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ABSTRACT

Recentresearchin thedesignof filter bankshasshown thatnon-
orthogonalfilter bankscanpotentiallyprovidehighercodinggains
overorthogonalfilter banks.Theuseof non-orthogonalfilter banks,
however, posesa difficulty in the quantizationof subbandsig-
nals. The conventionalnearest-neighbor(NN) encodingrule for
the quantizationof subbandsignalsis no longeroptimal. In this
paper, we proposetwo schemesfor the quantizationof subband
signalsin non-orthogonalsubbandcoders.An optimalschemefor
quantizationof subbandsignalsis proposedfirst. Thecomplexity
of theoptimalquantizationschemeis shown to grow exponentially
with thelengthof thesynthesisfilters,which motivatesthedevel-
opmentof low-complexity quantizationschemeswhenthe length
of thefilters in thesynthesisfilter bankis large.Thesecondquan-
tizationtechniqueusesaniterativemethodto quantizethesubband
signalssuchthat themeansquareerrorbetweentheinput andthe
reconstructedoutputsignalsis minimized.

1. INTRODUCTION

Many imagecompressiontechniquesinvolve thesubbanddecom-
positionof the image,followed by the quantization,and the en-
tropy coding,of thesubbandsignals.Oneof theconcernsregard-
ing thequantizationof subbandsignalsis theorthogonalityof the
analysisand the synthesisfilter banks. Specifically, if the filter
banksareorthogonal,then,themeansquareerror(MSE)between
the actualand the quantizedsubbandcoefficients is preserved at
the output. This allows the useof an efficient nearest-neighbor
(NN) encodingrule to quantizethesubbandsignals.On theother
hand, recentresultsin filter bank design[1, 2, 3] have shown
that non-orthogonalfilter bankscan achieve larger coding gains
thanorthogonalfilter banks.Thepotentialof non-orthogonalfilter
banksto providelargercodinggains,aswell astheir inherentflexi-
bility (fewerconstraints),makesthemattractivefor usein subband
coding.

However, the useof non-orthogonalfilter bankscomplicates
thequantizationof subbandsignals.Theaim of quantizationis to�
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minimizetheMSEbetweentheinputandthereconstructedoutput
sequence.For non-orthogonalfilter banks,this error may not be
equalto theerrorbetweentheoriginal andthequantizedsubband
signals.Thequantizationschemesfor encodingsubbandsignalsin
non-orthogonalsubbandcodersmaybemuchmorecomplex than
thosefor orthogonalsubbandcoders.Onetechniqueto avoid the
problemrelatedto quantizationof subbandsignals,is to design
thefilter banksto becloseto orthogonal[4] while simultaneously
satisfyingsomedesirableproperty. The “quasi-orthogonality”of
suchfilter banksmakes the nearest-neighbor(NN) encodingof
thesubbandsignalsapproximatelyoptimal. Anothertechniqueto
quantizethe subbandsignalsin non-orthogonalfilter banksis to
choosethe quantizedsubbandsignalssuchthat a weightedsum
[5] of theerrorsin thedifferentchannelsis minimized.Themain
drawback of this techniqueis that certainhigh-rateassumptions
are madeto model the quantizationnoiseas white noise. The
useof sucha techniqueis not valid if the assumptionsrelatedto
the modelarenot satisfied. A relaxation-basedapproach[6] for
thequantizationof thesubbandsignalsin non-orthogonalsubband
coderscanalsobe usedto minimize the MSE betweenthe input
andtheoutputsignals.While this relaxation-basedtechniquedoes
not assumeany modelfor thequantizationnoise,thequantization
procedureis not optimal.

In this paper, we proposetwo schemesfor thequantizationof
subbandsignalsin non-orthogonalsubbandcoders. No assump-
tionsaremaderegardingthemodelfor thequantizationnoise.We
first proposean optimal schemefor the quantizationof subband
signalsin non-orthogonalsubbandcoders. The optimal quanti-
zationschemeinvolvesa trellis-basedsearchfor the sequenceof
quantizedsubbandcoefficientsthat resultsin the lowestMSE be-
tweentheinput andtheoutputsignals.Themaindrawbackof the
optimalquantizationschemeis its enormouscomputationalcom-
plexity whenthelengthof thesynthesisfilters is large.Thesecond
schemeis an iterative algorithmthat tries to minimize the MSE
betweenthe input andthe output. The key advantageof this al-
gorithm is its low computationalcomplexity. Typically, the al-
gorithm converges to a solution within a few iterations,though
the solutionto which it convergesmay not be optimal. Our sim-
ulation resultsshow that appreciableimprovementin SNR can
be obtainedover the NN encodingapproachandminimizing the
weightedsumof errorsapproach[5], for encodingthesubbandsig-
nalsin stronglynon-orthogonalsubbandcoders.Furthermore,the
simulationresultsindicatethattheperformanceof thesub-optimal
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Figure 1: PolyphaseDecompositionof an M-channelsubband
coder

iterative quantizationschemeis quite closeto thatof theoptimal
trellis-basedquantizationscheme.

