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ABSTRACT

Speechtransmissionoverpacketnetworkshasto copewith packet
delaysandpacket losses.Whena packet lossoccursthemissing
informationmustbe estimated.In this contribution we focuson
restoringthe spectralparametersof a speechcoder. A novel ap-
proachto estimatingmissingLine SpectralFrequency (LSF) pa-
rametersusingGaussianMixture Models(GMM) is proposed.We
presenttheestimationalgorithmandstudyits performancewhen
oneor severalLSFparametersarelost. Weshow thataGMM of a
relatively low orderis sufficient to achieve a substantialimprove-
mentin parameterSNR.Therefore,thenew estimationprocedure
requiresmuchlessmemorythanhistogrambasedestimationmeth-
ods.

1. INTR ODUCTION

The numberof Internetusersand the datatraffic on the Internet
have beenrapidly increasingduring the last years. The ubiqui-
tousdatanetworksandtheemergenceof new interactive applica-
tions make the integrationof traditionalspeechservices,suchas
telephony, into the packet networks of the Internethighly desir-
able. However, speechtransmissionimposesstringentreal time
demandson thenetwork andnetwork congestionis likely to lead
to packetdelaysandpacket loss.Whenapacket is delayedbeyond
acceptablelimits or completelylost, the missingspeechparame-
tersmustbeextrapolatedfrom the availableinformationin order
to satisfyrealtime constraints.

A versatilecandidatefor VoiceoverIP applicationsis theGSM
Adaptive Multi-Rate speechcoder[1]. It offers codingratesbe-
tween4.75kbit/s and12.2kbit/s andallows switchingof bitrates
from onespeechframeof 20 ms to the next. TheAMR coderis
basedon the ACELP principle, i.e. it is a linear predictive (LP)
coderwith algebraiccodebookexcitation.TheLP coefficientsare
convertedto the Line SpectralFrequency (LSF) domainprior to
transmission.

In thiscontributionwefocusontheestimationof missingLSF
parameters.The methodpresentedhereusesthe intraframecor-
relation of the differentially encoded(residual)LSF parameters
anda priori information to find a Minimum MeanSquareError
(MMSE) estimateof missingLSF parametersgiven the present
parameters.Thea priori informationwhichis requiredfor MMSE
estimationis thejoint probabilitydensityfunctionof theLSF pa-
rameters.In thiswork, aGaussianMixture Model (GMM) is used
to modelthejoint density.

Optimal parameterestimationusing a priori knowledgehas
beenproposedbeforein thecontext of errorconcealmentandsoft-
bit decoding,e.g. [2, 3]. In thosestudiesthe a priori knowledge
hasbeenstoredin termsof histograms.The applicationof those
conceptsto intraframeestimationof LSF parametersis difficult
as the dimensionof the LSF vector leadsto prohibitively large
memoryrequirements.Suboptimalmethodsbasedon first order
Markov modeling[4] requirelessmemorybut do not completely
solve thememoryproblem.TheGMM approachproposedin this
paper, however, hasverymodestmemoryrequirements.

Theremainderof thispaperis organizedasfollows: Section2
summarizesthe computationand the propertiesof differentially
encoded(residual)LSF parametersin theAMR coder. Section3
presentsthe MMSE estimatorandGaussianMixture Models. In
Section4 we summarizethe objective measurementsfor various
GMM orders.

2. SPECTRAL PARAMETERS OF THE AMR SPEECH
CODER

The GSM AMR speechcoderimplementseight differentsource
codingmodesat bitratesbetween4.75kbit/s and12.2 kbit/s [1].
All modesusea filter of order10 for linearprediction(LP) analy-
sis.The12.2kbit/smode(whichis identicalto theGSMenhanced
fullrate coder)usestwo differentwindows to calculatetwo setsof
LSF parameters.All othermodesusea singlewindow to calcu-
late onesetof coefficients for eachspeechframeof 20 ms. The
LP coefficientsareconvertedto theLSFdomainanddifferentially
encoded.To remove correlationa meanvectoris subtractedfrom
eachLSF vectoranda first orderlinearpredictionfilter with fixed
predictioncoefficientsis applied.For modesbelow 12.2kbit/s the
residualLSFvectors

