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ABSTRACT

Design of practical coding techniques for the multiple an-
tenna wireless channel is a challenging problem. A number
of interesting solutions have been proposed recently rang-
ing from block codes to trellis codes for the MIMO (multi-
ple input, multiple output) channel. Here we consider linear
block codesfor the quasi-static, flat-fading, coherent MIMO
channel. A linear code refers to an encoder that is linear
with respect to scalar input symbols. We assume maximum
likelihood decoding at the receiver.

We provide a cohesive framework for analysis of linear
codes in terms of a union bound on the conditional proba-
bility of symbol error. The error bound is a function of the
instantaneous channel realization and does not make any as-
sumptions on channel statistics. We show that the orthogo-
nal block codesin[1] achievethelowest error bound among
al unitary codes and are in fact optimal.

1. INTRODUCTION

A number of interesting coding and modulation tech-
niques for the multiple-antenna fading channel have been
proposed recently. They range from spatial multiplexing [2]
to space-time block codes[1] to space-timetrelliscodes[3].
The first two schemes are linear and the third is nonlinear,
where linearity is with respect to the scalar input symbols
that are to be mapped to space-time matrix codewords.

In this paper we address the genera problem of linear
block code design. We define a linear code as one that has
alinear encoder, i.e., the encoder uses a set of modulation
matrices to modulate the sequence of scalar input symbols
and sums up the products to create the matrix output code-
word. The output codeword is a matrix with dimensions
representing transmit antennas and time. The decoder has
perfect channel knowledge and performs ML (maximum
likelihood) decoding of the matrix symbols.

We analyze al linear codes within the framework of
probability of symbol error. We obtain an upper bound on
the error probability using the union bound on probabilities.
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The upper bound is conditioned on the instantaneous chan-
nel realization. It does not depend on channel statistics and
is expected to be tight at high SNRs (signal to noise ratios).
Focusing on the class of unitary linear codes, i.e., wherethe
square or wide modulation matrices are unitary, we obtain
necessary and sufficient conditions for minimization of the
error bound [4]. In the absence of any channel knowledge
at the transmitter these conditions are met by the orthogo-
nal block codes in [1]. Our analysis does not presuppose
decoupled detection asdonein [5], leading to it instead in a
natural fashion. Our error bound can be used to analyze any
linear code, and work is in progress to obtain minimization
conditions over the class of all linear codes.

2. DATA MODEL AND NOTATION

Consider a system with M, receive antennasand M; >
1 transmit antennas. The channd is flat-fading and quasi-
static. It is unknown at the transmitter but is known at the
receiver. At time nL, the channel output corresponding to
the n*" input block spanning L symbol timesis

Y = HX,+ Vg @)

where the received signal Y ,,;, is M,. x L, the fading chan-
nel H is M, x M;, the encoded codeword X 7, is M; x L,
and receiver noise V7, is M,. x L. The entries of V7, are
i.i.d.(independent, identically distributed) circular complex
Gaussian variables, i.e., vz, ; ~ R.(0,No), and are inde-
pendent over n. The average power transmitted on M ; an-
tennasis E, per symbol time. Define S = £=.

The Hermitian of a matrix is denoted by A *, the trace
by TrA, and the real part by ReA, respectively. The error

integral isdefined as Q (z) = f;"\/% exp(—%).

3. ENCODER AND DECODER

Following thelinear modulation structurein [5], we con-
sider codewordsthat consist of aset of modul ation matrices



modulated by scalar input symbols. The input to the en-
coder is a stream of symbols from a constellation such as
PAM, QAM or PSK. Each complex symbol is expanded in-
to two real symbols corresponding to its real and imaginary
parts respectively. The encoder operates on the sequence
of real symbols producing a matrix codeword whose rows
correspond to antennas and columns correspond to symbol
times. We define linear codes as follows.

Definition 1 (Linear codes) A linear code is defined as a
set of codewords that are linear in the scalar input sym-
bols. Let 2" = {z\"),...,2{7} be the r*" input symbol
sequence. Then the corresponding codeword is

K
k=1

where A, are M, x L modulation matrices. Each real sym-
bol a:,(f) belongs to a PAM, one-dimensional “ QAM” or
one-dimensional “ PSK” constellation of size M. The total
number of codewordsis R=M¥X.

We assume no prior encoding of theinput symbols. A power
constraint is imposed on each modulation matrix such that
|Ak]|% < cforall k. To maintain average power at E ; per
symbol time, ¢ is asfollows

L 2L

C:? (PAM) y C:?

We assume a coherent receiver, i.e., the channel is perfectly
known. The received M, x L signal Y is decoded using
maximum likelihood decoding.

Most of the currently proposed spatial modulation tech-
niques can be interpreted as linear codes. Spatia muilti-
plexing [2], also caled BLAST [6], is the simplest exam-
ple of linear codes. The modulation matrices are simply
unit vectors, for e.g., for a PAM input constellation, A, =
L_10...1.-.0]T. For M; transmit antennas, K = M; and
L=1.