2. OPTIMAL QUANTIZATION OF SUBBAND SIGNALS
IN NON-ORTHOGONAL CODERS

Considerthepolyphaserepresentationof atypicalM-channelsub-
bandcoder, asshown in Figure1. In this figure, sutqvxw and yztqvxw
representthepolyphasematricesassociatedwith theanalysisand
the synthesisfilter banksrespectively. Throughoutthe paper, we
assumethat the analysisandthe synthesisfilter banksconsistof
FIR filters. The input {|t�}~w is first convertedto M-dimensional
vectors,��t�}�w���� {|t���}�w���{�t���}�����w����&�[�[�N{|t���}���������w���� ,
which arefiltered by the block filter s�tqvxw . The subbandvectors� t�}~w arethenquantizedeitherby usinga scalarquantizerin each
of theM-channels,or by usinga vectorquantizer(VQ) of dimen-
sion � . It is alsopossibleto useinter-bandVQ; however such
schemesarenot consideredin this paper. Thequantizedsubband
vectors, �� t�}~w , arefilteredthroughthesynthesisblock filter yztqvxw
to producetheoutputvectors ���t�}�w . Themeansquareerror(MSE)
betweenthe input and the output sequenceis equalto the MSE
betweenthevectors��t�}~w and ���t�}~w . However, unlessyztqvxw is or-
thogonal,the MSE between� t�}~w and �� t�}�w may not be equalto
theMSEbetween��t�}~w and ���t�}�w .

For the sake of simplicity, we assumethat the lengthof the
input signal, {�t�}�w , is a multiple of � , i.e., ����� � , where �
is thelengthof theinputsignalandthatthelengthof thesynthesis
block filter is ¡ i.e.

y tqv¢w�� £¥¤�¦§ ¨ ©«ª y
¨ v ¤

¨
� (1)

where y ¨ are �­¬®� matrices.Without lossof generality, we
only considerthe casewhenthevector � t�}~w is vector-quantized.
Thenumberof codevectorsin theVQ codebookareassumedto be¯

. Theassumptionof usingVQ to quantizethesubbandsignals
doesnot exclude the casewherethe subbandsignalsarescalar-
quantized.In suchacase,if thescalarquantizersin eachof theM-
channelsareknown, we canconstructanequivalentvectorquan-
tizerwhosecodebookis thecross-productof thescalarcodebooks
for theM-channels.Theassumptionof thesubbandsignalsbeing
vector-quantizedis madeonly for the easeof presentationof the
algorithms.

With referenceto Figure1, the problemof quantizing � t�}~w
canbe formulatedasthat of choosingthe reconstructedsubband
vectors �� t�}~w suchthatthetotal distortion ° is minimized,where

° � ± ¤~¦§ ² ©³ªµ´9´ ��t�}~w¶�·���t�}~w ´9´ ¸ �
� ± ¤~¦§ ² ©³ª ´9´ ��t�}~w¶�

£¥¤�¦§ ¨ ©«ª yµ¹º�� t�}��¼»½w ´9´ ¸ � (2)

Since there are
¯

code vectorsin the codebook,then, the in-
put to the synthesisfilter bankat any instantcanconsistof only
oneof the

¯
possiblevectors,regardlessof thetrueoutputof the

analysisfilter bank. A conceptuallysimpletechniqueto quantize
the subbandvectorsis as follows – given that thereare � vec-
tors in the sequence� t�}~w , constructall

¯ ± possiblesequences
correspondingto the quantizedsubbandvectors, ��|¾ t�}~w , where¿ �ÁÀÂ�[�Ã���[�&� ¯ ± �Ä� is usedto index thepossiblē ± quantized
sequences.Next, eachoneof the

¯ ± sequences,��|¾ t�}~w , is filtered
throughthesynthesisblockfilter yztqvxw to producethecorrespond-
ing outputsequence,�� ¾ t�}~w , of thesynthesisfilter bank. Thepar-
ticular sequence���Å t�}~w that producesthe minimum MSE is then
transmittedto thedecoder. While thisexhaustive-searchtechnique
is optimal,its computationalcomplexity growsexponentiallywith
thelength, � , of theinputsequence.

