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ABSTRACT

This paperdescribesa techniquefor synthesizingspeechwith an
arbitraryspeakercharacteristicsusingspeaker independentspeech
units,whichwecall “averagevoice” units.Thetechniqueis based
on anHMM-basedtext-to-speech(TTS) systemandMLLR adap-
tation algorithm. In the HMM-basedTTS system,speechsyn-
thesisunits are modeledby multi-spaceprobability distribution
(MSD) HMMs which can model spectrumand pitch simultane-
ouslyin aunifiedframework. Wederiveanextensionof theMLLR
algorithmto apply it to MSD-HMMs. We demonstratethata few
sentencesutteredbyatargetspeakeraresufficienttoadaptnotonly
voicecharacteristicsbut alsoprosodicfeatures.Syntheticspeech
generatedfrom adaptedmodelsusingonly four sentencesis very
closeto thatfrom speakerdependentmodelstrainedusing450sen-
tences.

1. INTRODUCTION

Text-to-Speech(TTS) synthesiswhich generatespeechwith arbi-
trary voice characteristicsand speakingstylesis one of the key
technologiesfor realizing humancomputerinteractionsystems.
Therehavebeenproposedanumberof TTStechniques,andstate-
of-the-artTTS systemsbasedon unit selectionandconcatenation
cangeneratenaturalsoundingspeech[1] [2]. However, it is not
easyto make thesesystemshave the ability of synthesizingwith
variousvoicecharacteristicsandspeakingstyles,becauseit is im-
practical to preparea large numberof speechunits of arbitrary
speakers.

WehaveproposedanHMM-basedTTSsystemin which each
speechsynthesisunit is modeledby HMM [3]. A distinctive fea-
ture of the systemis that speechparametersusedin the synthe-
sisstagearegenerateddirectly from HMMs by usinga parameter
generationalgorithm[4] [5]. Theparametergenerationalgorithm
takesaccountof dynamicfeaturesof speechparametersandthis
resultsin providing realisticspeechparametersequences.Since
the HMM-basedTTS systemusesHMMs asthe speechunits in
both modelingand synthesis,we can easily changevoice char-
acteristicsof syntheticspeechby transformingHMM parameters
appropriately. In fact,we have shown thatvoicecharacteristicsof
syntheticspeechareconvertedfrom onespeakerto anotherusinga
smallamountof targetspeaker’s speechdataby applyingspeaker
adaptationtechniques,suchasMAP/VFS (Maximum a Posteri-
ori / VectorFieldSmoothing)algorithm[6], or MLLR (Maximum
LikelihoodLinearRegression)algorithm[7].

In thispaper, weproposeatechniquewhichenablestheHMM-
basedTTS systemto changenot only voice characteristicsbut
also prosodicfeatures. In the HMM-basedTTS system,spec-
trum, pitch, and statedurationare modeledsimultaneouslyin a

unified framework of HMM [8]. Specifically, spectrumandpitch
aremodeledbymulti-spaceprobabilitydistribution(MSD)HMMs
[9] whichincludesconventionalcontinuousanddiscreteHMMs as
specialcases.Wederiveanextensionof theMLLR algorithm[10]
which canbe appliedto MSD-HMMs. To generatespeechof an
arbitrarilygiventargetspeaker, wefirst makespeaker-independent
speechunits modeledby MSD-HMMs, which we call “average
voice” models,thenwe adapttheaveragevoicemodelsto thetar-
getspeaker usingtheextendedMLLR algorithm.

2. HMM-BASED SPEECH SYNTHESIS SYSTEM

2.1. System overview

A blockdiagramof theHMM-basedTTSsystemis shown in Fig.1.
Thesystemconsistsof threestages,thetrainingstage,theadapta-
tion stage,andthesynthesisstage.