� �
, where� denotestheframeindex, arethen

Split Vector(SVQ)quantized.The10-dimensionalvectorsarepar-
tionedinto subsetsof 3, 3,and4 residualLSFcoefficients.Eachof
thesesubsetsis thenvectorquantizedwith 7 to 9 bits. E.g.,for the
10.2kbit/smodethefirst, thesecond,andthethirdsubsetarequan-
tizedwith 8, 9, and9 bits, respectively. For the10.2kbit/s mode
(which we usedin this study)thejoint histogramof thequantized
LSFcoefficientswouldrequirethestorageof ��������	�����	�

�����������
histogramvalues. For a suboptimalMarkov chainapproachthe
transitionmatricesbetweensubsetsneedto bestored.For the10.2
kbit/s modethis still amountsto ��������	�����	�����	��������! "�!��� his-
togramvalues.Thesememoryrequirementsexcludea histogram
basedestimationapproach.



Figure1 shows an intensityplot of thecorrelationcoefficient
matrix of the residualLSF vectors,computedon a data set of
20,000residualLSF vectors. Adjacentcomponentsof the LSF
vectorarestronglycorrelated.This intraframecorrelationwill be
usedin theestimationprocedureoutlinedbelow.
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Fig. 1. Intensityplot of correlationcoefficient matrix for residual
LSFvectors.

3. ESTIMA TION OF MISSING COMPONENTS

3.1. MMSE Estimators for Missing LSF Components

Weassumethatsomecomponentsof thecurrentresidualLSFvec-
tor
� �

arelost andthatall othercomponentsandall otherframes
arereceivedwithout error. Theaim of theestimationprocedureis
to restorethemissingcomponentsusingMMSE estimation.The
approachtaken hereis alsoknown as“Missing FeatureTheory”
whichhasbeenemployedin robustspeechrecognition[5].

WepartitionthecurrentresidualLSFvector
� �

into areceived
(or present)part

� # $�%�
anda lost (or missing)part

� #'&�%�
,� � � ( � #)&*%�� # $�%�,+.- (1)

If quantizationerrorsare negligible, the MMSE estimateof
themissingcomponentsis givenby theconditionalexpectation/� #)&*%� �
021 � #)&�%� 3 � # $4%�  65 �47�8"9 (2)

asa function of the presentcomponentsand the sequenceof all
previously receivedresidualLSF vectors5 ��7:8 . E.g., in casethat� �

is governedby a first order Markov model andquantization
errorsarenegligible, we obtain/� #'&�%� ��0;1 � #'&�%� 3 � # $�%�  � ��7�8 9�
<>= ?)@BAC � #)&�%�EDGF � #'&�%� 3 � # $�%�  � ��7�86HJI!� #)&�%� - (3)

If we neglect thecorrelationover time theexpressioncanbe fur-
thersimplified/� #)&*%� � <>= ?'@BAC � #)&�%� DGF � #)&�%� 3 � # $4%� HJI!� #'&�%� - (4)

To computethe optimal estimatethe conditionalprobability
density

DGF � #)&�%� 3 � # $4%� H
mustbeknown.

If all componentsof thecurrentLSFvectorarelostandcorre-
lation over time is neglectedwe have

DGF � #)&�%� 3 � # $4%� H � DGF � #'&�%� H
.

In thiscasethebestestimateis themeanvalue.Thesubstitutionof
thelost componentsby the(unconditional)meanwill betermeda
priori meanimputation.

3.2. GaussianMixtur eModels

Mixture modelsarefrequentlyusedin dataclassificationandclus-
teringproblemswith theaimof fitting theprobabilitydensityfunc-
tion (pdf) of somegivendata.Themixturemodelcanrepresentthe
statisticsof thegivendatawith arelatively smallnumberof param-
eters.We approximatethejoint probabilitydensityof theresidual
LSFvectorsby aGaussianMixture Model [6], i.e.,by asumof K
multivariateGaussiandensitiesDGF � ��H �MLN OQP 8SR OUT F � �  JV O  XW O H (5)

whereeachY -dimensionalmixturedensityis givenbyT F � �  �V O  "W O H � �Z F �4[ H]\ 3 W O 3 (6)�_^"`ba F�cd�� F � � c V O H�e W 7�8O F � � c V O H]H (7)

and R O denotesthea priori probabilityof themixturecomponents
TfO � T F � �  �V O  "W O H , i.e. g F TfO H � R O .