Thecomplexity of theexhaustive-searchquantizationscheme
can be reducedby using the fact that the output of the synthe-
sis filter bankat any instantdependsonly uponthe choiceof the
current reconstructionvector and the past ¡��Æ� reconstruction
vectors. Therefore,it might be possibleto restrict the searchto
sequencesof lengthmuchsmallerthan � . By suitablydefining
the “state” of the synthesisfilter bank, it is possibleto draw a
parallel betweenthe synthesisfilter bank and a finite-statema-
chine. This similarity canbe exploited to reducethe complexity
of the optimal quantizationscheme. To illustrate the similarity
betweenthe synthesisfilter bank and a finite-statemachine,we
definethe stateof the filter bankat any instantof time to be the
indicesof thepast ¡®�Ä� reconstructionvectorsi.e. theindicesof�� t�}�� ��w��x�� t�}Ç�ÉÈIw��[�[�[���¢�� t�}��Ê¡Ë�Ì��w . If thenumberof codevec-
torsin theVQ codebookis

¯
, then,thereare

¯ £¥¤�¦
distinctstates

that canbe associatedwith the synthesisfilter bank. The output
of thesynthesisfilter bank, ���t�}~wÍ��Î £¥¤�¦¨ ©«ª y ¨ �� t�}z�Ï»½w , canbe
rewritten as ���t�}~wº�Ð��~ÑIt�}~w³�Ò��³Ó�t�}~w�� (3)

where

��³Ódt�}�wÔ��y ª �� t�}~w and ��~ÑIt�}~wÔ� £Õ¤~¦§ Ö © ¦ y
Ö �� t�}×�®Ø�w�� (4)

Eq.(4) revealsthat the outputof the synthesisfilter bankis com-
posedof two terms: �� Ñ t�}~w , whichdependsentirelyuponthestate
of thefilter bank,and ��~Ó�t�}~w , whichdependsonly uponthechoice
of the current reconstructionvector. The choiceof a particular
reconstructionvector, �� t�}~w , determinesthestateof thesynthesis
filter bankat time }É�Æ� . Thereare

¯
possiblestatetransitions

from eachstateat time } to thestatesat time }Ê�Á� . Thesestate
transitionscanberepresentedby meansof a trellis.

There is a one-to-onecorrespondencebetweenbetweenthe
stateof the filter bank and the past ¡��Ù� outputsof the filter
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Figure2: Block diagramof the encoderin a subbandcoderthat
usestheoptimalquantizationscheme

bank. Thus, the problemof finding the optimal sequenceof re-
constructionvectorscanbeformulatedin termsof finding theop-
timal sequenceof statesin thetrellis associatedwith thesynthesis
filter bank. Thelatterproblemcanbeefficiently solvedusingthe
Viterbi Algorithm [8]. Theoutputof thesynthesisfilter bank,and
hencethe MSE, after time } dependsonly uponthe stateof the
filter bankat time } , andnot uponthepathusedto reachthestate
at time } . Thus,of all the

¯
pathsthatreachaparticularstate,the

pathwith thelowestdistortionis retainedandtheremainingpaths
canbediscarded.

Theblock diagramfor the encoderin a subbandcoderusing
the optimal quantizationschemeis asshown in Figure2. A key
featureof a subbandcoderinvolving optimal quantizationis that
oncethecodebookfor theVQ is fixed, theoutputis independent
of theanalysisfiltersusedto carryout thesubbanddecomposition.
This is evident sincethe quantizationschemedoesnot make use
of thesubbandvectors� t�}~w , andworksdirectlywith theinputse-
quenceof vectors,��t�}~w . Thefiltering andquantizationoperations
aredonejointly by anon-lineartrellis-basedencoder. Suchtrellis-
basedencodingschemeshave beenproposed[7] earlierto encode
sourceswith memory. The currentderivation of sucha scheme
was,however, motivatedin a differentcontext – the problemof
optimalquantizationin non-orthogonalsubbandcoders.