Orthogonal space-time block codes are another example
of linear codes. The modulation matrices are unitary matri-
ces that are pairwise orthogonal with respect to the Re Tr
matrix inner product. That is, for any weighting matrix W,
Re Tr(A;WA;)=0foral 1 < k # 1 < K. Such matrices
exist for limited values of K, M; and L [1].

Delay diversity [7] can be considered as a linear code
if the tail effects are ignored (“truncated” delay diversity).
The M;xL modulation matrices are proportional to [01 s, 0],
wherethe order M, identity matrix isshifted right by £ — 1
columns to obtain the k" modulation matrix.

(QAM, PSK) (3)

E

4. PERFORMANCE ANALYSIS

We will analyze linear codes using the conditional prob-
ability of symbol error at the receiver, i.e., the error proba

bility conditioned on a given channel realization. First we
compute an upper bound on the probability of symbol error
in Lemma 1, then we set up conditions for its minimiza-
tion in Lemmas 2 and 3. We state necessary and sufficient
conditions for minimization over unitary codes in Lemma
4. Findly in Theorem 1 we show that the optimal unitary
linear codes are the space-time block codesin [1], whichis
the main result of the paper.

Lemma 1l The probability of symbol error can be bounded
in the following manner

R R
P. < ZmZQ( A§’1)+Ag”>> = Py (4)

i=1  j#i

where the argument of each Q-function is a function of t-
wo terms, one of which A (") is determined by the norms of

individual modulation matrices and the other A7) is de-
termined by their pairwise inner products.

Proof: Lemmalis proved by construction. The prob-
ability of matrix symbol error isthe average of the pairwise
error probabilities over all matrix symbols as follows

R
P, = Zpipe\i (5)
i=1

where p; is the probability that codeword i is transmitted,
and P,|; is the probability that the receiver does not decode
i correctly. The probability of detecting 4 incorrectly is e-
qual to the probability that one of the other codewords j is
detected where j # 4. Using the union bound on probabili-
ties, P,|; can be upper bounded as follows

Py < iiQ(\/Diﬂﬂ) (6)

i=1 j#i

For a given channel redlization H, D;; is the squared
pairwise Euclidean distance at the receiver defined as

2

K 2
by = o, = fasad?| o
k=1 F

wheree\? =29 1) isthe difference between sequences
i and j at the k" position. It can be rewritten as

K oy K k-1 -
D;; = Zﬂkk|€§cm| +QZZQM€§€”)€!(”) (8)
k=1 k=1 =1

where Q; =Re Tr(HA ;A H*) is the symmetric, weight-
ed, matrix inner product of A ; and A; defined as
1

Qu = (Tr(AjH'HA) + Tr(AJH'HA,))



where the weighting matrix is H*H. Define the following

K
i) & S i),2
A2 2 E Urley |

K k-1

—2 Qe 9
2 ;lz; Ek 9)

Of these, ij ) isafunction of the wei ghted norms of indi-

vidual modulation matrices, and A () is afunction of their
weighted pairwise inner products.
Substituting (9) in (8), (6) and then in (5) we get

R R
> > Q(Val+al) = mao

i=1  j#i

e

Aéij)

which finishes the proof of Lemma 1. |

Our code design criterion isto find modul ation matrices
{A}+_, that minimizethe upper bound on the conditional
probability of symbol error Py in (10). The argument of
each Q-function /D;;S/2 is afunction of two terms, one
of which is determined by the norms of individual modula-
tion matrices Q4 and the other is determined by their pair-
wiseinner products Q. If we make the assumption that all
sequences are equally likely, i.e., p; = & for al 4 in (10),
then we have Lemma 2.

Lemma 2 By carefully selecting terms over i and 5, we can
always pair up terms in the expression for Py asfollows

¢ = 2[Q(VA+A)+qQ(VAa—a;)| ay

R

where A; > A, > 0 andn isan integer denoting the num-
ber of such pairs.

Proof: Recall that the it* input sequence consists of
K symbols, i.e, z(* {;1:1 b xk} The difference be-
tween z(9 and (9 |sthe%quencee i) = (D iy,
where ¢\ = 29 — 1)) When two symbol sequences dif-
fer only in m positions, say k1. .. , kn, then e\ = 0 for
b=k, km and e =0fork # ky,... k. Let
(”) =¢ # 0forl < i < m. Therange of values of
eZ 'is determined by the input constellation. The expression
in (10) isasum of contributions from difference sequences
corresponding to al possible values of ¢;, k; and m.
The key concept for the general proof of Lemma 2 fol-
lows from the simple case m = 1, i.e., those pairs of se-
guences that differ in only one position. Consider al dif-

ference sequences such that |e§fj) | =€ for k=ky and zero
otherwise. There are two possible signs for the actual dif-
ference, either egjf )= or eff” = —¢;. By symmetry, the

number of difference sequences with 65;'3') =¢; iSthe same

as the number of difference sequenceswith e ) = —¢;, say
ny each 1 Since only one difference position is nonzero in
9), A =5 T, Qe el =0. For both signs of e,
Al = gﬂklklel. Smce all %quences are equally likely,
the contribution from these 2n; difference sequencesis

= () a7
i

This pair satisfies Lemma 2 trivially with A; = A{"¥) and
A5 =0. The general proof follows from this and the details
are providedin [4]. |

Lemma 2 sets the stage for minimization of Py. We
will prove Lemma 3 before stating sufficient conditions for
minimization in Lemma4.

