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ABSTRACT

This paper develops a framework for the mean-square
analysis of adaptive filters with general data and error
nonlinearities. The approach relies on energy conserva-
tion arguments and is carried out without restrictions
on the probability distribution of the input sequence.
In particular, for adaptive filters with diagonal matrix
nonlinearities, we provide closed form expressions for
the steady-state performance and necessary and suffi-
cient conditions for stability. We carry out a similar
study for long adaptive filters that employ error nonlin-
earities relying on a weaker form of the independence as-
sumption. We provide expressions for the steady-state
error and bounds on the step-size for stability by ex-
ploiting the Cramer-Rao bound of the underlying esti-
mation process.

1. ADAPTIVE FILTERING MODEL

Consider noisy measurements d(i) = u;w®+v(i), where
w? denotes an unknown column vector that we wish
to estimate, u; is a row regression vector, and v(3) is
measurement noise. Adaptive schemes for estimating
w? rely on recursive updates of the general form

| wits = wi + pH@)u f(e(), i>0] (1)

where w; is the estimate of w? at time ¢, p is the step-
size, and

(2)

is the estimation error. The correction term in (1) is
usually expressed in a separable form, H (u;)u’ f(e(3)),

| e() = d(i) — wyw;
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Table 1: Examples for f(e(i)) and H (u;)

| ALGORITHM | fle(@)] |
LMS e(i)
LMF ()
LMF family e2F1(4)
LMMN ae(i) + be3(4)
Sat. nonlin. foe(’) exp (— 2’;;) dz
Sign error sign[e(7)]
| ALGORITHM | H(u;) |
NLMS T
[Jus |
e-NLMS —
_c[[uy]
sign regressor | diag (Slgz,(""l) yerey Slgg,(u"M)>
i1 ing
variable steps diag(p1, pay--- 5 )

where f(e(i)) denotes a scalar error nonlinearity and
H (u;) denotes a data nonlinearity and is taken as a
diagonal matrix with nonnegative entries. In this pa-
per, we focus on correction terms that are nonlinear in
the data or in the error but not both. This class of al-
gorithms is general enough to include the special cases
listed in Table 1. Several of these algorithms were al-
ready considered in the literature (see, e.g., [1]-[3] and
[6] and the many references therein). The purpose of
this article is to provide a framework for performing
mean-square analysis of the general class of algorithms
(1)—(2) in a unified manner. This is achieved by relying
on the energy-conservation approach developed in [4]-
[6] and by expanding it to handle both transient analysis
and mean-square analysis.

2. ENERGY RELATION

Mean-square analysis of (1)-(2) is best carried out in
terms of the normalized regressor @; = w; H (u;) and



the following error quantities:

>

w; = w° — w; weight-error vector

weighted a priori error

(7) £ w;Xw; weighted a posteriori error

eaz (Z) é uiE'&J,-
€

where ¥ denotes a weighting matrix. We reserve special

notation for the case ¥ = I : e,(i) = el(i) and e, (i) =

e}(i). Using these error quantities, we can rewrite the

adaptive algorithm (1)-(2) as
~ _ _T .
Wi = w; — p; f(e(q)) 3)
e(d) = ea(i)+v(9) (4)
We also find it useful to use the compact notation
”ﬁ”HQE = @] S4b;. This notation is convenient because
it enables us to transform operations on ; into oper-
ations on the norm subscript, as demonstrated by the

following properties. Let a; and az be scalars and ¥,
and ¥, be symmetric matrices of size M. Then

1) Superposition.
arll@il§, + azll@illsy, = l@il) 5, 0,5,
2) Polarization.
(0iZ1wi) (i B2w;) = ||ﬂh'||221,,guiz2

3) Independence. If @W; and u; are independent,

B (101,070, 5,) = 2 (190135, ppura s

4) Notational convention. Using the vector notation, we

shall write ||1In'||?,ec(21) 2 ||"1’z||221

With the above definitions and notation at hand, we
proceed to premultiply both sides of (3) by u; H(u;)X
to get

uiH(u,-)vaH_l = uiH(ui)E'L"vi — ,uf(e(i))u,-H(uz-)EﬁZT

Incorporating the expressions for q;, eg), and e,(g'), and

solving for uf(e(i)), we find that

HY HY(;
. _ ea (Z) _ eIJ (Z)
KO =gy, T ®

Combining (3) and (5) to eliminate x f(e(7)), and taking
the X-weight of the resulting expression leads to the
energy conservation relation:

e (j) B2 ;)

||'&’i+1||22 + = ||'&’i||22 + (6)

S [

This equality relates the weighted energies of the er-
ror variables {@W;, W;;1, eg](i), eg] (4)}; it is the weighted
version of the energy relation derived in [4]-[6] and used
there, and in other related references, to study the per-
formance of adaptive filters from both deterministic and
stochastic points of view. The inclusion of the weight-
ing factor ¥ allows us to perform both transient and
steady-state analyses. Observe that no assumptions or
approximations were used to derive (6). This relation
will be the starting point for much of the subsequent
discussion.

