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ABSTRACT 
The work described in this paper explores the use of Pois-

son point processes and stochastic arithmetic to perform signal 
processing functions.  Our work is inspired by the asynchrony 
and fault tolerance of biological neural systems.  The essence of 
our approach is to code the input signal as the rate parameter of a 
Poisson point process, perform stochastic computing operations 
on the signal in the arrival or “pulse” domain, and decode the 
output signal by estimating the rate of the resulting process.   An 
analysis of the Poisson pulse frequency modulation encoding 
error is performed.  Asynchronous, stochastic computing opera-
tions are applied to the impulse stream and analyzed.  A special 
finite impulse response (FIR) filtering scheme is proposed that 
preserves the Poisson properties and allows filters to be cascaded 
without compromising the ideal signal statistics.  

1. INTRODUCTION 
The term “neurocomputation” has typically meant the col-

lective behavior of a group of neuron-like processors, which are 
interconnected via conventional deterministic discrete-time en-
coding of levels. However, biological neurons communicate via 
impulses, where the occurrence of these impulses and the im-
plicit computation at neural junctions is often modeled as sto-
chastic. Biologists and engineers have argued that biological 
neural systems’ fault tolerance, asynchrony, and wide dynamic 
range is a result of parallelism and pervasive stochastic computa-
tion and representation. 

This paper describes a discrete signal processing scheme 
that embraces the notion that stochastic behavior is pervasive, 
and investigates the implications of a fully random signal proc-
essing methodology.   The essence of the approach is to code the 
input signal in the rate parameter of a Poisson point process, 
perform stochastic computing operations on the signal in the 
arrival (or, “pulse”) domain, and decode the output signal by 
estimating the rate of the resulting process.    Our direct goal is 
not neural modeling, but is instead to provide a new signal proc-
essing architecture. As we will show, our approach provides 
strong possibilities for asynchronous operation, advantages for 
fault-tolerance, and other advantages over conventional signal 
processing architectures.  

Poisson arrivals [1][2] and regular pulse streams [3]-[6] 
have been previously proposed for use in neural networks as the 
inter-neuron communication format and computational domain.  
Both periodic and random pulse streams, where the pulse width 
or duty cycle carries information, have also been used for signal 
processing [7]-[12].  The approach in this paper uses random 
impulse-like arrivals to perform signal processing functions. The 
impulse amplitudes and very short widths contain no informa-
tion.  The contributions in this paper are the use of Poisson arri-
vals, inspired by neural systems, for the specific task of signal 
processing; the observation that signal processing operations can 
be cascaded without corrupting the Poisson properties; and an 

FIR filter scheme which retains the Poisson properties. As we 
will show, implementations of this approach obtain simplicity, 
asynchrony, modularity, and robustness at the expense of coding 
efficiency and bandwidth. 

2. POISSON ENCODING AND DECODING 
The foundation of our proposed method is to use a time-

varying Poisson arrival process to represent the signal )(tx .  The 
value of )(tx sets the rate of a Poisson process that produces 
arrivals (signed impulse functions).  Signal processing operations 
may be performed on the impulses, described in Section 5.   De-
coding the impulse signal consists of estimating the rate parame-
ter by counting the arrivals in an interval and dividing by the 
interval length.   

 
Figure 1.  Poisson encoding and decoding.   Panels 3 and 4 
show the trade-off between bandwidth and SNR.  In panel 2, 
p(t) has been decimated to make individual pulses visible. 

The signal to be encoded is a real-valued function, )(tx , 
with an amplitude limit of max)(max Atx ≤ .  Since )(tx  can be 
negative and the rate of a Poisson process cannot, the sign is 
encoded separately from the magnitude.   The signal )(tx  is 
encoded by driving a time-varying Poisson arrival process, P , 
with a rate parameter 
 )()( txt ⋅=αλ , (1) 

and marking each arrival with either a positive or negative  sign, 
( ))()( txsigntI = .  This variant of pulse frequency modulation 

produces pulses at random rather than at a fixed interval.   Scal-
ing the rate with a constant, α , to set maxλ , will be shown later 
to impact the bandwidth and signal-to-noise ratio (SNR).  The 
number of arrivals in an interval, T , assuming )(tx is constant 
over T, follows a Poisson distribution,  
 ( ) !)(][ )( keTtTintervalinarrivalskP Ttk ⋅−⋅= λλ . (2) 

The Poisson nature of the arrivals implies several properties.  
The arrival times within an interval are conditionally independent 
of one another, given the number of arrivals in the interval, and 



conditionally independent of the arrival times outside the inter-
val, given the number of arrivals in the other intervals.   The 
arrival times within an interval are uniformly distributed, given 
the number of arrivals in the interval [13]. 

