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ABSTRACT

Recentresearchn the designof filter bankshasshavn thatnon-
orthogonafilter bankscanpotentiallyprovide highercodinggains
overorthogonafilter banks.Theuseof non-orthogondilter banks,
however, posesa difficulty in the quantizationof subbandsig-
nals. The corventionalnearest-neighbofNN) encodingrule for
the quantizationof subbandsignalsis no longeroptimal. In this
paper we proposetwo schemedor the quantizationof subband
signalsin non-orthogonasubbandtoders.An optimalschemeor
quantizatiorof subbandsignalsis proposedirst. The compleity
of theoptimalquantizatiorschemeas shovn to grow exponentially
with thelengthof the synthesidilters, which motivatesthe devel-
opmentof low-compleity quantizationschemesvhenthe length
of thefiltersin the synthesidilter bankis large. The secondquan-
tizationtechniquausesaniterative methodto quantizethe subband
signalssuchthatthe meansquareerror betweerthe input andthe
reconstructeadutputsignalsis minimized.

1. INTRODUCTION

Marny imagecompressioriechniqguesnvolve the subbandlecom-
position of the image, followed by the quantization,andthe en-
tropy coding,of the subbandsignals.Oneof the concerngegard-
ing the quantizatiorof subbandsignalsis the orthogonalityof the
analysisand the synthesidfilter banks. Specifically if the filter
banksareorthogonalthen,the meansquareerror(MSE) between
the actualandthe quantizedsubbandcoeficientsis presered at
the output. This allows the useof an efficient nearest-neighbor
(NN) encodingrule to quantizethe subbandsignals.On the other
hand, recentresultsin filter bank design[1, 2, 3] have shavn
that non-orthogonafilter bankscan achieve larger coding gains
thanorthogonafilter banks.The potentialof non-orthogonafilter
banksto provide largercodinggains,aswell astheirinherentlexi-
bility (fewer constraints)makesthemattractie for usein subband
coding.

However, the useof non-orthogonafilter bankscomplicates
the quantizationof subbandsignals.The aim of quantizationis to
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minimizethe MSE betweertheinputandthereconstructedutput
sequence For non-orthogonafilter banks,this error may not be
equalto the error betweerthe original andthe quantizedsubband
signals.Thequantizatiorscheme$or encodingsubbandignalsin
non-orthogonasubband:odersmay be muchmorecomples than
thosefor orthogonalsubbandcoders.Onetechniqueto avoid the
problemrelatedto quantizationof subbandsignals,is to design
thefilter banksto becloseto orthogonal4] while simultaneously
satisfyingsomedesirableproperty The “quasi-orthogonality”of
suchfilter banksmales the nearest-neighbofNN) encodingof
the subbandsignalsapproximatelyoptimal. Anothertechniqueto
guantizethe subbandsignalsin non-orthogonafilter banksis to
choosethe quantizedsubbandsignalssuchthat a weightedsum
[5] of theerrorsin the differentchannelds minimized. The main
dravback of this techniqueis that certainhigh-rateassumptions
are madeto model the quantizationnoise as white noise. The
useof suchatechniqueis not valid if the assumptionselatedto
the model are not satisfied. A relaxation-basea@pproach6] for
thequantizatiorof thesubbandignalsin non-orthogonasubband
coderscanalsobe usedto minimize the MSE betweenthe input
andtheoutputsignals.While this relaxation-basetechniquedoes
notassumery modelfor the quantizatiomoise,the quantization
procedurés not optimal.