3. THE DATA NONLINEARITY CASE

In this section, we assume f(e(:)) = e(:) and proceed
to study the mean-square performance of the resulting
algorithm. For this purpose, we rely on the following
independence assumptions:

AN The noise v(3) is i.i.d. and independent of the input.

AT The sequence of regressors {u;} is independent with
zero mean and autocorrelation matrix R.

Thus note first that (5) becomes
en”(6) = el (0) - pe(i) [l

Substituting this expression for elf z (¢) into the energy
relation (6), we get

_ 2 _ 2 Y s _ .
l@ir1llss = llwill5; — 2peq = (0)e(@) + p*[[WlI5e° () (7)

By further incorporating (4) and assumption AN, (7)
reads under expectation

_ _ )IPIN
E [l@ill] = E [l@il%] - 208 [el (iea(s)]
+E [eq(Dm|5] + pPonE [Imlg]  ®)
Using the weighted-norm properties, we can rewrite the

estimation error expectations in (8) as some weighted
norms of w; :

N HY . - — .- -
Zea(z)ef (1) = Zw?ug‘uiﬁwi = ”wi”iiTi,-E+Ei§"u,- 9)
291 12 ST T 2 o =2
eallWilly; = @ v; [[uij;uiws = ||wi||ug"||m||22u,- (10)

Substituting (9)—(10) into (8) and using assumption Al
yields

E [|@i+l%] = E [|l@:l%] + 1°E [H@illi[uwuz u-]]
i iy ™



—1E @il 5954 Spma) + 00 E (W3]
or, more compactly,

E(l@inl,,, | = E[loil},] +wole [lal, ] ay
where a time index (7 + 1) has been attached to X, and
where {¥;,3,,1} are related via

3 =X —p¥ia B I:ﬁ;-rui] — pE I:'l.l;rﬁi] it

B, o u] (1)

Relations (11)—(12) (or, equivalently, (14)—(15) be-
low) are the equivalent representations of the energy
relation (6) under assumptions AN and Al They can
be used to derive conditions for mean-square stability,
as well as expressions for the steady-state mean-square
error and mean-square deviation of an adaptive filter.
To see this, we start by noting that the recursion for ¥;
can be rewritten more compactly, using the vec opera-
tion and the Kronecker product notation, as

w

where

F=E[(I-pu]t;)® (I —pulwd)] (14)

) be-

and o; = vec(X;).
comes

In light of (13), relation (11

E (@il ] = E [l@},,,,| +#2o B [IW2,,.] | (5)

By inspecting (15), it becomes clear that the re-
cursion is stable if, and only if, the matrix F is sta-
ble. Thus let A = IRE [uzﬁz] + E[u,-ﬁz-] I and
B = E[u;u;®u;u;]. Then, from (14), F = I—uA+u*B
and F will be stable if, and only if,

0 <4 < smtamy)

which provides the desired condition for mean-square
stability.
Now assuming the filter is stable, we have

lim B [ isall}] = lim B [|1ds] 2]

Thus, in the limit, and using the change of variables
o' = (I — F)o, relation (15) takes the form

lim oo B [, | = 1203 [IRillEy_p)-s, ] | (16)

This expression allows us to evaluate the steady-state
weight-error energy for any weight ¢'. In particular,
we can get the mean-square error by choosing o' =
vec (R), and the mean-square deviation by choosing
o' =vec(I), ie.,

lim E [e2(i)] =

71— 00

s ]

2012,E [”ﬁz’”%IfF)-lveC(R)]

,u20—12;E I:”ﬁ'iH%IfF)—lvec(I)]

4. THE ERROR NONLINEARITY CASE

In this case, H (u;) = I. However, the analysis is more
demanding and we shall assume that the filter is long
enough for the following assumptions to be reasonable:

AG e,(7) is Gaussian.
AU |lu;]|* and f2(e(i)) are uncorrelated.

