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ABSTRACT

Speechransmissiorover paclet networkshasto copewith paclet
delaysandpaclet losses.Whena paclet lossoccursthe missing
information mustbe estimated.In this contritution we focuson
restoringthe spectralparameter®f a speechcoder A novel ap-
proachto estimatingmissingLine SpectralFrequeng (LSF) pa-
rameteraisingGaussiaMixture Models(GMM) is proposedWe
presenthe estimationalgorithmand studyits performancevhen
oneor several LSF parameterarelost. We shav thata GMM of a
relatively low orderis suficient to achieve a substantialmprove-
mentin parameteSNR. Therefore the new estimationprocedure
requireamuchlessmemorythanhistogranbasedestimatiormeth-
ods.

1. INTRODUCTION

The numberof Internetusersandthe datatraffic on the Internet
have beenrapidly increasingduring the last years. The ubiqui-

tousdatanetworks andthe emegenceof new interactve applica-
tions malke the integration of traditional speechservicessuchas
telephomw, into the paclet networks of the Internethighly desir

able. However, speechtransmissionimposesstringentreal time

demandon the network andnetwork congestioris likely to lead
to pacletdelaysandpacletloss.Whenapacletis delayedheyond
acceptabldimits or completelylost, the missingspeechparame-
tersmustbe extrapolatedfrom the availableinformationin order
to satisfyrealtime constraints.

A versatilecandidatdor VoiceoverIP applicationsstheGSM
Adaptive Multi-Rate speechcoder[1]. It offers codingratesbe-
tween4.75kbit/s and 12.2kbit/s andallows switchingof bitrates
from one speechframe of 20 msto the next. The AMR coderis
basedon the ACELP principle, i.e. it is a linear predictive (LP)
coderwith algebraiccodebookexcitation. The LP coeficientsare
corvertedto the Line SpectralFrequeng (LSF) domainprior to
transmission.

In this contritution we focuson the estimationof missingLSF
parameters.The methodpresentedchereusesthe intraframecor-
relation of the differentially encoded(residual) LSF parameters
anda priori informationto find a Minimum Mean SquareError
(MMSE) estimateof missing LSF parametergyiven the present
parametersThea priori informationwhichis requiredfor MMSE
estimationis thejoint probability densityfunction of the LSF pa-
rameterslin thiswork, a GaussiarMixture Model (GMM) is used
to modelthejoint density

Optimal parameterestimationusing a priori knowvledge has
beenproposedeforein the context of errorconcealmenandsoft-
bit decoding.e.g. [2, 3]. In thosestudiesthea priori knovledge
hasbeenstoredin termsof histograms.The applicationof those
conceptsto intraframeestimationof LSF parameterss difficult
as the dimensionof the LSF vector leadsto prohibitively large
memoryrequirements.Suboptimalmethodsbasedon first order
Markov modeling[4] requirelessmemorybut do not completely
solve the memoryproblem. The GMM approactproposedn this
paper however, hasvery modestmemoryrequirements.

Theremaindeof this paperis organizedasfollows: Section2
summarizeghe computationand the propertiesof differentially
encodedresidual)LSF parametersn the AMR coder Section3
presentdhe MMSE estimatorand GaussiarMixture Models. In
Section4 we summarizethe objective measurementfor various
GMM orders.

2. SPECTRAL PARAMETERS OF THE AMR SPEECH
CODER

The GSM AMR speechcoderimplementseight differentsource
coding modesat bitratesbetweend.75 kbit/s and 12.2 kbit/s [1].
All modesuseafilter of order10for linearprediction(LP) analy-
sis. The12.2kbit/s mode(whichis identicalto the GSM enhanced
fullrate coder)usestwo differentwindows to calculatetwo setsof
LSF parametersAll othermodesusea singlewindow to calcu-
late one setof coeficientsfor eachspeechframe of 20 ms. The
LP coeficientsarecorvertedto the LSF domainanddifferentially
encoded.To remove correlationa meanvectoris subtractedrom
eachLSF vectorandafirst orderlinearpredictionfilter with fixed
predictioncoeficientsis applied.For modesbelav 12.2kbit/s the
residualLSFvectorsL,,, wherek denotesheframeindex, arethen
Split Vector(SVQ) quantized The10-dimensionalectorsarepar
tionedinto subset®f 3, 3, and4 residualLSF coeficients. Eachof
thesesubsetss thenvectorquantizedwith 7 to 9 bits. E.g.,for the
10.2kbit/s modethefirst, thesecondandthethird subsetirequan-
tizedwith 8, 9, and9 bits, respectiely. For the 10.2kbit/s mode
(which we usedin this study)thejoint histogramof the quantized
LSF coeficientswould requirethestorageof 28 - 2°.2° ~ 67-10°
histogramvalues. For a suboptimalMarkov chainapproachthe
transitionmatricesbetweersubsetsieedto bestored.For the 10.2
kbit/s modethis still amountsto 28 - 2° 4 2° . 2° = 393, 216 his-
togramvalues. Thesememoryrequirementgxcludea histogram
basedestimationapproach.