In this paperwe proposewo schemedor the quantizatiorof
subbandsignalsin non-orthogonakubbandcoders. No assump-
tionsaremaderegardingthe modelfor the quantizatiomoise.We
first proposean optimal schemefor the quantizationof subband
signalsin non-orthogonakubbandcoders. The optimal quanti-
zationschemenvolvesa trellis-basedsearchfor the sequencef
gquantizedsubbanccoeficientsthatresultsin the lowestMSE be-
tweenthe input andthe outputsignals.The maindravbackof the
optimal quantizationschemds its enormouscomputationatom-
plexity whenthelengthof thesynthesidiltersis large. Thesecond
schemeis an iterative algorithmthat tries to minimize the MSE
betweenthe input andthe output. The key adwantageof this al-
gorithm is its low computationalcompleity. Typically, the al-
gorithm convergesto a solution within a few iterations,though
the solutionto which it convergesmay not be optimal. Our sim-
ulation resultsshov that appreciableimprovementin SNR can
be obtainedover the NN encodingapproachand minimizing the
weightedsumof errorsapproachf5], for encodinghesubbandig-
nalsin stronglynon-orthogonasubband-oders.Furthermorethe
simulationresultsindicatethatthe performancef thesub-optimal
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Figure 1: PolyphaseDecompositionof an M-channelsubband
coder

iterative quantizationschemds quite closeto that of the optimal
trellis-basedjuantizatiorscheme.

2. OPTIMAL QUANTIZATION OF SUBBAND SIGNALS
IN NON-ORTHOGONAL CODERS

Considetthe polyphaseepresentationf atypical M-channelsub-
bandcoder asshavn in Figurel. In this figure, E(z) andR(z)

representhe polyphasematricesassociateavith the analysisand
the synthesidilter banksrespectiely. Throughoutthe paper we

assumehat the analysisandthe synthesidfilter banksconsistof

FIR filters. Theinput z(n) is first corvertedto M-dimensional
vectors,v(n) = [z(Mn),z(Mn —1),...,z(Mn — M + 1)]7,

which arefiltered by the block filter E(z). The subbandvectors
u(n) arethenquantizeceitherby usinga scalarquantizeiin each
of the M-channelspr by usinga vectorquantizenVVQ) of dimen-
sion M. It is alsopossibleto useinterbandVQ; however such
schemesrenot consideredn this paper The quantizedsubband
vectors,ii(n), arefiltered throughthe synthesisblock filter R(z)

to producethe outputvectorsv(n). Themeansquareerror(MSE)

betweenthe input and the output sequences equalto the MSE

betweerthe vectorsv(n) andv(n). However, unlessR(z) is or-

thogonal,the MSE betweenu(n) andii(n) may not be equalto

the MSE betweenv(n) and¥(n).

For the sale of simplicity, we assumethat the length of the
input signal, z(n), is amultiple of M, i.e., P = KM, whereP
is thelengthof theinput signalandthatthelengthof thesynthesis
blockfilteris L i.e.

L—-1

R(z) = > Rez ™", €

k=0

whereR; are M x M matrices. Without loss of generality we
only considerthe casewhenthe vectoru(n) is vectorquantized.
Thenumberof codevectorsin theVQ codeboolareassumedo be
N. Theassumptiorof usingVQ to quantizethe subbandsignals
doesnot exclude the casewherethe subbandsignalsare scalar
qguantizedIn suchacasejf thescalarquantizersn eachof the M-
channelsareknown, we canconstructan equivalentvectorquan-
tizerwhosecodebookis the cross-producof the scalarcodebooks
for the M-channels.The assumptiorof the subbandsignalsbeing
vectorquantizedis madeonly for the easeof presentatiorof the
algorithms.

With referenceto Figure 1, the problemof quantizingu(n)
canbe formulatedasthat of choosingthe reconstructegubband
vectorsii(n) suchthatthetotal distortion.D is minimized,where

D

S v =) |17,
n=0

K-1 L—1
dllvin) = Raan—-k) 7. (2
n=0 k=0

Sincethereare N code vectorsin the codebook,then, the in-
put to the synthesidilter bankat ary instantcan consistof only
oneof the N possiblevectors,regardlesof the true outputof the
analysisfilter bank. A conceptuallysimpletechnigueto quantize
the subbandvectorsis asfollows — given that thereare K vec-
tors in the sequencau(n), constructall N* possiblesequences
correspondingo the quantizedsubbandvectors, @i, (n), where
r=0,1,... N¥ — 1is usedto index the possibleN* quantized
sequencesNext, eachoneof the N¥ sequencedi, (n), isfiltered
throughthe synthesidlockfilter R(z) to producethecorrespond-
ing outputsequencey ., (n), of the synthesidilter bank. The par
ticular sequencedi; (n) that produceshe minimum MSE is then
transmittedo the decoderWhile this exhaustve-searchiechnique
is optimal,its computationatompleity grows exponentiallywith
thelength, K, of theinput sequence.

