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ABSTRACT

This paperdescribesa techniquefor synthesizingspeechwith an
arbitraryspealer characteristicsisingspealer independenspeech
units,whichwe call “averagevoice” units. Thetechniques based
onanHMM-basedtext-to-speecHTTS) systemandMLLR adap-
tation algorithm. In the HMM-basedTTS system,speechsyn-
thesisunits are modeledby multi-spaceprobability distribution
(MSD) HMMs which can model spectrumand pitch simultane-
ouslyin aunifiedframevork. We derive anextensionof theMLLR
algorithmto applyit to MSD-HMMs. We demonstratéhata few
sentencestteredby atargetspealeraresuficientto adaptiotonly
voice characteristicdut alsoprosodicfeatures.Syntheticspeech
generatedrom adaptednodelsusingonly four sentencess very
closeto thatfrom spealerdependentnodelgtrainedusing450sen-
tences.

1. INTRODUCTION

Text-to-SpeecTTS) synthesisvhich generatespeectwith arbi-
trary voice characteristicand speakingstylesis one of the key
technologiesfor realizing humancomputerinteractionsystems.
Therehave beenproposeda numberof TTS techniquesandstate-
of-the-artTTS systemshasedon unit selectionandconcatenation
cangeneratenaturalsoundingspeech1] [2]. However, it is not
easyto make thesesystemshave the ability of synthesizingwith
variousvoice characteristicandspeakingstyles,becausét is im-
practicalto preparea large numberof speechunits of arbitrary
spealkrs.

We have proposedan HMM-basedT TS systemin which each
speectsynthesiqunit is modeledby HMM [3]. A distinctive fea-
ture of the systemis that speechparameteraisedin the synthe-
sisstagearegeneratedlirectly from HMMs by usinga parameter
generatioralgorithm[4] [5]. The parametegeneratioralgorithm
takes accountof dynamicfeaturesof speechparameterandthis
resultsin providing realistic speechparameteisequencesSince
the HMM-basedTTS systemusesHMMs asthe speechunitsin
both modeling and synthesis,we can easily changevoice char
acteristicsof syntheticspeechoy transformingHMM parameters
appropriately In fact,we have shovn thatvoice characteristicof
syntheticspeectarecornvertedfrom onespealerto anotherusinga
smallamountof targetspealer’s speectdataby applyingspealer
adaptationtechniquessuchas MAP/VFS (Maximum a Posteri-
ori / VectorField Smoothing)lgorithm[6], or MLLR (Maximum
LikelihoodLinear Regressionlgorithm|[7].

In this paperwe proposeatechniquevhichenablesheHMM-
basedTTS systemto changenot only voice characteristicdbut
also prosodicfeatures. In the HMM-based TTS system,spec-
trum, pitch, and statedurationare modeledsimultaneouslyin a
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unified framewvork of HMM [8]. Specifically spectrumandpitch
aremodeledby multi-spacegorobabilitydistribution (MSD) HMMs
[9] whichincludescorventionalcontinuousanddiscreteHMMSs as
specialcasesWe derive anextensionof theMLLR algorithm[10]
which canbe appliedto MSD-HMMs. To generatespeectof an
arbitrarily giventargetspealer, we first make speakr-independent
speechunits modeledby MSD-HMMs, which we call “average
voice” models thenwe adaptthe averagevoice modelsto the tar
getspealer usingthe extendedVILLR algorithm.

2. HMM-BASED SPEECH SYNTHESISSYSTEM

2.1. System overview

A blockdiagranof theHMM-basedT TS systenis shavnin Fig.1.
The systemconsistof threestagesthetraining stage the adapta-
tion stage andthe synthesistage.