The cumulative number of “positive” and “negative” arri-
vals up to time t  are )(tN +  and )(tN − , and the net number of 
arrivals up to time t  is )()()( tNtNtN −+ −= .  In any interval, 
T , where )(tx  remains constant, 

[ ] TttIT)N(tN(t)E ⋅⋅=−− )()( λ .  A realization of the process, 
P , is shown in Figure 1, where dttdNtP )()( = . The decoded 
signal is   
 ( ) ( )αTTtNtNtx )()()(ˆ −−= . (3) 

3. SIGNAL-TO-NOISE RATIO AND 
BANDWIDTH 

The impulse rate, bandwidth and SNR are interrelated.  The 
maximum impulse rate, maxλ , is set by the encoder, but the 
bandwidth versus SNR trade-off is determined by the decoder.  
The spectrum of the encoding noise is not bandlimited, even 
when ( )tx is constant.  If ( )tx is bandlimited, then low-pass fil-
tering can improve the SNR.  Choosing a time window, T , for 
estimating )(tλ  is equivalent to choosing a low pass filter with 

( ) )/( Ttrectth = . 
The ensemble average error due to encoding with a Poisson 

process is zero, since the expected number of arrivals in an inter-
val is exactly the Poisson rate.  The noise power over the ensem-
ble is a function of the rate,  
 ( ) ( ) Tttnoise ⋅= λσ 2 . (4) 
Since ( )tλ  is proportional to ( )tx , the expected encoding noise 
at any point in time is a function of the signal level. It should be 
noted that this behavior is much different than conventional 
PCM computer representations where encoding noise (quantiza-
tion) is a fixed function of word size. 

The highest SNR for a sinusoid using this Poisson encoding 
scheme occurs when ( )tAtx ⋅⋅= ωsin)( max , a full-scale sinusoid. 
Then, ( )tt ⋅⋅= ωλλ sin)( max and 
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Letting 1max =A , the amplitude probability density of 
( )ttx ⋅= ωsin)(  over one cycle is  
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where [ ]1,0∈x . The expected value for this distribution is 
( )[ ] π2==txE , ( )[ ] ( )[ ] πλλλ TTtxETtE ⋅⋅=⋅⋅=⋅ maxmax 2 , 

and the resultant SNR comes from substituting these values back 
into equation (5). 
 4/max πλλ ⋅⋅= TSNR T . (7) 

If the number of arrivals (up to T⋅maxλ ) were expressed as 
a binary number, it would require ( ) T⋅max2log λ bits.  One 
additional bit is required to represent the sign of x , which makes 
the effective number of bits ( )  1log max2 +⋅= TB λ .  In decibels 
(dB), the SNR is therefore 
 )(05.101.3 dBBSNR T −⋅=λ . (8) 
For conventional PCM, )(77.16 dBBSNR −⋅=  [14].  The Pois-
son encoding scheme has a lower slope because the noise in-

creases with the signal level, whereas the PCM encoding noise is 
essentially constant. Conversely, the Poisson encoding noise 
diminishes as the signal level falls, and its SNR falls at half the 
rate that PCM falls.   Therefore, a Poisson encoding scheme uses 
its available dynamic range more effectively than conventional 
PCM.  For example, if the average amplitude of a signal fails to 
use the most significant 3 bits of PCM encoding, the SNR of 
PCM encoding drops by 18 dB.  Under a Poisson encoding sys-
tem it is only reduced by 9 dB. 

The Poisson encoding noise is a function of signal level, 
which can be observed in Figure 1.  The noise level when 

( ) 1=tx  is visibly higher than when ( ) 4/1−=tx .  Figure 2 illus-
trates the desirable perceptual effect of this tracking of encoding 
noise with image signal levels 1.  
 

 
Figure 2. Poisson encoded images at different peak arrival rates 

maxλ .   Black is 0, and white is full scale. It should be noted 
that even with good quality reproduction the bottom two en-
coded images are virtually indistinguishable from the original 
top left image.  

4. OPERATIONS ON A POISSON PROCESS 
Addition, multiplication, and negation have simple struc-

tures in the Poisson domain.  As shown in Figure 3, addition is 
performed by interleaving the impulse trains corresponding to the 
addends.  The sum is also a Poisson process.  Since the probabil-
ity of a collision between Poisson arrivals is zero, the rate corre-
sponds to the sum of the two constituent rates.  We assume that 
implementations of this scheme use pulses with a short enough 
duration to make the non-zero probability of a collision negligi-
ble.  Positive and negative channels are interleaved separately.  