Thecompleity of the exhaustve-searchlguantizatiorscheme
can be reducedby using the fact that the output of the synthe-
sisfilter bankat ary instantdependsonly uponthe choiceof the
currentreconstructionvector and the past L — 1 reconstruction
vectors. Therefore,it might be possibleto restrictthe searchto
sequencesf lengthmuchsmallerthan K. By suitably defining
the “state” of the synthesisfilter bank, it is possibleto drav a
parallel betweenthe synthesisfilter bank and a finite-statema-
chine. This similarity canbe exploited to reducethe complexity
of the optimal quantizationscheme. To illustrate the similarity
betweenthe synthesidfilter bank and a finite-statemachine,we
definethe stateof the filter bankat ary instantof time to be the
indicesof thepastL — 1 reconstructiorvectorsi.e. theindicesof
t(n—1),a(n—2),...,4(n—L+1). If thenumberof coderec-
torsin theVQ codeboolis IV, then thereare N“~! distinctstates
that canbe associatedvith the synthesidilter bank. The output
of the synthesidilter bank,¥(n) = ,f;g Ria(n — k), canbe
rewritten as

V(n) = ¥s(n) + Ve(n), 3
where

L—1
Ve(n) =Roti(n) and  Vi(n) = Rya(n—i). (4)
i=1

Eq.(4) revealsthat the outputof the synthesidilter bankis com-
posedof two terms: ¥s(n), which depend®ntirelyuponthestate
of thefilter bank,and¥.(n), whichdepend®nly uponthe choice
of the currentreconstructiorvector The choice of a particular
reconstructiorvector @(n), determineghe stateof the synthesis
filter bankattime n + 1. Thereare N possiblestatetransitions
from eachstateat time n to the statesattime n + 1. Thesestate
transitionscanberepresentetty meanf atrellis.

Thereis a one-to-onecorrespondencéetweenbetweenthe
stateof the filter bank and the pastZ — 1 outputsof the filter
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Figure2: Block diagramof the encoderin a subbandcoderthat
usegheoptimalquantizatiorscheme

bank. Thus, the problemof finding the optimal sequencef re-

constructiorvectorscanbe formulatedin termsof finding the op-

timal sequencef statesn thetrellis associatedvith the synthesis
filter bank. The latter problemcanbe efficiently solved usingthe

Viterbi Algorithm [8]. The outputof the synthesidilter bank,and

hencethe MSE, after time n dependonly uponthe stateof the

filter bankattime n, andnot uponthe pathusedto reachthe state
attimen. Thus,of all the N pathsthatreachaparticularstate the

pathwith the lowestdistortionis retainedandthe remainingpaths
canbediscarded.

The block diagramfor the encoderin a subbandcoderusing
the optimal quantizationschemds asshawvn in Figure2. A key
featureof a subbandcoderinvolving optimal quantizationis that
oncethe codeboolfor the VQ is fixed, the outputis independent
of theanalysidilters usedto carryoutthe subbandiecomposition.
This is evident sincethe quantizationschemedoesnot malke use
of thesubbandrectorsu(n), andworksdirectly with theinputse-
guenceof vectors,v(n). Thefiltering andquantizatioroperations
aredonejointly by anon-lineartrellis-basedencoderSuchtrellis-
basecencodingschemesave beenproposed7] earlierto encode
sourceswith memory The currentderivation of sucha scheme
was, however, motivatedin a differentcontext — the problemof
optimalquantizatiorin non-orthogonasubbancoders.

