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ABSTRACT

Several works addressed the problem of deriving the asymp-
totic capacity of a wireless system with space diversity in
random fading. However, the theory of random matrices
was never used in evaluating the asymptotic optimal perfor-
mance in closed form. By increasing the number of trans-
mit and receive antennas the resulting capacity tend to be a
stable value independent of the fading realization. This sur-
prising result is a consequence of Girko’s law, stating that
the asymptotic distribution of the eigenvalues of a random
matrix, with independent identically distributed zero mean
complex entries, is a circle. The conditions on the probabil-
ity density function of the matrix entries are satisfied by the
majority of random non-line of sight fading models. Using
this theory in this paper we derive the close form expres-
sion for the asymptotic capacity of a system with transmit
and receive diversity, assuming independent flat fading for
each transmit-receive antenna link, with equal distribution.
Our formula fits the numerical results even if the number of
transmit an receive antennas as small as ten.

1. INTRODUCTION AND PROBLEM STATEMENT

The progressive saturation of the radio frequency resources
and the increasing demand for high-bit rate wireless com-
munications generated an increasing interest in the use of
multiple transmit and receive antennas to augment the chan-
nel capacity. The optimization of the information rate through
multiple channels was considered since the early work on
the optimal coding for multi-input multi-output (MIMO)
models in [1]. More recently, in the context of space time
coding for flat fading in [5], [3], and for frequency selective
channels in [7], it was shown that the capacity can increase
linearly with the minimum between the number of transmit-
ters and the number of receivers. With H denoting the array
manifold, the input output relationship is:

y = Hx + n, (D)

where we assume that n is an additive white Gaussian noise
(AWGN) vector ~ N'(0,021). Assuming that CSI is avail-

able at both the transmitter and receiver sides under a con-
straint on the transmit power, a number of different opti-
mization criteria can be solved assuming that a linear pre-
coder F' and decoder G are used at the transmitter and the
receiver [6, Ch.9], so that

§ := Gy = GHFs + Gn. 2)

Invariably, the best linear mapping consist in modulating the
symbols using the eigenvectors of the channel as illustrated
in Fig.1 (a) where H = U*AV, with * indicating transpose
and conjugate, is the singular value decomposition (SVD)
of H and ®, I are diagonal matrices.
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Fig. 1. Optimum precoding /decoding.

Fig.1 (b), where 3; ~ N(0,02/)?) are uncorrelated
AGN random variables, shows how the channel is equiva-
lently decomposed by F' and G in a set of parallel indepen-
dent Gaussian subchannels where, in case of white additive
Gaussian noise, the signal to noise ratio is [6, Ch.9]

SNR; = ¢7.)\? /o2, (3)
and ¢?, controls the power allocated on the ith equivalent
subchannel. The obvious question that arises is how much
can be asymptotically gained by increasing the number of
subchannels, which is obtained by increasing the minimum
between the number of receive and tranmit antennas. Our
approach here differs from the one in [5], [3] because, we
explicitly derive the capacity for any realization of a very
large H exploiting one of the most interesting phenomena
arising in the theory of random variables after the central
limit theorem: the so called semi-circle or circle law, the



last named after Girko [4], that generalized earlier results
by Wiener to complex matrices.

Next section specifies how the channel capacity can be
derived as a function of the singular values of H while in
the Section 3 we will explain how Girko’s law can be used
to predict the asymptotic gain obtainable by increasing the
number of receive and transmit antennas under wide con-
ditions on the fading distribution. For simplicity we will
assume that:

(al) The number of receive and transmit antennas coincide
(H is square and of size N).

(a2) The elements of H H; ; are independent identically
distributed (i.i.d.) random variables with E{H; ;} = 0 and
VCLT[HZ'J'] = 0'1211.

2. PRELIMINARIES

If the average transmit power is limited
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The p.d.f of the input vector x that maximizes the channel
mutual information I (y, x) under (4) is x ~ N(0, Rzz):

trace(FF*)

I(8,s) =log|I + HR, . H*0, | )

and (5) is maximized when R, and H*H have the same
eigenvectors [2]. This is exactly what is obtained with x =
Fs with s ~ AM(0,I)! and F = ®V [6, Ch.9], hence
max, I(§,s) = Egil log(1 + SN R,,) and the asymptotic
capacity

1
C= lim — max
N—oo d11,- NN

Z log(1+ SNR,,). (6)

n=1

The maximization with respect ¢,,,, under the average power
constraint in (4), leads to the so called water-filling:

b = (K U%//\ik)+ (7

where K = const. is determined by imposing (4) and * in-
dicates that when the function inside the parenthesis is neg-
ative the value has to be set to zero. Assuming that A2, are
sorted in decreasing order and using (7), for every Py > 0
we can find a maximum N : 1 < N < N such that for
k<N=¢} >0andfork >N = ¢2, =0(N =1is
the trivial case where ¢7;, = Py > 0). Replacing (7) in (3)
we can write (6) simply as

C= lim — Zlog KM\, /o2). (8)

N—oco N

I'We assume that the symbols are white, but we can always include a
symbol "whitener’ in F'.

Oftentimes, when Py > 1 the formula is approximated us-
ing uniform loading, i.e. ¢7, ~ Py /N in which case
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For finite [V the dependence of the eigenvalues distribution
on the distribution of H; ; is rather intricate. However, sim-
ilar to what happens with the sum of random variables, the
distribution becomes invariant with respect to the particular
density of the entries H; ; as N — oo, as explained in the
following section.

3. SPACE-TIME CODING AND GIRKO’S LAW

The usefulness of Girkos’s law in the analysis of space-time
precoding lies in equation (1) and in Fig.1 (b). The last
clearly shows that the performance of a system described
as in (1) are function of nothing but the eigenvalues of H.
Since H is random, if two realization of H have the same
eigenvalues then the performance in additive Gaussian noise
are identical. The surprising implication of the theory of
random matrices is that, under the assumptions specified at
the end of Section 1, according to Girko’s law as N — oo
the eigenvalues of H/y/0% N tend to fill a circle of radius
one, as illustrated in Fig.3. From distribution of the the

Fig. 2. \,,\/0% N of a complex Gaussian H for N = 300.

eigenvalues we can obtain the distribution of the singular
values, since the last are the absolute values of the eigen-
values. Thus singular values \,, of the normalized matrix
H = H/\/0%N as N — oo tend to assume the value
with probability density function (p.d.f) the is a fourth of a
circle:

pi(x) =2/m\/1—22/4

Further details on Girko’s law can be found in [4]. Using
(10) we can write

SNR,,

0<z<2  (10)

=7’ (z)2®, (1)

= SNR(z)

N —oc0

where + is defined as:

y=o0%5/02 (12)



4. ASYMPTOTIC CAPACITY

For N — oo (11) and (10):

4.1. Numerical results

(a) Uniform loading (b) Optimum Loading

Fig. 3. Comparison between theory and simulation.
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