ThemixtureprobabilitiesR O , themixturemeanvectorsV O , and
thecovariancematricesW O aredeterminedfrom trainingthemodel
by meansof thewell known Estimate-Maximize(EM) algorithm
[7]. To reducethenumberof freeparametersit is commonto use
covariancematriceswith non-zeroelementson themaindiagonal
only [8, 6].

3.3. MMSE Estimation UsingGMM

In order to computean approximateMMSE estimateusing the
GMM, we partition all parametersof the GMM with respectto
presentandmissingcomponents.

Analogousto theLSFparametervectorin (1) themeanvectorsV O andthecovariancesW O of all mixture componentcanbe then
written asfollows V O � ( V #)&�%OV # $4%O +  (8)

W O � ( W #)&�h &�%O W #)&ih $4%OW # $�h &*%O W # $�h $�%O +.- (9)

Theconditionalpdf of presentandmissingcomponentscanbe
now expressedin termsof aGMMDGF � #)&�%� 3 � # $�%� H � DGF � #)&�%�  � # $�%� HDGF � # $4%� H�MLN OQP 8 R ODGF � # $�%� H T F � �  JV O  XW O H - (10)



Sincetheconditionalpdf andany marginalpdf of jointly Gaussian
randomvariablesare (multivariate)Gaussiandensities,the joint
probability

T F � �  ]V O  XW O H of presentandmissingcomponentscan
befactoredinto a conditionalGaussianpdf anda marginal Gaus-
sianpdf (e.g.[9]). Therefore,

D�F � #)&*%� 3 � # $4%� H
canbewrittenasD�F � #'&�%� 3 � # $�%� H

�kj LOlP 8 R O�T F � #)&�%�  JV #'&nm $�%O  XW #)&�m $4%O H T F � # $4%�  �V # $4%O  XW # $�h $�%O Hj LOQP 8 R O T F � # $�%�  JV # $�%O  6W # $�h $4%O H
(11)

with V #)&nm $�%O �oV #'&�%O �oW # $�h &�%O F W # $�h $�%O H 7:8 F � # $4%� c V # $4%O H
(12)

and W #)&nm $4%O �pW #)&ih &�%O c W # $�h &�%O F W # $�h $�%O H 7:8 W #)&ih $4%O - (13)

Wedefinethea posteriori probabilitiesR #)&nm $�%O � R O T F � # $�%�  �V # $�%O  6W # $�h $4%O Hj Lq P 8 R q T F � # $4%�  �V # $�%q  XW # $�h $�%q H (14)

andobtainDGF � #)&�%� 3 � # $�%� H � LN OQP 8 R #'&nm $�%O T F � #)&�%�  �V #)&�m $4%O  "W #)&nm $4%O H - (15)

Using(4), (12),and(15)anapproximateMMSE estimateof
� #)&�%�

is givenby/� #)&�%� ��021 � #)&�%� 3 � # $�%� 9 � LN OlP 8 R #)&nm $�%O V #)&nm $�%O - (16)

If theGMM modelsthe pdf of thecurrentresidualLSF vec-
tor
� �

by meansof diagonal covariancematricestheoff-diagonal
matricesW #)&�h $�%O

and W # $�h &�%O
areall zeroandtheMMSE estimate

is givenby /� #)&�%� �MLN OlP 8SR #)&nm $�%O V #)&�%O (17)

wherethe a posteriori probabilitiescanbe now easilycomputed
usingproductsof univariatenormaldensitiesR #)&nm $4%O � R Osr \utv P 8 T F � # $�%� h v  �V # $�%O h v  FUw # $�h $4%O h v H]x�Hj Ly P 8 R y r \Stv P 8 T F � # $4%� h v  �V # $4%y h v  FUw # $�h $�%y h v H x H � (18)R O ^"`ba F�c � - z j v F ��# $4%� h v c V # $�%O h v H x"{ FUw # $�h $4%O h v H x H r v � { w # $�h $�%O h vj Lq P 8 R O ^"`ba F�c � - z j v F � # $�%� h v c V # $�%q h v H x { FUw # $�h $�%q h v H x H r v � { w # $�h $4%q h v -

