MEAN-SQUARE ANALYSIS OF NORMALIZED LEAKY ADAPTIVE FILTERS
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ABSTRACT

In this paper, we study leaky adaptive algorithms that em-
ploy a general scalar or matrix data nonlinearity. We per-
form mean-square analysis of this class of algorithms without
imposing restrictions on the distribution of the input signal.
In particular, we derive conditions on the step-size for stabil-
ity, and provide closed form expressions for the steady-state
performance.

1. ADAPTIVE FILTERING MODEL

In this paper, we consider the following class of leaky
adaptive filters:

wip1 = (1—ap)w; + pH(w)ufe(d) (1)
e(i) = d(i) — ww; (2)
di) = ww’ + (i) (3)

where w; is an estimate for w° at iteration 7, y is the
step-size, a > 0 is the leakage parameter, u; is a row
regression vector, v(¢) is measurement noise, and H(u;)
is a matrix data nonlinearity with nonnegative diagonal
entries. Usually, H(u;) is a multiple of the identity, say
H(y) = ﬁI for some function g(-). Table 1 lists
some common examples of data nonlinearities. There
are several reasons for incorporating leakage into an
adaptive filter update and special cases of (1)—(2) have
been studied before in the literature (see, e.g., [1] and
[2] and the references therein for motivation and related
discussions).

The purpose of this article is to provide a framework
for performing mean-square analysis of the general class
of leaky algorithms (1)—(2). This is achieved by relying
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Table 1: Examples of data nonlinearities.

| ALGORITHM | H(u;) |
NLMS — T
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e-NLMS —L T
oot ||
sign regressor | diag (s1g3'(1u,-1) oo Slgg(“"M))
k2 ‘lM
variable steps diag(p1, 42, .- - 5 1)

on the energy-conservation approach developed in [3]-
[5]. Among other results, the approach avoids imposing
conditions on the statistical distribution of the input
sequence (see, e.g., [7, 8]). In addition, the approach
enables us to perform both mean-square analysis and
transient analysis.

2. DEFINITIONS AND NOTATION

Mean-square analysis of (1)—(2) is carried out in terms
of the error quantities:

Ao

w; = w’ —w; and eq(d) £ u;w,; (4)

and the normalized regressor @; = u;H(u;). These
quantities can be used to rewrite the filter relations (1)—
(2) as:

(1 - ap)w; — pt; e(i) + apw’  (5)
€a(1) +v(2) (6)

Wit1 =
e(7)

We shall replace (5) with the more general adaptation

Wiy1 = (1 — ap); — pu;] e() + Buw® | (7)

with separate parameters {«, 3}

We also find it useful to use the compact notation
||7."v,||§: = @] S4b;. This notation is convenient because
it enables us to transform operations on w; into oper-
ations on the norm subscript, as demonstrated by the



following properties. Let a; and ay be scalars and ¥,
and X5 be symmetric matrices of size M. Then

1) Superposition.
arll@ill5;, + azll@ills, = 1®il2, 5 0,5,
2) Polarization.
(i B ;) (0 Bothi) = |[Will3, 7,50,
3) Independence. If @; and u; are independent,
E 1@, r,3,) = B [1@40135, s s,

4) Linear transformation. For any N x M matrix A,
- =2
[ADi5; = @il yry; 4

5) Blindness to asymmetry. For any square matrix A,
~ 112 ~ 112 ~ 112
lills = lbillhr = asll3 a3 ar

6) Notational convention. Using the vector notation, we

. ~ 12 A~ 2
shall write ||’U.7z'||vec(21) = |lwilly;,

The analysis in the sequel relies on the following two
assumptions:

AN. The noise sequence v(7) is zero-mean, iid, and is
independent of the input regressor u;.

AT The sequence of regressors {u;} is independent with
zero mean and autocorrelation matrix R.

Observe that we are not requiring the input to be Gaus-
sian.