In the training stage,mel-cepstrakoeficients[11] andloga-
rithm of fundamentafrequeng areextractedasthestaticfeatures
from multi-spealer speechdatabaseThen,the dynamicfeatures,
i.e.,deltaanddelta-deltgparametersarecalculatedrom the static
features Spectraparameterandpitch obsenationsarecombined
into oneobsenationvectorframeby frame(Fig.2),andspealerin-
dependenphonemeédMMs, whichwereferto astheaveragevoice
HMMs, aretrainedusingthe obsenationvectors.To modelvaria-
tionsof spectrumandpitch, phoneticandlinguistic contextual fac-
tors,suchasphonemadentityfactorsandstresgelatedfactors are
takeninto accounf8]. Sincepitch obsenationsarecomposedf
one-dimensionatontinuousvaluescorrespondingo pitch values
anddiscretesymbolsrepresentinginvoiced,corventionaldiscrete
or continuousHMMs cannotbe appliedfor pitch patternmodel-
ing without ary heuristicassumptions.To overcomethis prob-
lem, we adoptmulti-spaceprobability distributions (MSDs) [9],
andmodelspectralindpitch parametersimultaneouslyy multi-
streamMSD-HMMs [8]. Then,adecisiontreebasedcontext clus-
teringtechniqug12] [13] is separatehappliedto the spectraland
pitch partsof the context dependenphonemeHMMs. Finally,
statedurationsaremodeledby multi-dimensionalGaussiardistri-
butions, and the stateclusteringtechniqueis also appliedto the
durationmodels[14].

In the adaptatiorstage the averagevoice HMMs areadapted
to atamgetspealer usingspeechrom thetargetspealer. In this pa-
per, weadopttheMaximumLikelihoodLinearRegressioMLLR)
algorithm[10] andextendit to MSD-HMM asshavn in Section3.
The extendedMLLR techniqueis appliedto the meanvectorsof
thedistributionsin eachstreamof the averagevoice HMMs. As a
result, distributionsfor spectraland pitch parametersire adapted
simultaneously
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Fig. 1. A blockdiagranof HMM-basedspeectsynthesisystem.

In the synthesistagefirst, anarbitrarily giventext to be syn-
thesizedis transformednto a context dependenphonemelabel
sequence. According to the label sequencea sentenceHMM,
which representshe whole text to be synthesizedis constructed
by concatenatingadaptedphonemeHMMs. From the sentence
HMM, spectrabndpitch parametesequencearegeneratedising
the algorithmfor speechparametegeneratiorfrom HMMs with
dynamicfeatureg4], in which phonemedurationsaredetermined
basedn statedurationdistributions[14]. Finally, by usingMLSA
filter [11], speechs synthesizedrom the generatednel-cepstral
andpitch parametesequences.

2.2. Pitch modeling using MSD-HMM

We assumehatpitch patternis a sequencef outputsfrom a one-
dimensionakpace?; andazero-dimensionaipace?, which cor-

respondto voiced and urvoiced regions of speech respectiely.

Eachspace, hasits probability wy, i.e., probability for voiced
obsenationw,; andfor urvoicedobsenationws, wherezgz1 Wy

= 1. The spacef2; hasa one-dimensionaprobability density
function V1 () WherefQl Ni(z)dz = 1, andQ; hasonly one
samplepoint. A pitch obsenation o consistsof a continuousan-
domvariablex anda setof spacdndicesX, thatis,

o= (X,x) (1)

where X = {1} for voicedregion and X = {2} for urvoiced
region. The obsenationprobability of o is definedby

bo) = Y weNy(V(0)) 2)
geS(o)
where
V(o) =2, S(o)=X.

It is notedthat, although>(x) doesnot exist for €22, we define
asNz(z) = 1 for simplicity of notation.
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Fig. 2. Obsenationvector In thefigure,c, X7, andz? represent
the spectralparametewrector a setof spaceindicesof pitch, and
pitch parameteattimet, respeciiely, andA andA? representhe
deltaanddelta-deltgparametergiespectrely.

UsinganHMM whoseoutputprobabilityin eachstateis given
by eq.(2),calledMSD-HMM, we canmodelvoicedandurvoiced
obsenationsof pitch in a unified modelwithout ary heuristicas-
sumption[9] . Moreover, we can model spectrumand pitch si-
multaneoushby multi-streamMSD-HMM, in which spectralpart
is modeledby continuousprobability distribution (CD), andpitch
partis modeledoy MSD (seeFig. 2).

3. MULTI-SPACE PROBABILITY DISTRIBUTION
MLLR

To generatsspeectwith anarbitrarily giventargetspealer's voice,
we adapthespealerindependenmodels,.e., averagevoicemod-
els, to the tamget speaker. We use here a transformation-based
model adaptationapproach. Maximum likelihood estimationof
the transformatiommatricesfor MSD-HMM is derived in a man-
nersimilarto MLLR [10].