The complexity of the trellis-basedsearchdependsuponthe
length of the synthesisblock filter and the numberof codevec-
tors in the codebook. The complexity is proportional to � ¬¯ £

(filtering, additionandcomparison)operations.Thus,unlike
theexhaustive-searchapproach,thecomplexity of thetrellis-based
searchapproachincreaseslinearly with the lengthof the signal.
However, the encodingcomplexity grows exponentiallywith the
lengthof the synthesisfilter bank. The complexity of the trellis-
basedquantizationprocedurecanbereduced,at thecostof extra
storage,by pre-computingthe valuesof ��~ÑIt�}~w correspondingto
eachof the

¯ £¥¤�¦
states,andthoseof ��³Ódt�}~w correspondingto each

of the
¯

codevectors.In this case,thefiltering operationinvolves
just addingpre-computedvectors.It is alsopossibleto reducethe
complexity of thetrellis-basedapproach,at thecostof optimality,
by usingreducedstate-search[7] techniques.

3. ITERATIVE QUANTIZATION OF SUBBAND SIGNALS
IN NON-ORTHOGONAL CODERS

In theprevioussection,wedevelopedanoptimalschemefor quan-
tizationof subbandsignalsin non-orthogonalsubbandcoders.How-
ever, thecomplexity of theoptimalschemeincreasesexponentially
with the lengthof the synthesisfilters. Thus,whenthe lengthof
the filters usedin the synthesisfilter bank is large, trellis-based
quantizationapproachbecomesimpracticaldue to its enormous
computationalcomplexity. The large complexity of the optimal
quantizationschemeprovidesthemotivationbehindthedesignof
low-complexity quantizationschemeswhenthe lengthof the fil-
tersusedin thesynthesisfilter bankis large.

Theexpressionfor theMSEbetweentheinputandtheoutput,
asgivenin Eq. (2), indicatesthatthechoiceof a particularrecon-
structionvectoreffectsa numberof termsin thefirst summation.
Considerthecasewherewe have selectedthereconstructionvec-
tors up to the time instant ¿ �Æ� . In order to choose, �� t ¿ w , we
considerall thetermsin Eq. (2) thatinvolve �� t ¿ w , namely,

° ¾ � ¾21 £Õ¤~¦§² © ¾ ´!´ ��t�}~w|�
£¥¤�¦§ ¨ ©«ª y ¹Ô�� t�}×�Ì»½w ´!´ ¸ � (5)

Thereconstructionvector �� t ¿ w shouldbechosento minimize the
distortion given by Eq. (5). The probleminvolved in choosing�� t ¿ w in this manneris that, at the currentinstant,only the past
reconstructionvectors, �� t ¿ �Ï» w for » �Ð�Ã�ùÈx���[�[�[� ¿ , areknown.
However, Eq. (5) alsoinvolvessomeof thereconstructionvectors�� t ¿ �Æ» w for » � �Ã�ùÈx���[�[�[��� which are as yet unknown, and
dependuponthechoiceof �� t ¿ w .

Thisproblemcanbeeliminatedby usinganestimateof �� t ¿ �» w ratherthanits truevalue. To this end,we proposean iterative
techniqueto estimate �� t ¿ � » w . Theactualvalueof thesubband
vectors� t ¿ �Ï»½w is usedasaninitial estimateof �� t ¿ ��» w . Based
ontheestimateof �� t ¿ � » w , avalueof �� t ¿ w is chosento minimize
Eq. (5). This processis carriedout till all the subbandvectors
arequantized.At theendof thefirst iteration,we revisit theprob-
lem of quantizing �� t ¿ w underthe assumptionthat the valuesof�� t ¿ � »½w are fixed to the valuesobtainedin the previous itera-
tion. Sincethevaluesof �� t ¿ ��» w arenot necessarilyidenticalto
their estimatedvaluesusedto determine�� t ¿ w in thepreviousiter-
ation,it is possibleto refinethevalueof �� t ¿ w to minimizeEq. (5).
This procedureis carriedout for all thesubbandvectors,untill the
changein total distortionbetweentwo successive iterationsis less
thana specifiedvalue. Theproposedalgorithmcanbethoughtof
assample-by-samplequantizationof thesubbandvectorswith the
valuesof thefuturesamples( �� t ¿ �¼»½w , whenquantizing� t ¿ w ) es-
timatedby their quantizedvaluein thelast iteration.Theiterative
quantizationschemeis not guaranteedto beoptimal,however the
complexity of the iterative schemeis muchlower thanthatof the
trellis search-basedapproach.Theiterativequantizationschemeis
guaranteedto converge to a local minimasinceeach �� t ¿ w is cho-
sento minimize the total distortionwhile keepingthe restof the
vectors( �� t�}~w , }43� ¿ ) fixed. Thusafter eachiterationthe value
of the total distortion, ° , can only decreaseor remainconstant
therebyguarantingtheconvergenceof theiterative algorithmto a
localminima.



