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ABSTRACT

Design of practical coding techniques for the multiple an-
tenna wireless channel is a challenging problem. A number
of interesting solutions have been proposed recently rang-
ing from block codes to trellis codes for the MIMO (multi-
ple input, multiple output) channel. Here we consider linear
block codes for the quasi-static, flat-fading, coherent MIMO
channel. A linear code refers to an encoder that is linear
with respect to scalar input symbols. We assume maximum
likelihood decoding at the receiver.

We provide a cohesive framework for analysis of linear
codes in terms of a union bound on the conditional proba-
bility of symbol error. The error bound is a function of the
instantaneous channel realization and does not make any as-
sumptions on channel statistics. We show that the orthogo-
nal block codes in [1] achieve the lowest error bound among
all unitary codes and are in fact optimal.

1. INTRODUCTION

A number of interesting coding and modulation tech-
niques for the multiple-antenna fading channel have been
proposed recently. They range from spatial multiplexing [2]
to space-time block codes [1] to space-time trellis codes [3].
The first two schemes are linear and the third is nonlinear,
where linearity is with respect to the scalar input symbols
that are to be mapped to space-time matrix codewords.

In this paper we address the general problem of linear
block code design. We define a linear code as one that has
a linear encoder, i.e., the encoder uses a set of modulation
matrices to modulate the sequence of scalar input symbols
and sums up the products to create the matrix output code-
word. The output codeword is a matrix with dimensions
representing transmit antennas and time. The decoder has
perfect channel knowledge and performs ML (maximum
likelihood) decoding of the matrix symbols.

We analyze all linear codes within the framework of
probability of symbol error. We obtain an upper bound on
the error probability using the union bound on probabilities.

The upper bound is conditioned on the instantaneous chan-
nel realization. It does not depend on channel statistics and
is expected to be tight at high SNRs (signal to noise ratios).
Focusing on the class of unitary linear codes, i.e., where the
square or wide modulation matrices are unitary, we obtain
necessary and sufficient conditions for minimization of the
error bound [4]. In the absence of any channel knowledge
at the transmitter these conditions are met by the orthogo-
nal block codes in [1]. Our analysis does not presuppose
decoupled detection as done in [5], leading to it instead in a
natural fashion. Our error bound can be used to analyze any
linear code, and work is in progress to obtain minimization
conditions over the class of all linear codes.

2. DATA MODEL AND NOTATION

Consider a system with Mr receive antennas and Mt >

1 transmit antennas. The channel is flat-fading and quasi-
static. It is unknown at the transmitter but is known at the
receiver. At time nL, the channel output corresponding to
the nth input block spanning L symbol times is

YnL = HXnL +VnL (1)

where the received signal YnL is Mr�L, the fading chan-
nel H is Mr�Mt, the encoded codeword XnL is Mt�L,
and receiver noise VnL is Mr�L. The entries of VnL are
i.i.d.(independent, identically distributed) circular complex
Gaussian variables, i.e., vnLi;j

� @c(0; N0), and are inde-
pendent over n. The average power transmitted on M t an-
tennas is Es per symbol time. Define S= Es

N0

.
The Hermitian of a matrix is denoted by A�, the trace

by TrA, and the real part by ReA, respectively. The error
integral is defined as Q(x) =

R1
x

dtp
2�

exp(� t
2

2
).

3. ENCODER AND DECODER

Following the linear modulation structure in [5], we con-
sider codewords that consist of a set of modulation matrices



modulated by scalar input symbols. The input to the en-
coder is a stream of symbols from a constellation such as
PAM, QAM or PSK. Each complex symbol is expanded in-
to two real symbols corresponding to its real and imaginary
parts respectively. The encoder operates on the sequence
of real symbols producing a matrix codeword whose rows
correspond to antennas and columns correspond to symbol
times. We define linear codes as follows.

Definition 1 (Linear codes) A linear code is defined as a
set of codewords that are linear in the scalar input sym-
bols. Let x(r) = fx(r)1 ; : : : ; x

(r)

K
g be the rth input symbol

sequence. Then the corresponding codeword is

X
(r)=

KX
k=1

Akx
(r)

k
(2)

whereAk are Mt�L modulation matrices. Each real sym-
bol x(r)

k
belongs to a PAM, one-dimensional “QAM” or

one-dimensional “PSK” constellation of size M. The total
number of codewords is R=MK .