In the training stage,mel-cepstralcoefficients[11] andloga-
rithm of fundamentalfrequency areextractedasthestaticfeatures
from multi-speaker speechdatabase.Then,thedynamicfeatures,
i.e.,deltaanddelta-deltaparameters,arecalculatedfrom thestatic
features.Spectralparametersandpitchobservationsarecombined
into oneobservationvectorframeby frame(Fig.2),andspeaker in-
dependentphonemeHMMs, whichwerefertoastheaveragevoice
HMMs, aretrainedusingtheobservationvectors.To modelvaria-
tionsof spectrumandpitch,phoneticandlinguisticcontextual fac-
tors,suchasphonemeidentityfactorsandstressrelatedfactors,are
taken into account[8]. Sincepitch observationsarecomposedof
one-dimensionalcontinuousvaluescorrespondingto pitch values
anddiscretesymbolsrepresentingunvoiced,conventionaldiscrete
or continuousHMMs cannotbe appliedfor pitch patternmodel-
ing without any heuristicassumptions.To overcomethis prob-
lem, we adoptmulti-spaceprobability distributions (MSDs) [9],
andmodelspectralandpitchparameterssimultaneouslyby multi-
streamMSD-HMMs [8]. Then,adecisiontreebasedcontext clus-
teringtechnique[12] [13] is separatelyappliedto thespectraland
pitch partsof the context dependentphonemeHMMs. Finally,
statedurationsaremodeledby multi-dimensionalGaussiandistri-
butions, and the stateclusteringtechniqueis also appliedto the
durationmodels[14].

In theadaptationstage,theaveragevoiceHMMs areadapted
to atargetspeakerusingspeechfrom thetargetspeaker. In thispa-
per, weadopttheMaximumLikelihoodLinearRegression(MLLR)
algorithm[10] andextendit to MSD-HMM asshown in Section3.
The extendedMLLR techniqueis appliedto the meanvectorsof
thedistributionsin eachstreamof theaveragevoiceHMMs. As a
result,distributionsfor spectralandpitch parametersareadapted
simultaneously.
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Fig. 1. A blockdiagramof HMM-basedspeechsynthesissystem.

In thesynthesisstage,first, anarbitrarily giventext to besyn-
thesizedis transformedinto a context dependentphonemelabel
sequence.According to the label sequence,a sentenceHMM,
which representsthe whole text to be synthesized,is constructed
by concatenatingadaptedphonemeHMMs. From the sentence
HMM, spectralandpitchparametersequencesaregeneratedusing
the algorithmfor speechparametergenerationfrom HMMs with
dynamicfeatures[4], in which phonemedurationsaredetermined
basedonstatedurationdistributions[14]. Finally, by usingMLSA
filter [11], speechis synthesizedfrom the generatedmel-cepstral
andpitchparametersequences.

2.2. Pitch modeling using MSD-HMM

We assumethatpitch patternis a sequenceof outputsfrom a one-
dimensionalspace�
� andazero-dimensionalspace��� whichcor-
respondto voiced and unvoiced regions of speech,respectively.
Eachspace��� hasits probability ��� , i.e., probability for voiced
observation ��� andfor unvoicedobservation ��� , where� ���� � � ���� . The space� � hasa one-dimensionalprobability density
function �����! #" where $&%(')�*�+�! ,".-/ �0� , and ��� hasonly one
samplepoint. A pitch observation 1 consistsof a continuousran-
domvariable  anda setof spaceindices2 , thatis,

1 � �.2�3+ #" (1)

where 2 � � � � for voiced region and 2 � �546� for unvoiced
region. Theobservationprobabilityof 1 is definedby
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where DF�!1/" �  #3HG,�I1(" � 2KJ
It is notedthat,although�L���! #" doesnot exist for ��� , we define
as� � �! #"NM � for simplicity of notation.
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Fig. 2. Observationvector. In thefigure, �<�!3+���� , and  ��� represent
the spectralparametervector, a setof spaceindicesof pitch, and
pitchparameterat time � , respectively, and � and � � representthe
deltaanddelta-deltaparameters,respectively.

UsinganHMM whoseoutputprobabilityin eachstateis given
by eq.(2),calledMSD-HMM, we canmodelvoicedandunvoiced
observationsof pitch in a unifiedmodelwithout any heuristicas-
sumption[9] . Moreover, we can model spectrumandpitch si-
multaneouslyby multi-streamMSD-HMM, in whichspectralpart
is modeledby continuousprobabilitydistribution (CD), andpitch
partis modeledby MSD (seeFig. 2).