Meanadaptatiorof MLLR is basedon affine transformation.
Letp,,, Uig bethemeanvectorandthe covariancematrix of out-

put probability ;4 (x) for the gth spaceof state:, respectiely.

For given adaptationsamplesO = {o1,02,...,0r}, the new
meanvector i, , is estimatedy
ﬂig = WigEz'g (4)

where¢,, = [1, uj,]".

To derive amaximumlik elihoodestimationof transformation
matrix W ,4, we definean auxiliary function Q(\’, \) of thecur
rentparameters\’ andthe newly estimatecparameten as

QN,X) =Y P(0,q,l]N)log P(O,q,1]))  (5)

allq,l

whereq andl arepossiblestateandspacesequencesgespectiely.
It is shavn that the auxiliary function of MSD-HMM increases
monotonicallyin the likelihoodunless) is a critical point of the
likelihood.

We next definethe probability v;4(t) of beingin state: and
spacef, attime ¢, giventhe model A andthe obseration O, as
follows:

Yig(t) = P(qe =i, le = g|O, )
1 - (6)
= P 5 =1, = .

allg,l



We alsodefinea setof time slots7'(0, g) as
7(0.9) = {tlg € S(o1)} @)
andusethefollowing notation
h(Ot, is g) =
(V(0r) = Wigki) Ui, (V(0r) ~ Wigiy).  (8)
Then,theauxiliary functionof (5) becomes
QN X)
N G
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whereK is aconstanwhichis independenof W4, andn, is the
dimensionalityof space),. Differentiatingeq.(9)with respecto
W4, we have

d
AW 1,

QN )

Y vig(Dh(ow,i,g)

i=1 g=1teT(0,q)

=P(OIN) > 7 (OUL (V(0:) -

teT (o,9)

Wigt, )€, (10)

By settingdQ(\', \)/dW ,;, = 0, we obtaina maximumlikeli-
hoodestimationof W ;4 as

D ri(OU5, V(0n)Ey,

teT(0,9)

= D U Wigki€ly. (11)

teT(0,g)

Whenthe amountof adaptatiordatais limited, the transfor
mationmatricesW ;, shouldbe tied acrossseveral Gaussiardis-
tributions. We constructa regressionclasstreeto groupthe dis-
tributions. By doingthis, we canestimateransformatiormatrices
whichis notobsenedin theadaptatiordataandestimateransfor
mationmatricesaccordingto theamountof adaptatiordata.

Regressiorclasstreeis constructedy recursvely applyinga
binarysplitting algorithmbasedon LBG for all Gaussiardistribu-
tions. In the binary tree, eachleaf hasa distribution, andall the
distributionsbelow the lowestnodein which the amountof adap-
tationdatais largerthantheprescribedhresholdareadaptedising
the sametransformatiormatirx.

Here we apply the above adaptationalgorithmto the MSD-
HMMs which represenpitch information. In this case the mean
vectorsof distribution \V; (x) of thespacecorrespondingo voiced
soundsare adapted. The adaptatiorof spectralparameterss ac-
complishedoy applyingordinaryMLLR adaptatiortechnique.
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Fig. 3. Comparisorof pitch contourggeneratedrom spealkerinde-
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Fig. 4. Comparisonof pitch contoursgeneratedrom spealer

adaptednodelswith 4, 20,and50 sentences.

4. EXPERIMENTS

4.1. Experimental conditions

WeusedphoneticallybalancedentenceBom ATR Japanesspee-
ch databaséor trainingandadaptation Basedon phonemdabels
andlinguisticinformationincludedin the databasewe madecon-
text dependenphonemedabels. We used42 phonemesncluding
silenceandpause.The detailsof contetual factorsareshavn in

8].