We assume no prior encoding of the input symbols. A power
constraint is imposed on each modulation matrix such that
kAkk2F � c for all k. To maintain average power at Es per
symbol time, c is as follows

c =
L

K
(PAM) ; c =

2L

K
(QAM;PSK) (3)

We assume a coherent receiver, i.e., the channel is perfectly
known. The received Mr�L signal Y is decoded using
maximum likelihood decoding.

Most of the currently proposed spatial modulation tech-
niques can be interpreted as linear codes. Spatial multi-
plexing [2], also called BLAST [6], is the simplest exam-
ple of linear codes. The modulation matrices are simply
unit vectors, for e.g., for a PAM input constellation, Ak =
1p
Mt

[0 � � � 1 � � � 0]T . For Mt transmit antennas,K=Mt and
L=1.

Orthogonal space-time block codes are another example
of linear codes. The modulation matrices are unitary matri-
ces that are pairwise orthogonal with respect to the Re Tr
matrix inner product. That is, for any weighting matrixW,
Re Tr(A�

k
WAl)=0 for all 1 � k 6= l � K. Such matrices

exist for limited values of K, Mt and L [1].
Delay diversity [7] can be considered as a linear code

if the tail effects are ignored (“truncated” delay diversity).
TheMt�Lmodulation matrices are proportional to [0IMt

0],
where the order Mt identity matrix is shifted right by k � 1

columns to obtain the kth modulation matrix.

4. PERFORMANCE ANALYSIS

We will analyze linear codes using the conditional prob-
ability of symbol error at the receiver, i.e., the error proba-

bility conditioned on a given channel realization. First we
compute an upper bound on the probability of symbol error
in Lemma 1, then we set up conditions for its minimiza-
tion in Lemmas 2 and 3. We state necessary and sufficient
conditions for minimization over unitary codes in Lemma
4. Finally in Theorem 1 we show that the optimal unitary
linear codes are the space-time block codes in [1], which is
the main result of the paper.

Lemma 1 The probability of symbol error can be bounded
in the following manner

Pe �
RX
i=1

pi

RX
j 6=i

Q

�q
�
(ij)
1 +�

(ij)
2

�
= PU (4)

where the argument of each Q-function is a function of t-
wo terms, one of which �(ij)

1 is determined by the norms of

individual modulation matrices and the other � (ij)
2 is de-

termined by their pairwise inner products.

Proof: Lemma 1 is proved by construction. The prob-
ability of matrix symbol error is the average of the pairwise
error probabilities over all matrix symbols as follows

Pe =

RX
i=1

piPeji (5)

where pi is the probability that codeword i is transmitted,
and Peji is the probability that the receiver does not decode
i correctly. The probability of detecting i incorrectly is e-
qual to the probability that one of the other codewords j is
detected where j 6= i. Using the union bound on probabili-
ties, Peji can be upper bounded as follows

Peji �
RX
i=1

RX
j 6=i

Q

�q
DijS=2

�
(6)

For a given channel realization H, Dij is the squared
pairwise Euclidean distance at the receiver defined as

Dij =



H (X(i)�X(j))




2
F

=






H
KX
k=1

Ak�
(ij)

k







2

F

(7)

where �(ij)
k

=x
(i)

k
�x(j)

k
is the difference between sequences

i and j at the kth position. It can be rewritten as

Dij =

KX
k=1


kkj�(ij)k
j
2
+ 2

KX
k=1

k�1X
l=1


kl�
(ij)

k
�
(ij)

l
(8)

where 
kl=Re Tr(HAkA
�
l
H
�) is the symmetric, weight-

ed, matrix inner product ofAk andAl defined as


kl =
1

2
(Tr(A�

k
H
�
HAl) + Tr(A�

l
H
�
HAk))



where the weighting matrix isH�
H. Define the following

�
(ij)
1

4
=

S

2

KX
k=1


kk j�(ij)k
j
2
;