3. MULTI-SPACE PROBABILITY DISTRIBUTION
MLLR

To generatespeechwith anarbitrarilygiventargetspeaker’svoice,
weadaptthespeaker independentmodels,i.e.,averagevoicemod-
els, to the target speaker. We use here a transformation-based
model adaptationapproach. Maximum likelihood estimationof
the transformationmatricesfor MSD-HMM is derived in a man-
nersimilar to MLLR [10].

Meanadaptationof MLLR is basedon affine transformation.
Let ��� � 3�� � � bethemeanvectorandthecovariancematrixof out-
put probability � � � �! ," for the � th spaceof state� , respectively.
For given adaptationsamples� � �C1 � 3�1 � 3jJ�J�J�3�1/�,� , the new
meanvector ���� � is estimatedby

���� � ��� � �&� � � (4)

where� � � ���f� 3�� �� ��� � .
To derive a maximumlikelihoodestimationof transformation

matrix � � � , we defineanauxiliary function ���E�<�q3��>" of thecur-
rentparameters�<� andthenewly estimatedparameter� as

���E� � 3���" � 8�+�@�  6¡ ¢�£ ���B3E¤t3�¥!¦f� � "C§f¨S© £ ���ª3�¤t3�¥I¦V��" (5)

where¤ and ¥ arepossiblestateandspacesequences,respectively.
It is shown that the auxiliary function of MSD-HMM increases
monotonicallyin the likelihoodunless� is a critical point of the
likelihood.

We next definethe probability « � � �.��" of beingin state� and
space��� at time � , given themodel � andtheobservation � , as
follows:

« � �5�.��" � £ �.¬ � � �+3q­ � � �t¦f�ª3j��"� �
£ ���B¦V��"
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� �t¦V�>"EJ (6)
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Then,theauxiliary functionof (5) becomes
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wherȩ is aconstantwhich is independentof � � � , andÂ � is the
dimensionalityof space� � . Differentiatingeq.(9)with respectto� � � , we have

-
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By setting -t�Å�E�Æ�q3���"EÇ�- � � � �ÉÈ , we obtaina maximumlikeli-
hoodestimationof � � � as
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Whenthe amountof adaptationdatais limited, the transfor-
mationmatrices� � � shouldbetied acrossseveralGaussiandis-
tributions. We constructa regressionclasstreeto groupthe dis-
tributions.By doingthis,wecanestimatetransformationmatrices
which is notobservedin theadaptationdataandestimatetransfor-
mationmatricesaccordingto theamountof adaptationdata.

Regressionclasstreeis constructedby recursively applyinga
binarysplittingalgorithmbasedonLBG for all Gaussiandistribu-
tions. In the binary tree,eachleaf hasa distribution, andall the
distributionsbelow thelowestnodein which theamountof adap-
tationdatais largerthantheprescribedthresholdareadaptedusing
thesametransformationmatirx.

Herewe apply the above adaptationalgorithm to the MSD-
HMMs which representpitch information. In this case,themean
vectorsof distribution � � �! ," of thespacecorrespondingto voiced
soundsareadapted.The adaptationof spectralparametersis ac-
complishedby applyingordinaryMLLR adaptationtechnique.
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Fig. 3. Comparisonof pitchcontoursgeneratedfrom speakerinde-
pendentmodels(SI), speakerdependentmodels(SD),andspeaker
adaptedmodels(SA).

Time [s]

F
r
e
q
u
e
n
c
y
 
[
H
z
]

0 1 2 3

100

150
4
20
50

Fig. 4. Comparisonof pitch contoursgeneratedfrom speaker
adaptedmodelswith 4, 20,and50sentences.

4. EXPERIMENTS

4.1. Experimental conditions

Weusedphoneticallybalancedsentencesfrom ATRJapanesespee-
ch databasefor trainingandadaptation.Basedon phonemelabels
andlinguistic informationincludedin thedatabase,wemadecon-
text dependentphonemelabels. We used42 phonemesincluding
silenceandpause.Thedetailsof contextual factorsareshown in
[8].