The compleity of the trellis-basedsearchdependsuponthe
length of the synthesisblock filter and the numberof coderec-
tors in the codebook. The complity is proportionalto K x
N (filtering, additionand comparison)perations.Thus, unlike
theexhaustve-searctapproachthecompleity of thetrellis-based
searchapproachincreasedinearly with the lengthof the signal.
However, the encodingcompleity grows exponentiallywith the
lengthof the synthesidilter bank. The compleity of the trellis-
basedquantizationprocedurecanbe reduced at the costof extra
storage by pre-computinghe valuesof ¥,(n) correspondingo
eachof the N~ ! states,anthoseof ¥..(n) correspondingo each
of the N codevectors.In this casethefiltering operationinvolves
justaddingpre-computediectors.lt is alsopossibleto reducethe
compleity of thetrellis-basedapproachat the costof optimality;
by usingreducedstate-searcfv] techniques.

3. ITERATIVE QUANTIZATION OF SUBBAND SIGNALS
IN NON-ORTHOGONAL CODERS

In theprevioussectionwe developedanoptimalschemédor quan-
tizationof subbandaignalsin non-orthogonasubbanaoders How-
ever, thecompleity of theoptimalschemeéncreasesxponentially
with the lengthof the synthesidfilters. Thus,whenthe length of
the filters usedin the synthesidfilter bankis large, trellis-based
guantizationapproachbecomesmpracticaldue to its enormous
computationalkcompleity. The large compleity of the optimal
guantizatiorschemeprovidesthe motivation behindthe designof
low-compleity quantizationschemesvhenthe lengthof the fil-
tersusedin the synthesidilter bankis large.

Theexpressiorfor the MSE betweertheinputandtheoutput,
asgivenin Eq. (2), indicatesthatthe choiceof a particularrecon-
structionvectoreffectsa numberof termsin the first summation.
Considerthe casewherewe have selectedhe reconstructiorvec-
tors up to the time instantr — 1. In orderto choose,ia(r), we
considerall thetermsin Eq. (2) thatinvolve &(r), namely

r+L—1 L—1
D= > |Iv(n) =) Rut(n—k) . ()
n=r k=0

Thereconstructiorvectorii(r) shouldbe choserto minimize the
distortiongiven by Eq. (5). The probleminvolved in choosing
a(r) in this manneris that, at the currentinstant, only the past

reconstructiorvectors,a(r — k) fork = 1,2,...,r, areknown.
However, Eq. (5) alsoinvolvessomeof the reconstructiorvectors
a(r + k) for k = 1,2,..., P which are asyet unknavn, and

dependuponthechoiceof ii(r).

This problemcanbeeliminatedby usinganestimateof a(r +
k) ratherthanits true value. To this end,we proposean iterative
techniqueto estimatei(r + k). The actualvalue of the subband
vectorsu(r + k) is usedasaninitial estimateof @i(r + k). Based
ontheestimateof i(r + k), avalueof i(r) is choserto minimize
Eq. (5). This processs carriedout till all the subbandvectors
arequantized At the endof thefirst iteration,we revisit the prob-
lem of quantizingii(r) underthe assumptiorthat the valuesof
a(r + k) arefixed to the valuesobtainedin the previous itera-
tion. Sincethevaluesof @i(r + k) arenot necessarilydenticalto
their estimatedraluesusedto determineii(r) in the previousiter-
ation, it is possibleto refinethevalueof @(r) to minimize Eq. (5).
This proceduras carriedout for all the subbandrectors,untill the
changan total distortionbetweertwo successie iterationsis less
thana specifiedvalue. The proposedalgorithmcanbe thoughtof
assample-by-samplguantizatiorof the subbandrectorswith the
valuesof thefuturesamplega(r + &), whenquantizingu(r)) es-
timatedby their quantizedvaluein thelastiteration. Theiterative
guantizationrschemds not guaranteedo be optimal, howvever the
compleity of theiterative schemes muchlower thanthatof the
trellis search-basedpproachTheiterative quantizatiorschemaes
guaranteedo corvergeto alocal minimasinceeachii(r) is cho-
sento minimize the total distortionwhile keepingthe restof the
vectors(ii(n), n # r) fixed. Thusafter eachiterationthe value
of the total distortion, D, canonly decreaser remainconstant
therebyguarantinghe corvergenceof theiterative algorithmto a
local minima.