�
(ij)
2

4
=

S

2
2

KX
k=1

k�1X
l=1


kl�
(ij)

k
�
(ij)

l
(9)

Of these, �(ij)
1 is a function of the weighted norms of indi-

vidual modulation matrices, and �(ij)
2 is a function of their

weighted pairwise inner products.
Substituting (9) in (8), (6) and then in (5) we get

Pe �
RX
i=1

pi

RX
j 6=i

Q

�q
�
(ij)
1 +�

(ij)
2

�
= PU (10)

which finishes the proof of Lemma 1.
Our code design criterion is to find modulation matrices

fAkgKk=1 that minimize the upper bound on the conditional
probability of symbol error PU in (10). The argument of
each Q-function

p
DijS=2 is a function of two terms, one

of which is determined by the norms of individual modula-
tion matrices 
kk and the other is determined by their pair-
wise inner products 
kl. If we make the assumption that all
sequences are equally likely, i.e., pi = 1

R
for all i in (10),

then we have Lemma 2.

Lemma 2 By carefully selecting terms over i and j, we can
always pair up terms in the expression for PU as follows

q =
n

R

h
Q
�p

�1+�2

�
+Q

�p
�1��2

�i
(11)

where �1 � �2 � 0 and n is an integer denoting the num-
ber of such pairs.

Proof: Recall that the ith input sequence consists of
K symbols, i.e., x(i)=fx(i)1 ; : : : ; x

(i)

K
g. The difference be-

tween x(i) and x(j) is the sequence �(ij)=f�(ij)1 ; : : : ; �
(ij)

K
g,

where �(ij)
k

=x
(i)

k
�x(j)

k
. When two symbol sequences dif-

fer only in m positions, say k1; : : : ; km, then �(ij)
k

6= 0 for

k = k1; : : : ; km, and �
(ij)

k
= 0 for k 6= k1; : : : ; km. Let

�
(ij)

ki
= �i 6= 0 for 1 � i � m. The range of values of

�i is determined by the input constellation. The expression
in (10) is a sum of contributions from difference sequences
corresponding to all possible values of � i, ki and m.

The key concept for the general proof of Lemma 2 fol-
lows from the simple case m = 1, i.e., those pairs of se-
quences that differ in only one position. Consider all dif-
ference sequences such that j�(ij)

k
j= �1 for k= k1 and zero

otherwise. There are two possible signs for the actual dif-
ference, either �(ij)

k1
= �1 or �(ij)

k1
=��1. By symmetry, the

number of difference sequences with �
(ij)

k1
= �1 is the same

as the number of difference sequences with � (ij)
k1

=��1, say
n1 each 1. Since only one difference position is nonzero in
(9), �(ij)

2 =S
P

K

l<k

kl�

(ij)

k
�
(ij)

l
=0. For both signs of �1,

�
(ij)
1 = S

2

k1k1�

2
1. Since all sequences are equally likely,

the contribution from these 2n1 difference sequences is

q =
n1

R

�
Q

�q
�
(ij)
1 + 0

�
+Q

�q
�
(ij)
1 + 0

��

=
2n1

R
Q

 r
S

2

k1k1�

2
1

!

This pair satisfies Lemma 2 trivially with �1 =�
(ij)
1 and

�2=0. The general proof follows from this and the details
are provided in [4].

Lemma 2 sets the stage for minimization of PU . We
will prove Lemma 3 before stating sufficient conditions for
minimization in Lemma 4.

Lemma 3 For a given �1, the pair q =Q
�p

�1+�2

�
+

Q
�p

�1��2

�
in (11) is minimized if and only if �2=0.

Proof: This lemma follows from convexity of the Q-
function. Since Q(

p
x) is convex and nonincreasing in

p
x,

and
p
x is concave in x for x > 0, it follows that Q(

p
x) is

convex in x for x > 0 [8]. Applying Jensen’s Inequality to
q we get Lemma 3.

Applying the results of Lemmas 2 and 3 to Lemma 1,
we state conditions for minimization of PU in Lemma 4,
subject to the following structure on modulation matrices.