Figurel shaws anintensity plot of the correlationcoeficient
matrix of the residualLSF vectors,computedon a data set of
20,000residualLSF vectors. Adjacentcomponentf the LSF
vectorarestronglycorrelated.This intraframecorrelationwill be
usedin the estimationprocedureoutlinedbelow.
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Fig. 1. Intensityplot of correlationcoeficient matrix for residual
LSFvectors.

3. ESTIMATION OF MISSING COMPONENTS

3.1. MMSE Estimators for Missing LSF Components

We assuméhatsomecomponentsf thecurrentresidualLSF vec-
tor L,, arelostandthatall othercomponentsandall otherframes
arerecevedwithouterror Theaim of the estimationproceduras
to restorethe missingcomponentsaisingMMSE estimation. The
approachtaken hereis alsoknown as “Missing FeatureTheory”
which hasbeenemplo/edin robustspeectrecognition[5].

We partitionthecurrentresidualLSFvectorL,, into areceved

(or presentpart L'" andalost (or missing)part L™,

(m)

L
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If quantizationerrorsare negligible, the MMSE estimateof
themissingcomponentss givenby the conditionalexpectation

=(m)

L =E{L" | L, Z, 1} )
asa function of the presentcomponentsandthe sequencef all
previously recevedresidualLSF vectorsZ,,_,. E.g.,in casethat
L, is governedby a first order Markov model and quantization
errorsarengyligible, we obtain
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If we neglectthe correlationover time the expressioncanbe fur-
thersimplified
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To computethe optimal estimatethe conditional probability
densityp(L{™ | L) mustbeknown.

If all component®f thecurrentLSF vectorarelostandcorre-
lation over time is neglectedwe have p(L{™ | L™y = p(L™).
In this casethe bestestimatds themeanvalue. Thesubstitutionof
thelostcomponentdy the (unconditionalymeanwill betermeda
priori meanimputation.

3.2. GaussianMixtur e Models

Mixture modelsarefrequentlyusedin dataclassificatiorandclus-
teringproblemawith theaim of fitting the probabilitydensityfunc-

tion (pdf) of somegivendata.The mixturemodelcanrepresenthe
statisticoof thegivendatawith arelatively smallnumberof param-
eters.We approximatethe joint probability densityof theresidual
LSF vectorshy a GaussiatMixture Model[6], i.e.,by asumof M

multivariateGaussiardensities

M

=1
whereeachN-dimensionahmixture densityis givenby
S
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anda; denoteghea priori probability of the mixture components
N; = ‘ﬁ(Lk,gi, C;),i.e. P(M;) = ai.

Themixtureprobabilitiesq;, themixturemeamectors;_;i, and
thecovariancematricesC; aredeterminedrom trainingthemodel
by meansof the well known Estimate-MaximizgEM) algorithm
[7]. To reducethe numberof free parameter# is commonto use
covariancematriceswith non-zeroelementson the maindiagonal
only 8, 6].
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3.3. MMSE Estimation Using GMM

In orderto computean approximateMMSE estimateusing the
GMM, we partition all parameterof the GMM with respectto
presenaindmissingcomponents.

Analogougo theLSFparametevectorin (1) themearnvectors
1. andthe covariancesC; of all mixture componentanbethen

written asfollows
(m)
I
p=1" ) (8)
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Theconditionalpdf of presenandmissingcomponentsanbe
now expressedn termsof aGMM

p(Ly™, L)

(m) (p)
p(LP)

(10)



Sincetheconditionalpdf andarny mamginal pdf of jointly Gaussian
randomvariablesare (multivariate) Gaussiardensities the joint
probability91(L,,, s C;) of presenandmissingcomponentgan
befactoredinto a conditionalGaussiarpdf anda marmginal Gaus-
sianpdf (e.g.[9]). Thereforep(gfcm) | Qf’)) canbewritten as

p(L | L)
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with
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and
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We definethea posteriori probabilities
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andobtain