4. RESULTS

Theperformanceof ourproposedquantizationschemeswascom-
paredto thatof quantizationschemesthatminimize theweighted
sumof errorsin thedifferentsubbandchannels[5] (hereafter, re-
ferredto astheweightedMMSE scheme).For this purpose,ÈdÀ�5�6
samplesof anAR(1) source,with theparmeter7Ë��ÀÂ� 8�9 , wereen-
codedat �Ã� À and Èx� À bits/sampleby a two-channelsubbandcoder.
Theanalysisandsynthesisfilters thatwereusedfor comparisons
includedthe7-9 filter [9], the3-9 filter [6], the5-11filter [6] and
the4-4 filter [10]. Thereconstructioncodevectorsweregenerated
by using the GeneralizedLloyd Algorithm (GLA) over a set of
trainingvectors.The trainingvectorsweregeneratedby filtering
an AR(1) signal(differentfrom the testsignal)throughthe anal-
ysis filter bank. The codevectorsusedin the proposedschemes
andtheweightedMMSE subbandcodingschemewerethesame.
An � -bestsearchtechnique[7] wasusedto reducethe number
of pathsretainedin thetrellis-basedquantizationscheme.At each
stage,in thetrellis-basedsearch,thenumberof survivor pathswere
limited to È:9<; . Theresultsshown in Table1 comparetheSNRat
the output of the subbandcoderwith our quantizationschemes
to theSNRobtainedwith theweightedMMSE encodingscheme.
Theseresultsindicatethat the trellis-basedquantizationscheme
out-performsthe sub-optimalweightedMMSE schemeby uptoÀ � 9�� �Ã�9� dB for stronglynon-orthogonalfilter bankswhile thein-
creasein SNRis verysmall(about À � À:9 �®À �9� dB) for filter banks
thatarecloseto orthogonal(the7-9andthe3-9filter bank).

In the trellis-basedsearch,the statefrom which the decoder
shouldstartfiltering needsto be transmittedto thedecoder. This
causesan overheadof tq¡Ä�Á��w l =?>Õt ¯ w bits. Typically, the over-
headinvolved is small, andthe percentageincreasein bit rate is
marginalwhentheinputsequenceis of largelength.Alternatively,
the overheadcanbe avoidedby constrainingthe trellis searchto
alwaysbegin from a particularpre-determinedstate.In theresults
presentedin Table1, the trellis searchwas constrainedto begin
from anall zerostate.

5. CONCLUSIONS

In this paper, we presentedtwo schemesfor the quantizationof
the subbandsignalsin subbandcodersinvolving non-orthogonal
filter banks. The first techniqueoptimally quantizesthe subband
signalsin non-orthogonalsubbandcoders.This schemeinvolves
theuseof atrellis-basedencoderto searchtheoptimalsequenceof
thereconstructionvectors.However, thecomplexity of thetrellis-
basedquantizationschemeincreasesexponentiallywith thelength
of the sythesisfilter banks. The secondquantizationschemeis
an iterative techniqueto minimize the MSE betweenthe input
andthe outputsignals. The advantageof the iterative schemeis
its low computationalcomplexity; its drawbackis that it maynot
necessarilyresult in the optimal choiceof the reconstructedsub-
bandvectors. Simulationresultsindicatethat appreciablegains
in SNRcanbeobtainedusingtheproposedquantizationschemes
over theweightedMMSE schemeof [5] in thecasewhenthefilter
bankusedto performthesubbanddecompositionis stronglynon-
orthogonal.Thesimulationresultsalsoindicatethateven though
the iterative quantizationschemeis sub-optimal,the lossin SNR
values(whencomparedwith theoptimalquantizationscheme)is
verysmall.

Filter rate � �Ã� À bits/sample
Bankused SNR(dB) SNR(dB) SNR(dB)

7-9 7.42 7.43 7.45
3-9 7.91 7.96 7.98
5-11 8.52 8.93 8.98
4-4 5.56 6.02 6.15

rate ��ÈÂ� À bits/sample
7-9 12.8 12.84 12.86
3-9 12.7 12.8 12.81
5-11 13.10 14.17 14.27
4-4 9.36 10.37 10.47

Table 1: SNR in dB at the output of a non-orthogonalsubband
coderusingthe weightedMMSE approach(first column),the it-
erative approach(secondcolumn)andthe trellis-basedapproach
(third column).
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