Assumption 1 In the sequel we will assume all matrices
are unitary, that is

AkA
�
k
=IMt

(12)

for 1 � k � K where Mt � L. This ensures a constant
value of 
kk over all k as follows


kk = kHAkk2F =
c

Mt

kHk2
F

(13)

where c is the power normalization in (3).

Lemma 4 A linear code consisting of unitary modulation
matrices fAkgKk=1 achieves the minimum PU iff the matri-
ces satisfy the following condition


kl = Re Tr(A�
k
H
�
HAl) = 0 (14)

for 1 � k 6= l � K. In other words, the modulation matri-
ces must be pairwise orthogonal for any weightH�

H.
Proof: We will prove this lemma by induction on K,

the number of modulation matrices. To verify the initial

1If there is a sequence pair (i; j) with x
(i)
k1
�x

(j)
k1

= �1, then by sym-

metry there is also the pair (j; i) such that x(j)
k1
�x

(i)
k1

= ��1.



case, consider K = 1, i.e. the linear code consists of only
one modulation matrixA1. This trivially satisfies (14).

Now we make the inductive assumption, i.e., the optimal
set of modulation matrices satisfies Lemma 4 whenK=K 0.
Then PU consists of terms of the following form

q =
nm

MK0
Q
�p

�1

�
(15)

where �1=
S

2

P
m

i=1 
kiki�
2
i
. These are contributions from

sequences differing in m positions, where 1 � m � K 0

with 
kiki as in (13).
When the (K 0 + 1)

th modulation matrix is introduced,
it will introduce difference sequences that are nonzero in
the (K 0 + 1)

th position. Contributions from all difference
sequences that are nonzero in the (K 0 + 1)

th position can
be written as follows

q = Q
�p

�1 +�2

�
+Q

�p
�1 ��2

�
(16)

where �1=
S

2

P
m

i=1 
kiki�
2
i
+ S

2

(K0+1)(K0+1)�

2
K0+1 and

�2 = S
��Pm

i=1 
(ki)(K0+1)�i
�� j�K0+1j. From Lemma 3 we

know that for a fixed value of �1, (16) will be minimized
if and only if �2 = 0. Since all modulation matrices are
assumed to be unitary, 
(K0+1)(K0+1) is as in (13) and �1

is not a function of the actual (K + 1)
th matrix as long as

AK0+1 is unitary.
The value of �2 is a function of 
(ki)(K0+1), 1 � i �

m, which are the weighted inner products of matrices Aki

with the new matrix AK0+1. The necessary and sufficien-
t condition to ensure �2 = 0 for all values of ki is that

(ki)(K0+1) = 0 for 1 � i � m. See [4] for details. This
proves that the set of K 0+1matrices must also satisfy (14),
thus completing the induction to prove that (14) is a neces-
sary and sufficient condition for minimization of PU .

Lemma 4 takes us to Theorem 1, our main result.

Theorem 1 Among all unitary, linear space-time codes, the
orthogonal block codes in [1] minimize the union bound on
the conditional probability of symbol error for equally likely
input symbols.

Proof: Space-time block codes [1] consist of unitary
matrices that satisfy Lemma 4. Therefore they satisfy the
sufficient and necessary condition for minimization of PU .
In the complete absence of channel knowledge at the trans-
mitter, these are also the only unitary codes that minimize
the union bound.

5. CONCLUSIONS

We have provided a new criterion for performance eval-
uation of linear space-time block codes, namely the union
bound on symbol error probability. This bound is a function

of a given channel realization and is independent of chan-
nel statistics. It can be used to analyze performance over a
stochastic channel and is expected to be tight at high SNRs.

We provided necessary and sufficient conditions for min-
imization of the union bound over all unitary, linear space-
time codes. We showed that space-time block codes satisfy
these conditions and are therefore optimal. Our analysis ap-
plies to uncoded, equally likely input symbols. We consid-
ered modulation matrices for the case when the number of
transmit antennas is smaller than the code block length.

Extension of our analysis to modulation matrices when
block length is smaller than the number of transmit antennas
is in progress, as is extension to the class of all linear codes.
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