M
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Using(4), (12),and(15) anapproximateMMSE estimateof Lé’")
is givenby

M
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i=1

If the GMM modelsthe pdf of the currentresidualLSF vec-
tor L, by meansof diagonal covariancematricesthe off-diagonal

matricesC{™" andC"™ areall zeroandthe MMSE estimate
is givenby

wherethe a posteriori probabilitiescanbe nowv easily computed
usingproductsof univariatenormaldensities
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L,(f’]) denoteghe j-th componenbf thek-th vectorL{"’ of present
componentsandpgi‘}) and(ag,’}’”)2 arethemeanandthevariance
of the j-th vectorcomponentindthei-th mixture componentre-

spectvely. -, = Ej.vﬁl and[[; = ]'[j.V:P1 denotesumsandprod-
uctsoverthepresentomponentsvhereN,, denotegshenumberof

presentomponents.

Thememoryrequirement®f the GMM approacharedirectly
proportionalto the dimensionof the LSF vector and the GMM
order i.e for LSF vectorsof size 10 and GMM’s with diagonal
covariancematrices(10 + 10 + 1) - M valuesmustbe stored.
Since M is typically muchsmallerthan100 the GMM approach
offerssignificantmemoryadwantagesvith respecto thehistogram
approach.

4. EXPERIMENT AL RESULTS

The AMR coder groupsthe residualLSF parametersnto three
subsets Eachof thesesubsetss thenvectorquantizedandtrans-
mitted. To reducethe probabilitythatall subset®f a signalframe
get lost we interleave the subsetof successie frames. Whena
singletransmittedframegetslost at leastone out of threesubsets
is availablefor thereconstructiorof the LSF vector

In ourexperimentavethereforeconsideredhreedifferentsce-
narios:

e Only oneLSF coeficient is lost. The remaining9 coefi-
cientsarepresent.This s of little practicalimportancefor
the abore transmissiorscheme It gives,however, anindi-
cationof how muchcanbeachiezed andmightbeusefulin
otherspeechenhancemerdpplications.

e Oneof thethreesubsetss lost.
e Two of thethreesubsetsrelost.

TheexperimentakesultswereobtainedusingGMM’ s with 2,
4,8,16,32,and64 mixturecomponentsTheGMM’ sweretrained
by meansof the EM algorithmandonemillion residualLSF vec-
tors. A databaseof (modified)IRSfilteredmaleandfemalespeech
andthe AMR coder(10.2 kbit/s mode)was usedto generatehe
residualLSF vectors.The estimationalgorithmwasevaluatedus-
ing 20,000residual SFvectorswhichwerenotpartof thetraining
database.

4.1. Lossof a single LSF coefficient

Theimprovementin paramete6SNRwith respecto a priori mean
imputationare shavn in Table1. The gain dependsmainly on

the positionwithin the LSF vectorandthe correlationof adjacent
LSF's. For M = 64 anaveragegainof about4.1dB is obtained.
Furtherdoublingthe GMM orderdid resultin smallimprovements
but alsoin a significantlyincreasedomputationatompleity.

4.2. Lossof LSF subsets

Whena singlesubsebf LSF coeficientsis lost the resultsdepend
on the positionwithin the subset.Table2 summarizesheresults.
For M = 64 theaveragemprovementis nowv 2.0dB.

Table3 presentsheresultsfor thecaseof two missingsubsets.
Againtheimprovements bestfor thosel SF coeficientswhichare
adjacento the presentcoeficients. The averageimprovementof
a single LSF coeficient with respecto a priori meanimputation
is now only 1.26dB, however, six (subsetd, 2) or seven (subsets
2,3o0r1,3)coeficientsareestimatedA comparisorwith Table2
revealsthatthesubsetadjacento a missingsetcontritute mostto
theimprovement.A first orderMarkov approacths thereforeclose
to optimal.



sisrr | 2 | 4 [ 8 [ 16 ] 32 | 64|

1 0.77| 1.91| 298| 3.69| 3.93 | 4.34
154 272 | 423| 5.22| 540 | 5.84
2.58 | 3.53| 4.45| 493 | 5.04 | 5.45
2.10| 2.26| 2.83| 3.50 | 3.65| 4.10
1.48| 1.93| 290 | 3.70 | 4.19 | 4.47
1.24| 229 | 3.07| 3.52| 3.88 | 4.17
1.02| 1.85| 2.10| 2.33| 2.63 | 3.05
111] 1.69| 1.99| 2.21 | 252 | 3.09
113 1.31| 1.75| 2.65| 3.19 | 3.47
059 | 0.71| 1.09| 1.88| 2.45| 2.80