(19)��# $�%� h v denotesthe | -th componentof the � -th vector
� # $�%�

of present

components,and V # $4%O h v and
FUw # $�h $4%O h v H x

arethemeanandthevariance
of the | -th vectorcomponentandthe } -th mixturecomponent,re-
spectively. j v � j \ tv P 8 and

r v � r \ tv P 8 denotesumsandprod-
uctsover thepresentcomponentswhereY $ denotesthenumberof
presentcomponents.

Thememoryrequirementsof theGMM approacharedirectly
proportionalto the dimensionof the LSF vector and the GMM
order, i.e for LSF vectorsof size 10 andGMM’s with diagonal
covariancematrices

F ���;�~���f��� H ��K valuesmust be stored.
Since K is typically muchsmallerthan ����� theGMM approach
offerssignificantmemoryadvantageswith respectto thehistogram
approach.

4. EXPERIMENT AL RESULTS

The AMR codergroupsthe residualLSF parametersinto three
subsets.Eachof thesesubsetsis thenvectorquantizedandtrans-
mitted. To reducetheprobabilitythatall subsetsof a signalframe
get lost we interleave the subsetsof successive frames. Whena
singletransmittedframegetslost at leastoneout of threesubsets
is availablefor thereconstructionof theLSFvector.

In ourexperimentswethereforeconsideredthreedifferentsce-
narios:�

Only oneLSF coefficient is lost. The remaining9 coeffi-
cientsarepresent.This is of little practicalimportancefor
theabove transmissionscheme.It gives,however, an indi-
cationof how muchcanbeachievedandmightbeusefulin
otherspeechenhancementapplications.�
Oneof thethreesubsetsis lost.�
Two of thethreesubsetsarelost.

TheexperimentalresultswereobtainedusingGMM’s with 2,
4,8,16,32,and64mixturecomponents.TheGMM’sweretrained
by meansof theEM algorithmandonemillion residualLSF vec-
tors.A databaseof (modified)IRSfilteredmaleandfemalespeech
andthe AMR coder(10.2kbit/s mode)wasusedto generatethe
residualLSF vectors.Theestimationalgorithmwasevaluatedus-
ing 20,000residualLSFvectorswhichwerenotpartof thetraining
database.

4.1. Lossof a singleLSF coefficient

Theimprovementin parameterSNRwith respectto a priori mean
imputationare shown in Table 1. The gain dependsmainly on
thepositionwithin theLSF vectorandthecorrelationof adjacent
LSF’s. For K������ anaveragegainof about4.1dB is obtained.
FurtherdoublingtheGMM orderdid resultin smallimprovements
but alsoin a significantlyincreasedcomputationalcomplexity.

4.2. Lossof LSF subsets

Whena singlesubsetof LSFcoefficientsis lost theresultsdepend
on thepositionwithin thesubset.Table2 summarizestheresults.
For K������ theaverageimprovementis now 2.0dB.

Table3 presentstheresultsfor thecaseof two missingsubsets.
Againtheimprovementisbestfor thoseLSFcoefficientswhichare
adjacentto thepresentcoefficients. Theaverageimprovementof
a singleLSF coefficient with respectto a priori meanimputation
is now only 1.26dB, however, six (subsets1, 2) or seven(subsets
2, 3 or 1 ,3) coefficientsareestimated.A comparisonwith Table2
revealsthatthesubsetsadjacentto amissingsetcontributemostto
theimprovement.A first orderMarkov approachis thereforeclose
to optimal.