Lemma3 For agiven Ay, the pair ¢ = Q (VA;+A) +
Q (VAT =1,) in (11) is minimized if and only if A, =0.

Proof: Thislemmafollows from convexity of the Q-
function. Since Q (/) isconvex and nonincreasingin /z,
and /z isconcavein z for z > 0, it followsthat Q (1/z) is
convex inz for z > 0 [8]. Applying Jensen’s Inequality to
q we get Lemma 3. |

Applying the results of Lemmas 2 and 3 to Lemma 1,
we state conditions for minimization of Py in Lemma 4,
subject to the following structure on modulation matrices.

Assumption 1 In the sequel we will assume all matrices
are unitary, that is

ALAL =1y, (12)
for 1 < k < K where M; < L. This ensures a constant
value of Q. over all k£ asfollows

. c
Q= ||HAk||é=M||H||% (13)

where c is the power normalizationin (3).

Lemma4 A linear code consisting of unitary modulation
matrices {Ak}f:1 achieves the minimum Py iff the matri-
ces satisfy the following condition

le = Re TI“(AZH*HAI) =0 (14)
for1 < k #1 < K. In other words, the modulation matri-
ces must be pairwise orthogonal for any weight H*H.
Proof: We will provethis lemma by induction on K,
the number of modulation matrices. To verify the initia

Lif there is a sequence pair (4, 7) with x@ (jl) = ey, then by sym-
(i)

metry there is also the pair (j, 7) such that m(]) ky = €L



case, consider K =1, i.e. thelinear code consists of only
one modulation matrix A ;. Thistrivially satisfies (14).

Now we maketheinductiveassumption, i.e., the optimal
set of modul ation matrices satisfiesLemmad4when K = K.
Then Py consists of terms of the following form

@ (VAY) (15)

where A; = § S Quk; €7 . These are contributions from
sequences differing in m positions, where1 < m < K'
with Q. , asin (13).

When the (K + 1)™* modulation matrix is introduced,
it will introduce difference sequences that are nonzero in
the (K’ + 1)™" position. Contributions from all difference
sequences that are nonzero in the (K’ + 1)"" position can
be written as follows

¢ = Q(VATA)+Q(VAI-A:) (9

where A :g 2111 Qkikieg + gQ(K’-H)(K’-i-l)G%(’-&-l and
Ay =S |EZ’;1 Q(k,-)(K’+1)€i| |€K’+1|- From Lemma 3 we
know that for afixed value of Ay, (16) will be minimized
if and only if A; = 0. Since all modulation matrices are
assumed to be unitary, (g4 1)(x'41) iISasin (13) and A,
is not a function of the actual (K + 1)"" matrix as long as
A k41 iSunitary.

The value of A, isafunctionof Q) (gr41), 1 <7 <
m, which are the weighted inner products of matrices A
with the new matrix A g/, 1. The necessary and sufficien-
t condition to ensure A, = 0 for all values of k; is that
Qriyrr+1) = 0for 1 <4 < m. See[4] for details. This
provesthat the set of K’ + 1 matrices must also satisfy (14),
thus completing the induction to prove that (14) is a neces-
sary and sufficient condition for minimization of Py, . [ |

Lemma4 takes usto Theorem 1, our main result.

q

Theorem 1 Among all unitary, linear space-time codes, the
orthogonal block codesin [1] minimize the union bound on
the conditional probability of symbol error for equally likely
input symbols.

Proof: Space-time block codes [1] consist of unitary
matrices that satisfy Lemma 4. Therefore they satisfy the
sufficient and necessary condition for minimization of Py.
In the complete absence of channel knowledge at the trans-
mitter, these are also the only unitary codes that minimize
the union bound. ]

5. CONCLUSIONS

We have provided a new criterion for performance eval-
uation of linear space-time block codes, namely the union
bound on symbol error probability. Thisboundisafunction

of a given channel realization and is independent of chan-
nel statistics. It can be used to analyze performance over a
stochastic channel and is expected to be tight at high SNRs.
We provided necessary and sufficient conditionsfor min-
imization of the union bound over all unitary, linear space-
time codes. We showed that space-time block codes satisfy
these conditions and are therefore optimal. Our analysis ap-
plies to uncoded, equally likely input symbols. We consid-
ered modulation matrices for the case when the number of
transmit antennasis smaller than the code block length.
Extension of our analysis to modulation matrices when
block length is smaller than the number of transmit antennas
isin progress, asisextension to the class of all linear codes.
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