4. RESULTS

The performancef our proposedjuantizatiorschemesvascom-
paredto thatof quantizatiorschemeghat minimize the weighted
sumof errorsin the differentsubbancchanneld5] (hereafterre-
ferredto asthe weightedMMSE scheme) For this purpose 2048
sample®f anAR(1) sourcewith theparmetep = 0.95, wereen-
codedat 1.0 and2.0 bits/sampleby a two-channekubband:oder
The analysisand synthesidfilters thatwere usedfor comparisons
includedthe 7-9filter [9], the 3-9filter [6], the 5-11filter [6] and
the4-4filter [10]. Thereconstructiorcodevectorsweregenerated
by using the Generalized_loyd Algorithm (GLA) over a setof
training vectors. The training vectorswere generatedy filtering
an AR(1) signal(differentfrom the testsignal)throughthe anal-
ysis filter bank. The codevectorsusedin the proposedschemes
andthe weightedMMSE subbandcodingschemewerethe same.
An M-bestsearchtechnique[7] was usedto reducethe number
of pathsretainedn thetrellis-basedjuantizatiorscheme At each
stagejn thetrellis-basedearchthenumberof survivor pathswere
limited to 256. Theresultsshavn in Table1 comparethe SNR at
the output of the subbandcoderwith our quantizationschemes
to the SNR obtainedwith the weightedMMSE encodingscheme.
Theseresultsindicate that the trellis-basedquantizationscheme
out-performsthe sub-optimalweightedMMSE schemeby upto
0.5 — 1.1 dB for stronglynon-orthogonalfilter bankswhile thein-
creasen SNRis very small(about0.05 — 0.1 dB) for filter banks
thatarecloseto orthogonalthe 7-9 andthe 3-9filter bank).

In the trellis-basedsearch the statefrom which the decoder
shouldstartfiltering needsto be transmittecto the decoder This
causesan overheadof (L — 1)log(N) bits. Typically, the over-
headinvolved is small, andthe percentagéncreasein bit rateis
manginalwhentheinputsequencés of largelength. Alternatively,
the overheadcan be avoidedby constrainingthe trellis searchto
alwaysbegin from a particularpre-determinedtate.In theresults
presentedn Table1, the trellis searchwas constrainedo begin
from anall zerostate.

5. CONCLUSIONS

In this paper we presentedwo schemedor the quantizationof
the subbandsignalsin subbandcodersinvolving non-orthogonal
filter banks. The first techniqueoptimally quantizeshe subband
signalsin non-orthogonasubbanccoders. This schemeanvolves
theuseof atrellis-basedncodeto searchitheoptimalsequencef
thereconstructiorvectors.However, the compleity of thetrellis-
basedjuantizatiorschemencreasesxponentiallywith thelength
of the sythesisfilter banks. The secondquantizationschemeis
an iterative techniqueto minimize the MSE betweenthe input
andthe outputsignals. The advantageof the iterative schemes
its low computationatompleity; its dravbackis thatit may not
necessarilyesultin the optimal choiceof the reconstructedgub-
bandvectors. Simulationresultsindicatethat appreciablegains
in SNR canbe obtainedusingthe proposedjuantizatiorschemes
overtheweightedMIMSE schemeof [5] in the casewhenthefilter
bankusedto performthe subbandlecompositiorns stronglynon-
orthogonal.The simulationresultsalsoindicatethat even though
the iterative quantizationschemes sub-optimal thelossin SNR
values(whencomparedwvith the optimal quantizationscheme)s
very small.

Filter rate= 1.0 bits/sample
Bankused|| SNR(dB) SNR(dB) SNR(dB)
7-9 7.42 7.43 7.45
39 7.91 7.96 7.98
5-11 8.52 8.93 8.98
4-4 5.56 6.02 6.15
rate= 2.0 bits/sample
7-9 12.8 12.84 12.86
39 12.7 12.8 12.81
5-11 13.10 14.17 14.27
4-4 9.36 10.37 10.47

Table1: SNRin dB at the outputof a non-orthogonakubband
coderusingthe weightedMMSE approach(first column), the it-
erative approach(secondcolumn)andthe trellis-basedapproach
(third column).
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