GMM order
lost LSF# 2 4 8 16 32 64

1 0.77 1.91 2.98 3.69 3.93 4.34
2 1.54 2.72 4.23 5.22 5.40 5.84
3 2.58 3.53 4.45 4.93 5.04 5.45
4 2.10 2.26 2.83 3.50 3.65 4.10
5 1.48 1.93 2.90 3.70 4.19 4.47
6 1.24 2.29 3.07 3.52 3.88 4.17
7 1.02 1.85 2.10 2.33 2.63 3.05
8 1.11 1.69 1.99 2.21 2.52 3.09
9 1.13 1.31 1.75 2.65 3.19 3.47
10 0.59 0.71 1.09 1.88 2.45 2.80�

1.35 2.02 2.74 3.36 3.69 4.08

Table1. Improvementwith respectto a priori meanimputationof
parameterSNRin dB for estimatingasingleLSFcoefficientusing
a GMM of order K . Theaveragefor order K is denotedby

�
.

lost set LLSF# 2 4 8 16 32 64

1 0.21 0.49 0.82 0.89 0.94 1.00
1 2 0.67 1.01 1.28 1.42 1.44 1.50

3 1.75 2.19 2.72 3.09 3.22 3.40
4 1.79 1.91 2.19 2.63 2.70 2.97

2 5 0.95 1.24 1.44 1.69 1.80 1.90
6 0.92 1.78 2.12 2.30 2.39 2.54
7 0.74 1.47 1.72 1.92 2.07 2.17
8 0.75 1.14 1.32 1.40 1.47 1.533
9 0.77 0.94 1.06 1.21 1.37 1.39
10 0.33 0.41 0.49 0.79 0.99 1.05�

0.91 1.29 1.56 1.78 1.88 2.0

Table2. Improvementwith respectto a priori meanimputationof
parameterSNRin dB for theestimationof asinglelostLSFsubset
usingaGMM of order K .

lost sets LLSF# 2 4 8 16 32 64

1 -0.00 0.11 0.21 0.25 0.26 0.30
1 2 0.31 0.44 0.49 0.55 0.58 0.62

3 0.77 0.87 0.96 1.05 1.10 1.11
4 0.59 0.65 0.76 0.88 0.91 0.95

2 5 0.91 1.05 1.17 1.27 1.28 1.34
6 1.32 1.75 1.87 1.96 2.03 2.12
4 1.72 2.12 2.30 2.58 2.66 2.80

2 5 0.50 0.96 0.94 1.08 1.13 1.16
6 0.15 0.82 1.01 1.08 1.12 1.17
7 0.19 0.69 0.78 0.82 0.84 0.89

3 8 0.25 0.56 0.69 0.75 0.76 0.79
9 0.36 0.57 0.68 0.69 0.76 0.78
10 0.14 0.22 0.29 0.39 0.50 0.53
1 0.32 0.67 0.83 0.84 0.91 0.92

1 2 0.70 1.05 1.21 1.28 1.32 1.34
3 1.90 2.37 2.77 3.00 3.06 3.18
7 1.10 1.71 1.79 1.92 2.02 2.10

3 8 1.01 1.23 1.30 1.35 1.38 1.41
9 0.88 0.93 0.93 1.04 1.10 1.12
10 0.31 0.31 0.46 0.59 0.71 0.76�

0.67 0.95 1.06 1.16 1.21 1.26

Table3. Improvementwith respectto a priori meanimputationof
parameterSNR in dB for the estimationof two lost LSF subsets
usingaGMM of order K .

5. CONCLUSIONS

TheproposedLSF reconstructionschemewasimplementedin an
Voiceover IP transmissionscheme.Thetransmissionschemeuses
frame interleaving for the codedLSF parametersanda multiple
descriptionschemefor thetransmissionof theLP residual.Infor-
mal listening testsconfirmedthat the estimationschemeasout-
lined above enhancesthe quality of the received speechsignals
whenframelossesoccur. Theschemeis especiallyusefulwhenno
morethanoneLSF subsetgetslost. Due to thecorrelationprop-
ertiesof residualLSF vectors,increasingtheGMM orderbeyond
20–30is only helpful whencoefficientsnext to thelostcoefficient
arepresent.Comparedto histogrambasedapproachestheGMM
basedapproachconsumessignificantlylessmemory.

The improvementsfor missingLSF subsetscanbe increased
to thevaluesgivenin Table1 whentheLSFcoefficientsaregrouped
differently into thesubsets.If we, for instance,groupLSF # 1, 3,
5 into subsetoneandLSF # 2, 4, 6 into subsettwo we obtainim-
provementswhich equalor exceedtheonesgivenin Table1.
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