3. MEAN-SQUARE PERFORMANCE

To study the mean-square performance of the leaky
adaptive filters, we need to develop a recursion for the
weight-error energy. We therefore start with recursion
(7) and compute the energies of both sides to arrive at,
after taking expectations,

E[[[@ial5] = (1 — ap)E [|ld:15]

~2u(1 - ap)E [@&] ul @Bb:] + 4 [e2(0)[Gill%;]

+2uB(1 — ap)E [w"T Eﬁyi] — 94°BE [’onu'fﬁ,-EﬁJi]

+ut o B [[mil5] + p° 6% w15 (8)

In the above calculation, we used assumption AN to
eliminate three noise cross-terms. The above recursion

can be expressed more compactly by using the polar-
ization and asymmetry properties, in addition to the
independence assumption, to write

~ — ~ ~ 12
E[@w]u]u3w;] = E [llwill%E[u?m]z_f_%EE[ﬁ;Tui]] (9)

B[R0 = Bllolgga] 00

and
1—-ap)FE [wOTE'L'vi] — uE [wOTuZTﬁiEwi] =
w® BJE[w;] (11)

where we defined

U; 2 al + uZTﬁi (12)

12 B[,

Substituting (9)—(11) into (8), yields

E [l@illy] = E [l | + n2E i)

B (13)
+14° 82w’ |3 + 2uBw’ BIE [i;]
where ¥’ is related to ¥ via
' =(1-ap)’S —pu(l —ap)BE [ﬁ?ui]
—p(1l = op)E [ul @] T+ PEllwlkufw]  (14)

Relations (13)—(14) (or, equivalently, relations (16)
—(17) below and ultimately (19)) can be used to charac-
terize the mean-square performance of the adaptive fil-
ter. In particular, they can be used to derive conditions
for mean-square stability, as well as expressions for the
steady-state mean-square error and mean-square devi-
ation of an adaptive filter. To this end, note that the
above recursion for ¥ can be rewritten more compactly,
using the vec operation and the Kronecker product no-
tation, as

o' =Fo (15)

where o = vec (2), o' = vec (¥') , and

| F=E[I-pd)o (I —ph)] | (16)

In light of (15), recursion (13) becomes

E [} = B [loilly, | + x202 B [Im2] +
T -
1282 w2 + 26w SIE ]

(17)



To make this recursion self-contained, we need a recur-
sion for E [@;], which can be obtained by evaluating the
expected value of both sides of (7):

| Eliw;] = JE[i; 1] + ppuw°

(18)

Recursion (18) is what we need to supplement (17) and
produce the desired self-contained relation. To this end,

let us write (17) explicitly for {o, Fo,--- ,FMz_la-} :

([ E[ll@isll}] [Ilﬂullpa + oy JJIULII

+u’ B2l wl3 + 2uBf5 E [wi]

E [||@is1]|5, ] [||wz||pz l+u ooE

+0? Bl w o + 208f1 E

quHFa]
L W]

E [|@ill a2, ]
+u a.,E[nu@n o
+H26 ”wO”FMZ 1,
+2NﬂfM2 1E[wl]

E [”'&’i+1”i~MZ—1U]

= —poB [J@n|] -
—Pu2_ B [”ibinMz—l ]
+u *00E [”ul”FMZ 1,
+u?B ||'w"||FM2_1U
{ +2u8 8 a2, B [0:]

In the above system of equations, f, is a vector defined
by f; = JLrw?, where Ly, is matrix of size M such that
vec (Ly) = F*o. The last expresion in the above sys-
tem is obtained from the previous one by means of the
Cayley-Hamilton theorem, which enables us to express
FM’ a5 a linear combination of lower powers:

21

2
FM™ = —poI —p,F — - —ppa  FM

where the p;’s are the coeflicients of the characteristic
polynomial of F, viz., p(z) = det (zI — F).

In summary, recursions (15)—(18) can be combined
together into a single matrix recursion in state-space
form:

et [ =[S 5 1 2o |~ Lo

(19)
where the matrices {G1, G2} are defined by
0 0 0
G, 2 : (20)
0 0 1

0 E[||@:]]

T ~ 2
E [[lwill5,]
1 P
G2 é 2/1,8 . y i é .
f71\;12 1 E[||"bi||;M2—1a]
and
oiE [nmzn%:] + B2
oS B [|[aillF.] + B%(lw’||%e
Y=u

B [l s, | + B s,

The state recursion (19) characterizes the transient be-
havior of the leaky adaptive filters (1)—(2). It can now
be used to study mean-square stability and mean-square
error performance.