__________________________________________ 
1 Additional examples may be found at 
http://www.ee.washington.edu/research/isdl/papers/keane-
01-icassp/ 

http://www.ee.washington.edu/research/isdl/papers/keane-01-icassp/


Individual impulses of opposite signs do not “cancel” one an-
other, except when they are summed in the decoder.  Negation 
requires re-marking the arrivals with the opposite sign.   
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Figure 3.  Addition in the Poisson domain.  The A/P and P/A  convert-
ers are analog-to-pulse and pulse-to-analog converters, respectively. 
The OR gate passes impulses of either polarity.  

 
Multiplication is different from addition and negation in that 

it requires the creation or destruction of impulses.  For the result-
ing process to retain the Poisson properties, the new or destroyed 
arrivals must also be Poisson processes.  When )(tx is multiplied 
by a fractional scalar 10 ≤≤ a , multiplication can be accom-
plished by “thinning” )(tP , as shown in Figure 4 and Figure 5. 
Thinning is the random removal of each impulse by a Bernouilli 
trial with a retention probability of a and a removal probability 
of a−1  [13].  This form of multiplication introduces no SNR 
degradation. 

 

Figure 4.  Multiplication in the Poisson domain. The AND gate, 
in this case, gates impulses of either polarity based on the Ber-
nouilli generator input. 

 

 
Figure 5.  Multiplication in the Poisson domain.  The original 
arrivals are shown as tick marks, and the ones remaining after 
thinning are unit spikes. 

Multiplication by a larger scalar 1>a  requires the creation 
of Poisson impulses at the rate ( ) ( )ta λ⋅−1 .  Since the true ( )tλ  
is, in practice, unknown, the observed estimate would instead be 
encoded, introducing SNR degradation.  We conclude that limit-
ing scalar operations to 10 ≤≤ a  is more practical.   

Delay in the pulse domain corresponds to delay in the input 
signal’s time domain.   

None of these operations (addition, negation, multiplication 
delay) affects the SNR of the resulting signal.  The same SNR 
output would be obtained whether the operations occurred before 
or after the Poisson encoding process.  One exception to this 
claim is the addition of signals with opposite signs.  In this case, 
the output signal (mean) is reduced, but the noise components 
(variances) add. 

5. FILTERING  
Finite (FIR) and infinite impulse response (IIR) filtering can 

be implemented using the operations listed above.  In addition to 
introducing SNR issues, filtering will also impact the statistical 
properties of the output signal.   Before filtering, the arrivals in 

)(tP  occur independently at the applied rate.  Filtering inher-
ently creates correlation between the number of pulses in an in-
terval and the pulse count in neighboring intervals.  But, passing 

)(tP  through an IIR filter or a traditional FIR filter using the 
operations described in Section 4 would also introduce correla-
tion in the arrival of pulses, at integer multiples of the delay time.  
For example, a stochastic filter that uses a traditional direct form 
FIR filter topology (Figure 6, left) will deliver, with probability 

ji bb ⋅ , the same impulse to the output stream after the ith delay 
and after the jth delay, causing two arrivals to be spaced exactly 
(j-i) delays apart.  This causes a statistical dependence between 
impulses.  By having such a correlation between pairs of im-
pulses, the independent increment property of the Poisson proc-
ess described in Section 2 is violated.    

However, if pulses are not re-used at successive taps, the 
Poisson properties can be preserved.  One way to avoid this spike 
in the autocorrelation of the filter output is to use a specialized 
FIR filter structure that does not re-introduce arrivals at multiple 
lags.  We call this topology a “successive removal” FIR filter 
(Figure 6, right).  It makes the probability of an arrival in some 
arbitrarily small interval t∆  independent of other arrivals, given 
the pulse rate at time t .   
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Figure 6.  Stochastic FIR filter topologies:  Direct form (left) and succes-
sive removal  (right). 
 

At each node of the successive removal filter, the input sig-
nal is stochastically multiplied by its appropriate weight.  How-
ever, none of the pulses that are delivered to the output are also 
passed down the delay line.  The multiplication operation splits 
the incoming impulse stream into two paths:  impulses that go 
immediately to the output, and impulses that are put to the next 
delay element.  To implement a filter 

)()()( 10
sMT

M
sT ebebbtPtQ −− +++⋅= L , new coefficients 

must be calculated for the structure in Figure 6.  The coefficients 
must be normalized, so that  
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To accommodate the structure of Figure 6, set 1
~
b  such that 
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~

011 bbb −= .  Likewise, the higher order 
coefficients are calculated by 
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The response of any filter implemented with random opera-
tions on the impulse stream will be random.  Essentially, the 
performance is equivalent to the response of a filter with noisy, 
time-varying coefficients.  As a result, the filter, which has the 
advantages mentioned previously, has a degraded response (see 
Figure 7). 
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Figure 7.  Successive removal FIR filter, mean performance of 
the magnitude response (M=10).  