For long adaptive filters, the first assumption is justified
by central-limit theorem arguments while the latter is
a weaker version of the independence assumption (it
becomes more accurate as the filter gets longer).

Thus consider relations (5) and (6) for ¥ = H(u;) =
I. By eliminating e, (i) from both equations, we get a
recursion similar to (7) for the nonlinear error case:

[@isal* = lloil* — 20 (e())eald) + 1 lwill” 12 (e(6))

Upon taking the expectations of both sides,

B [l@:11]] = B [Il@ill°] - 2B f(e(i))ea(0)]
+4%E (|l f2(e()]  (17)

we see that two expectations call for evaluation. Since
eq(?) is Gaussian, we have by Price theorem,

E[f(e(d))ea(d)] = E [€2(1)] E[f'(e(2))]
= E[e;@)]h(E[e(@)]) (18)

for some function h(-). By assumption AU, we can also
write

E [lluill*f2(e@)] = [|uz||] [£2(e(@))]
= ¢ (E[e2()]) (19)

for some function g(-). Notice that in (18) and (19),
E[f'(e(i))] and E[f?(e(¢))] depend on e, (i) through the
second moment E [e2(i)] only, since e,(i) is Gaussian
and independent of the noise. Table 2 lists the expres-
sions for the functions h(-) and g(-) for the error non-
linearities of Table 1.



Table 2: h(-) and ¢(-) for the error nonlinearities of
Table 1 and for Gaussian noise (o2 = E[e2()])

[ h(o?) | q(c?)

2. 2
1 o, + o,

3(02 + 02) 15(c2 + 02)®

2k+2)! 4k+2)!
%(05 +03)k W(Ug +U121)2k+1

a*(o7 + a;) + 6ab(a; + 03)°

a + 3bo202 + 3bo? +1502(02 + 02)
€ v

PR
g 2qin—1 o.to, )

— ., s1n =7 57 35

v o2+o02+402 z (Uf—i—a%—i—of

2 1 1
\/;\/03—1—012,

To determine the steady-state performance of the
algorithms, we note that in steady-state, E [||[#;1]*] =
E [||@:]|*] as ¢ — co. Let S = lim;_, E [€2(i)]. Then
(17) leads to

S =

S

e (R) &5 (20)

~

This expression shows that the mean-square error, S, is
a fixed point of the function §Tr (R) %. For a given
error nonlinearity, we can therefore determine S by first
determining h and ¢ and then solving for S.

To study stability, we consider recursion (17) again
and note that if p is chosen to satisfy for all i:

W2 E Il £2(e(0))] < 26 [f(e(i))ea(d)]

then E [||wiy1]*] < E [||@:])*] , i-e., the mean-square de-
viation will be a decreasing and hence convergent se-
quence. Now by Cauchy-Schwartz inequality, we have

IN

B [ul]” B e
2 [l p (EL20))

for some function p(-). Hence, a more conservative con-
dition on y for stability is

3 2E[e2(i)]h (E[e2(3)))
#EO g ] p (L2 )

E [Ilwill® £2(e(0))]

(21)

Minimizing (21) over E[e2(i)] can be demanding. In-
stead, we know that E[e2(i)] is lower-bounded by the
Cramer-Rao bound v of the underlying estimation pro-
cess. To obtain an upper bound, we note that if y is
chosen to satisfy (21), then

E [|@il°] < B [lwia|] <+ < E [Jlwoll’]

Therefore, since e, (z) is Gaussian, we have
. 1
E [ea(z)2] =12 [

. 1 .
Elea(d)|)” = ZE[IiniI]2

1 1/2 .
<F (sl ] B [flawil|*]

172 1 1/2
< 71T R [Jlwol’]
This prompts us to define the feasibility set
1
0= {a:7 <o m@E wl” |

By carrying out the minimization in (21) over the set
Q, we get the following condition for stability

2a h(a)

2lull*] " s

p < mingeq

By reviewing the above stability argument, we see that
only the Gaussian assumption AG was used. Explicit
bounds on x can be obtained by evaluating A and p and
carrying out the minimization in (22).

5. CONCLUSION

In this paper, we presented a unified approach for the
transient analysis of adaptive filters. Among other re-
sults, we provided conditions for stability and expres-
sions for the steady-state error.
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