3.1. Stability

From (19), we see that stability is achieved if, and only
if, both Gy and J are stable matrices. However, since
G and F have the same eigenvalues, this condition cor-
responds to requiring that F' and J be stable matrices.
By inspecting the defining expressions (12) for J and
(16) for F, we can show that

J is stable & pu< (21)

)\max (E [ul])

F isstable & u< (22)

Amax (A~1B)
where A = E[U;] ®I + IQFE [U4;] and B = E [U;QU;].

3.2. Steady-State Error

Steady-state performance can be obtained directly from

recursion (17). So, assuming the filter is stable, we get

E [|l@i+1]’] = E [||®wi|>] as i — oo. Therefore, in the

limit, relations (17) and (18) lead to

. _ 2] . _ 2 2

lim B [|[@7] = lim B[, ] + 12028 [Iw)2]

+12 B2 |lw||? + 2uPw” BT lim E [ib;]
71— 00

and

lim E[w;] = p8 (I - J) " w®

i—00

or, equivalently,

limi oo B [l ] =
PP E [|[w]2] + N2ﬁ2||w0“§3(1+2J(1—J)‘1)




This expression allows us to evaluate the steady-
state weight-error energy for any choice of a symmetric
weight 3. In particular, we can get the mean-square er-
ror by choosing ¥ = R, i.e., by choosing & such that
(I — F)o = vec(R). This leads to the expression

lim E [e2(i)]

Jim = /,L20'12]E |:||ﬁi||%I—F)_1veC(R)

2 92 2
B (o - )1y

where vec(X) = (I — F) lvec(R). Similarly, the mean-
square deviation is obtained by choosing & (and hence
¥) such that (I — F)o = vec(I).

4. TRACKING ANALYSIS

The results of the previous section can be specialized for
non-leaky normalized filters by setting a = 8 = 0. More
importantly, the analysis can be used to infer (almost
immediately) the tracking performance of normalized
adaptive filters. In the tracking case, w° is no more
constant but undergoes random perturbations, say

o — o
Wi =W +q;

As in the leaky case, we still carry out the derivation
in terms of the error quantities e, (i) and w; as defined
in (4), with w® replaced by the now time varying w?.
To perform mean-square analysis in the tracking case,
we rely on assumptions AN and Al in addition to the
following assumption:

AT The sequence of tracking errors {g;} is zero-mean
and stationary, and is independent of the input u;
and the additive noise v(7).

Now consider the adaptation equation (1) for a = 0,
rewritten in terms of T;, e,(%), and w;:

Wiy1 = W; — pe(i)d; +q; (24)

Notice that this is the same as (5) for « = 0, (8 =
1/p, and w° = g;. We can similarly argue that the
mean-square behavior is also described by (17) for the
same values of @ and 3 and for!

lwll7 = E[llqll7], and w®=Elg]=0

That is, we now have

E | @iall}] = E [l @ill,] + p*ovE [lwll;] + E [llg;115] (25)

Stability and steady-state behavior can now be de-
duced from (25). In particular, (mean-square) stability

IFor completeness, we point out that the mean weight-error
behavior can similarly be obtained from (18) witha = 0,8 = 1/y,
and w, = E[q;] = 0.

is guaranteed if, and only if, F' is a stable matrix (see
(22)) where now

T

T— —
Zl,-: aI+ui u; =0 =uz- u;

Moreover, by an approach similar to that of the previous
section, we can derive the following expression for the
steady-state error

lim B (1@:2] = ol B (1601} r)-1, ] + B [Iaulfr—p)-1,]

5. CONCLUSION

In this paper, we performed mean-square analysis of
leaky normalized adaptive filters. We showed how the
analysis can be further used to infer the tracking perfor-
mance of normalized adaptive filters. Our study applies
to a large class of data nonlinearities and does not im-
pose Gaussian assumptions on the data.
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