[ @ [135]202]274] 3.36] 3.69] 4.08]

Table 1. Improvementwith respecto a priori meanimputationof
parameteSNRin dB for estimatinga singleLSF coeficientusing
aGMM of order M. Theaveragefor order M is denotedhy &.
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|lostset] 2| 2 | 4 [ 8 [ 16 [ 32 | 64 |
0.21]0.49] 0.82] 0.89] 0.94] 1.00
0.67 | 1.01[ 1.28] 1.42| 1.44| 150
175|219 2.72]3.09] 3.22 3.40
179191 2.19] 2.63| 2.70 | 2.97
0.95| 1.24] 144169 | 1.80 | 1.90
0.92] 1.78] 212 2.30| 2.39| 2.54
0.74] 147172 1.92] 2.07 | 2.17
0.75| 1.14] 132 140 | 1.47 | 153
0.77]0.94 ] 1.06 | 1.21] 1.37 | 1.39
0.33]0.41]0.49]0.79| 0.99 | 1.05

| [ [091]1.29] 156] 1.78] 1.88] 2.0 |

Table 2. Improvementwith respecto a priori meanimputationof
parameteSNRiIn dB for theestimatiorof asinglelostLSF subset
usingaGMM of orderM.
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|lostsets]| 2= [ 2 [ 4 [ 8 [ 16 | 32 | 64 |

-0.00| 0.11| 0.21| 0.25| 0.26 | 0.30
0.31 | 044 | 0.49| 0.55| 0.58 | 0.62
0.77 1 087|096| 1.05| 1.10| 1.11
0.59 | 0.65| 0.76 | 0.88 | 0.91 | 0.95
091|105 1.17| 1.27 | 1.28 | 1.34
132 | 175|187 | 1.96| 203 | 2.12
172 | 212 | 230 | 2.58 | 2.66 | 2.80
050 | 09| 0.94| 1.08 | 1.13| 1.16
0.15| 082 1.01| 1.08 | 1.12| 1.17
0.19 | 0.69| 0.78 | 0.82 | 0.84 | 0.89
0.25 | 0.56| 0.69| 0.75| 0.76 | 0.79
0.36 | 0.57| 0.68| 0.69 | 0.76 | 0.78
0.14 | 0.22| 0.29| 0.39 | 0.50 | 0.53
0.32 | 0.67| 0.83| 0.84| 0.91 | 0.92
070 | 1.05| 1.21| 1.28| 1.32| 1.34
190 | 237 | 2.77| 3.00| 3.06 | 3.18
110 | 1.71| 1.79| 1.92| 2.02 | 2.10
1.01|123|130| 1.35| 1.38| 141
0.88 | 0.93| 0.93| 1.04| 1.10| 1.12
031|031 046| 059 0.71 | 0.76

| | | 067 [095] 1.06] 1.16 | 1.21] 1.26 |

Table 3. Improvementwith respecto a priori meanimputationof
parameteiSNR in dB for the estimationof two lost LSF subsets
usingaGMM of orderM .
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5. CONCLUSIONS

The proposed_SF reconstructiorschemewvasimplementedn an
Voiceover IP transmissiorschemeThetransmissiorschemaises
frameinterlearing for the codedLSF parametersand a multiple
descriptionscheméor the transmissiorof the LP residual.Infor-
mal listening testsconfirmedthat the estimationschemeas out-
lined abore enhancegshe quality of the receved speechsignals
whenframelossesccur Theschemas especiallyusefulwhenno
morethanoneLSF subsefgetslost. Dueto the correlationprop-
ertiesof residualLSF vectors,increasinghe GMM orderbeyond
20-30is only helpful whencoeficientsnext to thelost coeficient
arepresent.Comparedo histogrambasedapproacheshe GMM
basedapproacttonsumesignificantlylessmemory
Theimprovementsfor missingLSF subsetsanbe increased
tothevalueggivenin Tablel whentheLSFcoeficientsaregrouped
differentlyinto the subsetsIf we, for instancegroupLSF# 1, 3,
5 into subsebneandLSF# 2, 4, 6 into subsetwo we obtainim-
provementswvhich equalor exceedthe onesgivenin Tablel.
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