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The Bayesian or maximum a posteriori (MAP)
symbol-by-symbol detector allows minimum
BER single user detection in CDMA systems
with less memory requirements than the
multiuser Maximum Likelihood Sequence
Estimator. This work proposes a further
complexity reduction by developing a fuzzy
recursive implementation of the Bayesian
detector. Simulation studies demonstrate the
almost optimal performance of the developed
fuzzy detector. The resulting system offers a
performance v.s. complexity trade-off very
appealing for detection in a 3rd generation
mobile handset.
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For single user detection in CDMA scenarios,
the sheer complexity of the Maximum
Likelihood Sequence Estimator (MLSE)
prohibites its use. An alternative is the Bayesian
symbol-by-symbol detector, which offers
optimum single user detection (i.e. optimum in
a minimum BER sense) without requiring the
demodulation of the other users [1]. The present
work focuses on synchronous CDMA reception
like the one in downlink from the base station
to the mobile handset in 3rd generation mobile
systems. Specifically, the aim is to obtain a low
complexity single user detector presenting a
performance near to the optimal one. For this
purpose, fuzzy logic is applied, whose max/min
inference suits the decision process reducing the
computational complexity.
Firstly, Section 2 presents the signal model.
Next, Section 3 formulates the Bayesian
detector. Section 4 designs the recursive fuzzy
CDMA detector. This section shows that
following the algorithm of Hayes et al. [2], the

fuzzy detector can be implemented in a similar
manner to the familiar Viterbi algorithm trellis
for MLSE. Section 5 shows some simulation
results and, finally conclusions come.
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In a block transmission CDMA system each
received burst is divides in sets of Nc chips.
The signal in each set can be formulated as O :
                        PQRS += ∑
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Where U  is the number of intracell users,
1)( VWXYZ[ ∈\  is the temporal chip sequence

transmitted by user k of length Nc;]^ _`]_abc )1( −+∈
d

 is the channel matrix for

user e  of length L, 1)1( fghij −+∈k  and
1)1( lmnop −+∈q are the Gaussian noise and the

total received signals respectively. The signal
model of Eq. (1) can also be written as follows:
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Assuming that a short spreading code is being
used, the transmitted chip sequence by user k
can be expressed as )()()( }}}~ ��� = , where

1)( � ��� ∈� corresponds to the bipolar (±1)

transmitted symbol sequence. )(
N

)( �� ���
⊗=  ,

being 1)( � ��� ∈�  the spreading code of user �
with a processing gain of G. Note that

NGN c = , where Nc and N represents the



number of chips and symbols transmitted by
each user respectively. Finally, the last
notations can be compacted using stacked
vectors as ���� =� , where

[ ]{ }(K)(1)diag ��� �= . Then, the received
signal model can be expressed at bit time as:

              ������� +=+= scc             (3)

where ������ =  being �� the channel matrix

at bit time.
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Given a set of observations collected in the

vector [ ]·¸¹¸»ºº½¼
1k +−=¾ , the Bayesian or

maximum a posteriori (MAP) symbol-by-
symbol decision rule for the symbol transmitted
by the desired user 1 at instant k (s1(k)) is to
choose the symbol ap which is most probable
given these observations, i.e.:

        )/(arg 1
/ ¿ÀÁ¿ÂÀ ÃÄÅÆ Ã ÇÈ ÉÊ == −      (4)

where Ë  is the delay parameter which is chosen
to exceed the signal bitwise memory m=L/G+2.
Without loss of generality and in order to make
formulation easier Ì = 0. By applying the Bayes
rule and assuming binary transmission, the
Bayesian decision function is defined as :
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                                                                        (5)
where Ô.Õ Ö ×  stands for probability density
function. For the signal generation process
defined by eq.(3), the conditional densities that
constitute the decision function are
straightforward to evaluate. The set of noise
free output states of ØÙÚÜÛ=  is partitioned into

two sets conditioned on the transmitted symbol
of interest: { }1/ 1 ==+ ÝÞßáà  and { }1/ 1 −==− âãäæå .
Thus, the Bayesian decision function becomes
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where ns is the number of channel states and wi

are the weights associated with each of the
centers: +∈= ðñ òó ôôöõ1 and −∈−= ÷ø ùú ûû ü1 .

To work out the total number of states (ns) we
have to know the length of the channel memory

(L). If the memory is less than the processing
gain (G), we will always have only one bit of
ISI. Consequently ns = 2(2K). However if the
memory is bigger than the processing gain, we
will have ns = 2((L/G+2)K), where L/G is the
number of times that the channel memory  is
bigger than processing gain.
Moreover we have to note that the channel
states are vectors because the received data are
processed at chip time and we dispense with the
matched filter.
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The non-recursive Bayesian detector has a finite
memory. These means that to minimize the
expected number of symbol errors it is not used
all the available information, and, therefore, we
get a sub-optimum value of BER. If we want to
improve the detection quality (BER sense) we
have to increase the detector memory.
However, this solution produces an exponential
growing of the memory requirements and
consequently, it is computationally
unaffordable. One way to overcome this
drawback is to seek a recursive algorithm for

detecting the symbol 1#$  to avoid the storage of

the whole data sequence. In [3][4] the authors
have developed recursive algorithms in single-
user scenarios with intersymbol interference. In
the present work, we have extended their
formulation to multi-user environments, and
therefore to co-channel interference. The
optimal detector in (5) can also be formulated
as :
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The recursive algorithm is then designed based
on the fact that recursive expressions for

