be cascaded
without compromising the ideal signal statistics.

1 INTRODUCTION

The term “neurocomputation” has typically meant the col-
lective behavior of a group of neuron-like processors, which are
interconnected via conventional deterministic discrete-time en-
coding of levels. However, biological neurons communicate via
impulses, where the occurrence of these impulses and the im-
plicit computation at neural junctions is often modeled as sto-
chagtic. Biologists and engineers have argued that biological
neural systems fault tolerance, asynchrony, and wide dynamic
range is aresult of parallelism and pervasive stochastic computa-
tion and representation.

This paper describes a discrete signal processing scheme
that embraces the notion that stochastic behavior is pervasive,
and investigates the implications of a fully random signal proc-
ng methodology. The essence of the approach isto code the
input signal in the rate parameter of a Poisson point process,
perform stochastic computing operations on the signal in the
arrival (or, “pulse”) domain, and decode the output signa by
estimating the rate of the resulting process.  Our direct goal is
not neural modeling, but is instead to provide a new signa proc-
essing architecture. As we will show, our approach provides
strong possibilities for asynchronous operation, advantages for
fault-tolerance, and other advantages over conventiona signal
processing architectures.

Poisson arrivals [1][2] and regular pulse streams [3]-[6]
have been previously proposed for use in neura networks as the
inter-neuron communication format and computational domain.
Both periodic and random pulse streams, where the pulse width
or duty cycle carries information, have also been used for signal
processing [7]-[12]. The approach in this paper uses random
impulse-like arrivals to perform signal processing functions. The
impulse amplitudes and very short widths contain no informa-
tion. The contributions in this paper are the use of Poisson arri-
vals, inspired by neural systems, for the specific task of signal
processing; the observation that signal processing operations can
be cascaded without corrupting the Poisson properties; and an

FIR filter scheme which retains the Poisson properties. As we
will show, implementations of this approach obtain simplicity,
asynchrony, modularity, and robustness at the expense of coding
efficiency and bandwidth.

2. POISSON ENCODING AND DECODING

The foundation of our proposed method is to use a time-
varying Poisson arrival process to represent the signal x(t) . The
value of x(t) sets the rate of a Poisson process that produces
arrivals (signed impulse functions). Signal processing operations
may be performed on the impulses, described in Section 5. De-
coding the impulse signal consists of estimating the rate parame-
ter by counting the arrivals in an interval and dividing by the
interval length.
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Figure 1. Poisson encoding and decoding. Panels 3 and 4
show the trade-off between bandwidth and SNR. In pand 2,
p(t) has been decimated to make individual pulsesvisible.

The signal to be encoded is a rea-valued function, x(t),
with an amplitude limit of max|X(t)| < Aya - Since x(t) can be
negative and the rate of a Poisson process cannot, the sign is
encoded separately from the magnitude. The signa x(t) is
encoded by driving a time-varying Poisson arrival process, P,
with arate parameter

A =a x|, )
and marking each arrival with either a positive or negative sign,
I(t) =sign(x(t)). This variant of pulse frequency modulation
produces pulses at random rather than at a fixed interval. Scal-
ing the rate with a constant, a , to set A4, Will be shown later
to impact the bandwidth and signal-to-noise ratio (SNR). The
number of arrivals in an interval, T , assuming x(t) is constant
over T, follows a Poisson distribution,

Pk arrivalsininterval T] = (A(t) T e *OT k. (2)
The Poisson nature of the arrivals implies several properties.

The arrival timeswithin an interval are conditionally independent
of one another, given the number of arrivals in the interval, and



conditionally independent of the arrival times outside the inter-
val, given the number of arrivals in the other intervals. The
arrival times within an interval are uniformly distributed, given
the number of arrivalsin the interval [13].

The cumulative number of “positive’ and “negative’ arri-
vasuptotime t are N*(t) and N (t), and the net number of
arivals up to time t is N(t) =N (t)=N7(t). Inany interval,
T, where x(t) remains constant,
E[N(t) - Nt -T)) = I () CA(t) [T . A realization of the process,
P, is shown in Figure 1, where P(t) = dN(t)/dt . The decoded
signd is

(1) = (N - N -T))/(Ta). 3

3. SIGNAL-TO-NOISE RATIO AND
BANDWIDTH

The impulse rate, bandwidth and SNR are interrelated. The
maximum impulse rate, A, iS set by the encoder, but the
bandwidth versus SNR trade-off is determined by the decoder.
The spectrum of the encoding noise is not bandlimited, even
when x(t) is constant. If x(t) is bandlimited, then low-pass fil-
tering can improve the SNR. Choosing a time window, T , for
estimating A(t) is equivalent to choosing a low pass filter with
h(t) = rect(t/T).