Speectsignalsweresamplechtarateof 16kHzandwindowed
by a 25msBlackmanwindow with a5msshift. Thenmel-cepstral
coeficientswere obtainedby mel-cepstrabnalysis. Pitch values
wereobtainedusingESPSget _f 0 program[15]. Deltaanddelta-
deltapitch parametersverecalculatedonly within voicedregions,
andthe frameswheredelta or delta-deltapitch parametersvere
not computablebecausef the boundarieof voicedandunvoiced
regionsweretreatedasunvoiced. Thefeaturevectorsconsistef
25 mel-cepstrakoeficientsincluding the zerothcoeficient, log-
arithm of fundamentafrequengy, andtheir deltaand delta-delta
coeficients. We used5-stateleft-to-right modelsin which the
spectrapartof eachstateis modeledby singlediagonalGaussian
outputdistributions.

The averagevoice HMMs (S| models)weretrainedusing5
malespealers’ speechdata,400 sentence$or eachspealer. The
statesof the modelswere clusteredusing a decisiontree based
context clusteringtechniquewith MDL-criterion [13] . Thetotal
numberof statesn SI modelsis 3,765for spectrapartand12761
for pitch part. We choseamalespealer MHT from thedatabasas
thetargetspealker, whowasnotincludedin thetrainingspealersof
averagevoiceHMMs. We alsotrainedHMMs using450sentences
utteredby MHT (SD models)o comparewith theadaptednodels.
Thetotalnumberof statesn SD modelsis 906for spectrapartand
1894for pitch part. Thresholddor traversingregressiorclasstree
weresetto 1500for spectraktreamand100for pitch stream.
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4.2. Pitch contour generation

Figure3 shavs anexampleof the generategbitch contoursfrom a
Japanessentencdfu-ko-o-he-e-no-so-N-za-i-a+hi-ni-N-shi-na-
ka-tta/ (“he didn't dery the existenceof unfairness, in English)
which is not includedin the training sentences.In Fig. 3, dot-
ted line, dash-dottedine, andsolid line representhe pitch con-
tours generatedrom averagevoice HMMs (SI), spealer depen-
dentHMMs (SD), andspeakradaptecdHMMs (SA), respectiely.
In this example, the numberof adaptationutterancess 50 sen-
tences. From this figure, it can be seenthat the pitch contour
generatedrom SA HMMs becomegloserto thatgeneratedrom
SD HMMs. It is notedthatphonemedurationsgeneratedrom Sl
HMMs andSA HMMs arethesamebecauselurationmodelswvere
notadapted.

Figure4 shavstheresultusingSA HMMs with asmallamount
of adaptationdata. In the figure, dotted line, dash-dottedine,
andsolid line represenpitch contoursgeneratedrom SA HMMs
adaptedising4, 20, and50 sentencegespectiely. Fromthis fig-
ure, we canseethatonly a few utterancesre sufiicient to adapt
pitchHMMs.

4.3. Subjective evaluations

To evaluatethe performanceof the proposedechnique we con-
ductedABX listeningtests.In the ABX test,A andB wereeither
syntheticspeechgeneratedrom S| and SD models(the orderof
assignmentvasrandomized)and X wassyntheticspeechgener
atedfrom SA modelsadaptedusing4 or 50 sentencesSubjects
weresix malesandasledto selectA or B asbeingsimilar to X.
Figure5 shawvs theresultsof thelisteningtests.In thesetests four
sentenceswhich were not includedin the adaptationdata, were
synthesizedndtested.In thefigure,“Both” indicatesthe casefor
simultaneousidaptatiorof pitch andspectrumwhile “Pitch” and
“Spectrum”indicatethe casedor pitch adaptatioronly andspec-
tral adaptationonly, respectiely. The resultsshav that adapta-
tion of bothspectrunandpitchis effective for synthesizingpeech
with the target spealer characteristicslt is alsoshavn that syn-
theticspeechgeneratedrom SA modelswith only four sentences
is very closeto thatfrom thetamgetspealer's models.

5. CONCLUSION

In this paper we describeda techniquefor adaptingvoice charac-
teristicsand prosodicfeaturesof HMM-basedTTS systemto an

arbitrarily given target speakr. To corvert the pitch model pa-
rametersye extendedheMLLR algorithmfor MSD-HMMs. We
have shavn that syntheticspeechgeneratedrom adaptednodels
usingaveragevoice modelswith a few amountof adaptatiordata
becomegloserto the target spealer’s voice. Our future work is
derving an adaptationtechniquefor the durationmodelsin the
sameframenork.
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