( )1�231323334 555567 )1(
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be derived. Applying the total probability
theorem and, using standard probability
techniques leads us to the following recursion:
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If we assume that all symbols are known but
1DE ,then the uncertainty of the last sample rk

only comes from the white noise components,
and, therefore, it is statistically independent of
previous samples rk-1. The recursive expression
given in eq.(8) can be written as :
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The last equation shows the relationship
between the recursive conditional probabilities
of the received vector as a function of the
previous time sample. Finally, to get the symbol
decision we can relate eq. (9) with eq. (7) .For
Gaussian noise we obtain:

          

( )

∑
= 













σ
−

−=
−

S
T

U
V U

VWVXWZY[
1

rf

2

2

kn

1 2
exp

\\\^]\\\^_`
ab

    (10)

Where the symbol decision, has been associated
with: the channel states, ci, the recursive density

probability function of last sample, cd ef
1−
, and

the noise probability density fn.

This last expression is very close to expression
(6), but now the weights wi are the values of the

recursive probabilities gh ij
1−
.Furthermore, in

line with the normalized radial basis function
derived by Cha et al. [5], we can form a
normalized Bayesian detector which forms an
estimate of the transmitted symbols themselves
rather than a decision function.
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This algorithm allows getting a detector with
infinity memory without storing all the data
sequence. However, it involves a large amount
of computational burden, especially if the
number of users and/or their amplitude levels

Figure 1. Recursive Fuzzy detector with maximum
and minimum inferences.

are large. To reduce this complexity, this paper
proposes the fuzzy recursive detector.
As noted by the authors in [6], expression (11)
shows the direct relationship between Bayesian
and Fuzzy terms. Eq.(11) can be seen as a fuzzy
system that uses a singleton fuzzification,
product inference, center of gravity (COG)
defuzzifier, and Gaussian membership function,
which are normalized to range [0 1]. This fact
allows to approximate product and sum
inferences by minimum and maximum
inferences respectively (see Figure 1), which
are more easy to calculate and consequently
reduce the final computational burden.
Below, the present work contributes to that of
[6] by designing a fuzzy detector that operates
recursively in order to be able to operate in
multiuser CDMA systems that transmit in burst
mode.
In Table 1, there is a comparative study of the
computational burden of MLSE, Recursive
Bayesian and Fuzzy detectors. Note that the
recursive fuzzy detector requires less memory
and algebraic operations than MLSE or Bayes.
In addition, in table 1 have been considered also
a possible reduction of the total number of
centroids to get a more affordable recursive
detector. That reduction has been carried out
according the maximums value of the
membership function degree that we want to
use to estimate the information signal.  In [6] it
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is shown that not all centroids are necessary to
get reasonable BER results in Bayes detection.
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+ M((G-1)2LK+1) (G-1)α2mK+1 (G-1) α2mK

- M(G2LK+1) Gα2mK+1 Gα2mK

* M(G2LK+1) (G+2)α2mK α2mK

Exp. ------------------ α2mK α2mK

Max M2LK -------------- 2mK-1

Min M2LK -------------- 2mK

Mem 2MK 2mK 2mK-1

Table 1. Computational burden of studied
systems.α=coefficient of centroids reduction. If the value
of α is equal to 1, no centroid reduction is applied. If its
value is 0.25 or 0.5, the reduction is the 75% and 50%
respectively. m=(L/G+2) is the channel memory bitwise
length. M is the interval between merges, that is, the
number of bits detected at the same time in Viterbi
algorithm: 3m≤ M ≤ 5m.
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Figure 2 shows that the recursive fuzzy detector
provides almost the same performance as the
optimal Bayes or MLSE detectors. Downlink
transmission in the TDD-Mode of UTRA has
been considered with 3 equal power users and
the standarized indoor channel [0.9525
0.3047]T. The channel coefficients are assumed
known. Nevertheless, in UMTS the mobile
knows the spread spectrum code of all users
and supervised clustering algorithms can be
applied. Figure 3 shows the results when
centroids reduction is carried out for the fuzzy
detector. Note that all the centroids are not
necessary to get a reasonable BER. Specifically,
a reduction lower than 50% is possible without
performance degradation.
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This work presents a fuzzy recursive
implementation of the Bayesian detector.
Simulations compare this detector with the
optimal Bayesian and MLSE ones and
demonstrate the good performance and low
complexity of the developed detector for
multiuser UMTS channels in downlink. Further
studies are to be carried out for unknown
channels. Additionally, theoretical analysis
based on robust statistics are in progress to
study the performance of the max/min detector
for non-Gaussian environments.
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Figure 2. Recursive Fuzzy and Bayesian detectors vs
MLSE. For each point 105 samples are considered
for each of the 10 MonteCarlo runs.
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Figure 3.-.Recursive Fuzzy with centroids reduction.
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