The ensemble average error due to encoding with a Poisson
process is zero, since the expected number of arrivalsin an inter-
val is exactly the Poisson rate. The noise power over the ensem-
bleis afunction of the rate,

Ur%oise(t) = /](t) a. (4)
Since A(t) is proportional to x(t), the expected encoding noise
at any point in time is a function of the signal level. It should be
noted that this behavior is much different than conventional
PCM computer representations where encoding noise (quantiza-
tion) isafixed function of word size.

The highest SNR for a sinusoid using this Poisson encoding
scheme occurs when xét) = Amax Eﬁn(w[ﬂ) , afull-scale sinusoid.

Then, A(t) = A Jiin(w) and
2
NR = 02-/1T - Amax‘:r /2' (5)
Onoise ElAlt)T

Letting Apna =1, the amplitude probability density of
x(t) = |si n(a)[ﬂ)| over onecycleis
2
tx)=—F— ©)
el X2
where x0[0]. The expected value for this distribution is
Elxt] =2/, EP)T] = Eldme 5()T] = 2000 T/ 7,
and the resultant SNR comes from substituting these values back
into equation (5).
NRy7 = Ay T T7/4. @
If the number of arrivals (up to Ay O ) were expressed as
a binary number, it would require Iogz(/imaX Er)] bits. One
additional bit is required to represent the sign of x , which makes
the effective number of bits B = [l10g,(Ame (T)]+1. In decibels
(dB), the SNR is therefore
AR, =3.01[B-1.05(dB) . (8)
For conventional PCM, SNR=6[B-1.77 (dB) [14]. The Pois-
son encoding scheme has a lower slope because the noise in-

creases with the signal level, whereas the PCM encoding noiseis
essentially constant. Conversely, the Poisson encoding noise
diminishes as the signal level falls, and its SNR falls at half the
rate that PCM falls. Therefore, a Poisson encoding scheme uses
its available dynamic range more effectively than conventional
PCM. For example, if the average amplitude of a signal fails to
use the most significant 3 bits of PCM encoding, the SNR of
PCM encoding drops by 18 dB. Under a Poisson encoding sys-
temitisonly reduced by 9 dB.

The Poisson encoding noise is a function of signal level,
which can be observed in Figure 1. The noise level when
x(t) =1 isvisibly higher than when x(t) =-1/4. Figure 2 illus-
trates the desirable perceptual effect of this tracking of encoding
noise with image signal levels™.
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Figure 2. Poisson encoded images at different peak arrival rates
Amax . Black is 0, and white is full scale. It should be noted
that even with good quality reproduction the bottom two en-
coded images are virtually indistinguishable from the original
top left image.

4, OPERATIONSON A POISSON PROCESS

Addition, multiplication, and negation have simple struc-
tures in the Poisson domain. As shown in Figure 3, addition is
performed by interleaving the impul se trains corresponding to the
addends. The sumis also a Poisson process. Since the probabil-
ity of a collision between Poisson arrivals is zero, the rate corre-
sponds to the sum of the two constituent rates. We assume that
implementations of this scheme use pulses with a short enough
duration to make the non-zero probability of a collision negligi-
ble. Positive and negative channels are interleaved separately.

! Additional examples may be found at
http://www.ee.washington.edu/research/isdl/papers/keane-

Ol-icassp/



http://www.ee.washington.edu/research/isdl/papers/keane-01-icassp/

Individual impulses of opposite signs do not “cancel” one an-
other, except when they are summed in the decoder. Negation
requires re-marking the arrival s with the opposite sign.

Figure 3. Addition in the Poisson domain. The A/Pand P/A convert-
ers are analog-to-pulse and pulse-to-analog converters, respectively.
The OR gate passes impulses of either polarity.

Multiplication is different from addition and negation in that
it requires the creation or destruction of impulses. For the result-
ing process to retain the Poisson properties, the new or destroyed
arrivals must also be Poisson processes. When x(t) is multiplied
by a fractiond scaar O<a<1, multiplication can be accom-
plished by “thinning” P(t) , as shown in Figure 4 and Figure 5.
Thinning is the random removal of each impulse by a Bernouilli
trial with a retention probability of a and a removal probability
of 1-a [13]. This form of multiplication introduces no SNR
degradation.