6. CONCLUSIONS 
Stochastic computing can be used with Poisson processes to 

perform signal processing functions.  Encoding a signal into a 
Poisson process brings the benefits of pulse-based computing: 
calculations are asynchronous and much easier to implement than 
standard arithmetic.  This approach is robust because every pulse 
is like a least significant bit and isolated errors are predictably 
insignificant.  Moreover, when signal amplitudes fall below full-
scale, the SNR decreases less than it would in a conventional 
PCM binary encoding scheme.  If pulse arrivals correspond to 
energy consumed, then the total energy scales with signal level. 

By judicious selection of the topology, FIR filtering can be 
performed that preserves the Poisson nature of the encoded sig-
nals.  This allows filters to be cascaded without losing the re-
quired independence among impulse arrivals.  These filters, 
given appropriate circuit technology, could be low power, dense, 
and robust to localized errors. 

 

Acknowledgement 
The authors would like to thank Prof. Chris Diorio of the 

University of Washington Department of Computer Science and 
Engineering for inspiring discussions throughout this work.   

The suggestions of A. Michael Dougherty and Bradford W. 
Gillespie of the University of Washington Department of Electri-
cal Engineering for the improvement of the manuscript are highly 
appreciated. 

 

7. REFERENCES 
[1] A.S. French and A.V. Holden, “Alias-free sampling of neu-

ronal spike trains,” Kybernetik, 8(5), pp. 165-171, May 
1971 

[2] H. Card, “Doubly Stochastic Poisson Processes in Artificial 
Neural Learning,” IEEE Trans. On Neural Networks, 9(1), 
pp. 230-231, January 1998 

[3] A. Murray and A.V.W. Smith, “Asynchronous VLSI Neural 
Networks Using Pulse-Stream Arithmetic,” IEEE Journal of 
Solid-State Circuits, 23(3), pp. 688-697, June 1988. 

[4] A.F. Murray, A. Hamilton, H.M. Reekie, and L. Tarassenko, 
“Pulse-stream arithmetic in programmable neural            
networks,” IEEE International Symposium on Circuits and 
Systems, 2, pp. 1210-1212, 1989. 

[5] A.F.Murray, “Pulse Arithmetic in VLSI Neural Networks,” 
IEEE Micro, pp. 64-74, December, 1989. 

[6] A. Murray, “Pulse Techniques in Neural VLSI:  A Review,” 
Proc. of the 1992 IEEE International Conf. On Circuits and 
Systems, 5, pp. 2204-2207, 1992. 

[7] C.L. Janer, J.M. Quero, J.G. Ortega, and L.G. Franquelo, 
“Fully Parallel Stochastic Computation Architecture,” IEEE 
Trans. On Signal Processing, 44(8), pp 2110-2117, August 
1996. 

[8] A. Astaras, R. Dalzell, A. Murray, and M. Reekie, “Pulse-
based circuits and methods for probabilistic neural computa-
tion,” Microelectronics for Neural, Fuzzy and Bio-Inspired 
Systems, pp. 96-102, 1999. 

[9] J.M. Quero, S.L Toral, J.G. Ortega, and L.G. Franquelo, 
“Continuous Time Filter Design Using Stochastic Logic,” 
42nd Midwest Symposium on Circuits and Systems, 1, pp. 
113-116, 2000. 

[10] S.L. Toral, J.M. Quero, and L.G. Franquelo, “Stochastic 
Pulse Coded Arithmetic,” IEEE International Symposium 
On Circuits and Systems, 1, pp. 599-602, August 1999. 

[11] A. Hamilton and K. Papathanasiou, “Reconfigurable ana-
logue systems: the pulse-based approach,” IEE Proceedings 
on Computers and Digital Techniques, 147(3), pp. 203–
207, May 2000. 

[12] M. Nagata and A. Iwata, “A PWM Signal Processing Core 
Circuit Based on a Switched Current Integration Tech-
nique,” IEEE J. Solid State Circuits, 33(1), pp. 53-60, Janu-
ary 1998. 

[13] D. R. Cox and P.A.W. Lewis, The Statistical Analysis of 
Series of Events, John Wiley & Sons, Inc., New York, 1966. 

[14] A.V. Oppenheim and R.W. Schafer, Discrete-Time Signal 
Processing, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 
1992.  


	ABSTRACT
	INTRODUCTION
	POISSON ENCODING AND DECODING
	SIGNAL-TO-NOISE RATIO AND BANDWIDTH
	OPERATIONS ON A POISSON PROCESS
	FILTERING
	CONCLUSIONS
	REFERENCES