Speechsignalsweresampledatarateof 16kHzandwindowed
by a 25msBlackmanwindow with a 5msshift. Thenmel-cepstral
coefficientswereobtainedby mel-cepstralanalysis.Pitch values
wereobtainedusingESPSget f0 program[15]. Deltaanddelta-
deltapitchparameterswerecalculatedonly within voicedregions,
and the frameswheredeltaor delta-deltapitch parameterswere
not computablebecauseof theboundariesof voicedandunvoiced
regionsweretreatedasunvoiced.Thefeaturevectorsconsistedof
25 mel-cepstralcoefficients including the zerothcoefficient, log-
arithm of fundamentalfrequency, and their deltaanddelta-delta
coefficients. We used5-stateleft-to-right modelsin which the
spectralpartof eachstateis modeledby singlediagonalGaussian
outputdistributions.

The averagevoice HMMs (SI models)were trainedusing5
malespeakers’ speechdata,400sentencesfor eachspeaker. The
statesof the modelswere clusteredusing a decisiontree based
context clusteringtechniquewith MDL-criterion [13] . The total
numberof statesin SI modelsis 3,765for spectralpartand12761
for pitchpart.WechoseamalespeakerMHT from thedatabaseas
thetargetspeaker, whowasnotincludedin thetrainingspeakersof
averagevoiceHMMs. WealsotrainedHMMs using450sentences
utteredby MHT (SDmodels)to comparewith theadaptedmodels.
Thetotalnumberof statesin SDmodelsis906for spectralpartand
1894for pitch part.Thresholdsfor traversingregressionclasstree
weresetto 1500for spectralstreamand100for pitchstream.
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4.2. Pitch contour generation

Figure3 shows anexampleof thegeneratedpitchcontoursfrom a
Japanesesentence/fu-ko-o-he-e-no-so-N-za-i-wa-hi-ni-N-shi-na-
ka-tta/ (“he didn’t deny the existenceof unfairness,” in English)
which is not includedin the training sentences.In Fig. 3, dot-
ted line, dash-dottedline, andsolid line representthe pitch con-
toursgeneratedfrom averagevoice HMMs (SI), speaker depen-
dentHMMs (SD),andspeakeradaptedHMMs (SA), respectively.
In this example, the numberof adaptationutterancesis 50 sen-
tences. From this figure, it can be seenthat the pitch contour
generatedfrom SA HMMs becomescloserto thatgeneratedfrom
SD HMMs. It is notedthatphonemedurationsgeneratedfrom SI
HMMs andSA HMMs arethesamebecausedurationmodelswere
notadapted.

Figure4showstheresultusingSAHMMs with asmallamount
of adaptationdata. In the figure, dotted line, dash-dottedline,
andsolid line representpitch contoursgeneratedfrom SA HMMs
adaptedusing4, 20,and50 sentences,respectively. Fromthis fig-
ure, we canseethat only a few utterancesaresufficient to adapt
pitchHMMs.

4.3. Subjective evaluations

To evaluatethe performanceof the proposedtechnique,we con-
ductedABX listeningtests.In theABX test,A andB wereeither
syntheticspeechgeneratedfrom SI andSD models(the orderof
assignmentwasrandomized),andX wassyntheticspeechgener-
atedfrom SA modelsadaptedusing4 or 50 sentences.Subjects
weresix malesandasked to selectA or B asbeingsimilar to X.
Figure5 shows theresultsof thelisteningtests.In thesetests,four
sentences,which werenot includedin the adaptationdata,were
synthesizedandtested.In thefigure,“Both” indicatesthecasefor
simultaneousadaptationof pitch andspectrum,while “Pitch” and
“Spectrum”indicatethecasesfor pitch adaptationonly andspec-
tral adaptationonly, respectively. The resultsshow that adapta-
tion of bothspectrumandpitchis effectivefor synthesizingspeech
with the target speaker characteristics.It is alsoshown that syn-
theticspeechgeneratedfrom SA modelswith only four sentences
is verycloseto thatfrom thetargetspeaker’s models.

5. CONCLUSION

In this paper, we describeda techniquefor adaptingvoicecharac-
teristicsandprosodicfeaturesof HMM-basedTTS systemto an

arbitrarily given target speaker. To convert the pitch model pa-
rameters,weextendedtheMLLR algorithmfor MSD-HMMs. We
have shown thatsyntheticspeechgeneratedfrom adaptedmodels
usingaveragevoicemodelswith a few amountof adaptationdata
becomescloserto the target speaker’s voice. Our future work is
deriving an adaptationtechniquefor the durationmodelsin the
sameframework.
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