Bernouilli
a

» Generator
P[l]=a

] PO A0

Converter
Converter L

x(t)

Figure 4. Multiplication in the Poisson domain. The AND gate,
in this case, gates impulses of either polarity based on the Ber-
nouilli generator input.
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Figure 5. Multiplication in the Poisson domain. The original
arrivals are shown as tick marks, and the ones remaining after
thinning are unit spikes.

Multiplication by alarger scalar a>1 requires the creation
of Poisson impulses at the rate (a—l)Drl(t). Since the true /l(t)
is, in practice, unknown, the observed estimate would instead be
encoded, introducing SNR degradation. We conclude that limit-
ing scalar operationsto 0<a<1 ismore practical.

Delay in the pulse domain corresponds to delay in the input
signal’ s time domain.

None of these operations (addition, negation, multiplication
delay) affects the SNR of the resulting signal. The same SNR
output would be obtained whether the operations occurred before
or after the Poisson encoding process. One exception to this
claim is the addition of signals with opposite signs. In this case,
the output signal (mean) is reduced, but the noise components
(variances) add.

5. FILTERING

Finite (FIR) and infinite impulse response (11 R) filtering can
be implemented using the operations listed above. In addition to
introducing SNR issues, filtering will also impact the statistical
properties of the output signal. Before filtering, the arrivals in
P(t) occur independently at the applied rate. Filtering inher-
ently creates correlation between the number of pulsesin an in-
terval and the pulse count in neighboring intervals. But, passing
P(t) through an IIR filter or a traditional FIR filter using the
operations described in Section 4 would also introduce correla-
tionin the arrival of pulses, at integer multiples of the delay time.
For example, a stochastic filter that uses a traditional direct form
FIR filter topology (Figure 6, left) will deliver, with probability
by [b; , the same impulse to the output stream after the i delay
and after the | delay, causing two arrivals to be spaced exactly
(j-1) delays apart. This causes a statistical dependence between
impulses. By having such a correlation between pairs of im-
pulses, the independent increment property of the Poisson proc-
ess described in Section 2 is violated.

However, if pulses are not re-used at successive taps, the
Poisson properties can be preserved. One way to avoid this spike
in the autocorrelation of the filter output is to use a speciaized
FIR filter structure that does not re-introduce arrivals at multiple
lags. We call this topology a “successive remova” FIR filter
(Figure 6, right). It makes the probability of an arrival in some
arbitrarily small interval At independent of other arrivals, given
thepulserateat time t .
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Figure 6. Stochastic FIR filter topologies: Direct form (left) and succes-
siveremoval (right).

At each node of the successive removal filter, the input sig-
nal is stochastically multiplied by its appropriate weight. How-
ever, none of the pulses that are delivered to the output are also
passed down the delay line. The multiplication operation splits
the incoming impulse stream into two paths. impulses that go
immediately to the output, and impulses that are put to the next
delay element. To implement a filter
Q(t) = P(t) [y +bye™" +---+by e M), new coefficients
must be calculated for the structure in Figure 6. The coefficients
must be normalized, so that
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To accommodate the structure of Figure 6, set by such that
by =(1-bg) by, or by =b;/(1-by). Likewise, the higher order
coefficients are calculated by

~ bm

by = = -~

(1-bp)[@~ly)--- (1~ brm)

The response of any filter implemented with random opera-

tions on the impulse stream will be random. Essentialy, the

performance is equivalent to the response of a filter with noisy,

time-varying coefficients. As a result, the filter, which has the

advantages mentioned previously, has a degraded response (see

Figure 7).
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Figure 7. Successive removal FIR filter, mean performance of
the magnitude response (M=10).

6. CONCLUSIONS

Stochastic computing can be used with Poisson processes to
perform signal processing functions. Encoding a signal into a
Poisson process brings the benefits of pulse-based computing:
calculations are asynchronous and much easier to implement than
standard arithmetic. This approach is robust because every pulse
is like a least significant bit and isolated errors are predictably
insignificant. Moreover, when signal amplitudes fall below full-
scale, the SNR decreases less than it would in a conventiona
PCM binary encoding scheme. If pulse arrivals correspond to
energy consumed, then the total energy scales with signal level.

By judicious selection of the topology, FIR filtering can be
performed that preserves the Poisson nature of the encoded sig-
nas. This alows filters to be cascaded without losing the re-
quired independence among impulse arrivals. These filters,
given appropriate circuit technology, could be low power, dense,
and robust to localized errors.
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