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ABSTRACT

Several works addressed the problem of deriving the asymp-

totic capacity of a wireless system with space diversity in

random fading. However, the theory of random matrices

was never used in evaluating the asymptotic optimal perfor-

mance in closed form. By increasing the number of trans-

mit and receive antennas the resulting capacity tend to be a

stable value independent of the fading realization. This sur-

prising result is a consequence of Girko's law, stating that

the asymptotic distribution of the eigenvalues of a random

matrix, with independent identically distributed zero mean

complex entries, is a circle. The conditions on the probabil-

ity density function of the matrix entries are satis�ed by the

majority of random non-line of sight fading models. Using

this theory in this paper we derive the close form expres-

sion for the asymptotic capacity of a system with transmit

and receive diversity, assuming independent �at fading for

each transmit-receive antenna link, with equal distribution.

Our formula �ts the numerical results even if the number of

transmit an receive antennas as small as ten.

1. INTRODUCTION AND PROBLEM STATEMENT

The progressive saturation of the radio frequency resources

and the increasing demand for high-bit rate wireless com-

munications generated an increasing interest in the use of

multiple transmit and receive antennas to augment the chan-

nel capacity. The optimization of the information rate through

multiple channels was considered since the early work on

the optimal coding for multi-input multi-output (MIMO)

models in [1]. More recently, in the context of space time

coding for �at fading in [5], [3], and for frequency selective

channels in [7], it was shown that the capacity can increase

linearly with the minimum between the number of transmit-

ters and the number of receivers. WithH denoting the array

manifold, the input output relationship is:

y =Hx+ n; (1)

where we assume that n is an additive white Gaussian noise

(AWGN) vector � N (0; �2
n
I). Assuming that CSI is avail-

able at both the transmitter and receiver sides under a con-

straint on the transmit power, a number of different opti-

mization criteria can be solved assuming that a linear pre-

coder F and decoderG are used at the transmitter and the

receiver [6, Ch.9], so that

ŝ := Gy = GHFs+Gn: (2)

Invariably, the best linear mapping consist in modulating the

symbols using the eigenvectors of the channel as illustrated

in Fig.1 (a) whereH = U��V, with � indicating transpose

and conjugate, is the singular value decomposition (SVD)

ofH and �;� are diagonal matrices.
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Fig. 1. Optimum precoding /decoding.

Fig.1 (b), where �i � N (0; �2
n
=�

2
i
) are uncorrelated

AGN random variables, shows how the channel is equiva-

lently decomposed by F andG in a set of parallel indepen-

dent Gaussian subchannels where, in case of white additive

Gaussian noise, the signal to noise ratio is [6, Ch.9]

SNRi = �
2
ii
�
2
i
=�

2
n
; (3)

and �
2
ii
controls the power allocated on the ith equivalent

subchannel. The obvious question that arises is how much

can be asymptotically gained by increasing the number of

subchannels, which is obtained by increasing the minimum

between the number of receive and tranmit antennas. Our

approach here differs from the one in [5], [3] because, we

explicitly derive the capacity for any realization of a very

large H exploiting one of the most interesting phenomena

arising in the theory of random variables after the central

limit theorem: the so called semi-circle or circle law, the



last named after Girko [4], that generalized earlier results

by Wiener to complex matrices.

Next section speci�es how the channel capacity can be

derived as a function of the singular values of H while in

the Section 3 we will explain how Girko's law can be used

to predict the asymptotic gain obtainable by increasing the

number of receive and transmit antennas under wide con-

ditions on the fading distribution. For simplicity we will

assume that:

(a1) The number of receive and transmit antennas coincide

(H is square and of size N ).

(a2) The elements of H Hi;j are independent identically

distributed (i.i.d.) random variables with EfHi;jg = 0 and

V ar[Hi;j ] = �
2
H
.

2. PRELIMINARIES

If the average transmit power is limited

trace(FF�) =

NX
n=1

�
2
nn

= P0: (4)

The p.d.f of the input vector x that maximizes the channel

mutual information I(y;x) under (4) is x � N (0;Rxx):

I(ŝ; s) = log jI+HRxxH
�
�
�2
n
j (5)

and (5) is maximized when Rxx and H�H have the same

eigenvectors [2]. This is exactly what is obtained with x =

Fs with s � N (0; I)1 and F = �V [6, Ch.9], hence

maxx I(ŝ; s) =
P

N

n=1
log(1 + SNRn) and the asymptotic

capacity

C = lim
N!1

1

N

max
�11;::: ;�NN

NX
n=1

log(1 + SNRn): (6)

Themaximizationwith respect �nn under the average power

constraint in (4), leads to the so called water-�lling:
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(7)

whereK = const: is determined by imposing (4) and + in-

dicates that when the function inside the parenthesis is neg-

ative the value has to be set to zero. Assuming that �2
kk

are

sorted in decreasing order and using (7), for every P0 > 0

we can �nd a maximum �
N : 1 � �

N � N such that for

k � �
N ) �

2
kk

> 0 and for k >
�
N ) �

2
kk

= 0 ( �N = 1 is

the trivial case where �211 = P0 > 0). Replacing (7) in (3)

we can write (6) simply as

C = lim
N!1

1

N

�NX
k=1

log(K�
2
kk
=�

2
n
): (8)

1We assume that the symbols are white, but we can always include a

symbol 'whitener' in F.

Oftentimes, when P0 � 1 the formula is approximated us-

ing uniform loading, i.e. �2
kk
� P0=N in which case

C = lim
N!1

1

N

NX
k=1

log

�
1 +

P0�
2
kk

N�
2
n

�
(9)

For �nite N the dependence of the eigenvalues distribution

on the distribution ofHi;j is rather intricate. However, sim-

ilar to what happens with the sum of random variables, the

distribution becomes invariant with respect to the particular

density of the entries Hi;j as N ! 1, as explained in the

following section.

3. SPACE-TIME CODING AND GIRKO'S LAW

The usefulness of Girkos's law in the analysis of space-time

precoding lies in equation (1) and in Fig.1 (b). The last

clearly shows that the performance of a system described

as in (1) are function of nothing but the eigenvalues of H.

Since H is random, if two realization of H have the same

eigenvalues then the performance in additiveGaussian noise

are identical. The surprising implication of the theory of

random matrices is that, under the assumptions speci�ed at

the end of Section 1, according to Girko's law as N ! 1

the eigenvalues of H=

p
�
2
H
N tend to �ll a circle of radius

one, as illustrated in Fig.3. From distribution of the the
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Fig. 2. �n
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H
N of a complex GaussianH forN = 300.

eigenvalues we can obtain the distribution of the singular

values, since the last are the absolute values of the eigen-

values. Thus singular values ~�n of the normalized matrix
~H = H=

p
�
2
H
N as N ! 1 tend to assume the value x

with probability density function (p.d.f) the is a fourth of a

circle:

p~�
(x) = 2=�

p
1� x

2
=4 0 � x � 2: (10)

Further details on Girko's law can be found in [4]. Using

(10) we can write

lim
N!1

SNRn

N

= SNR(x) = 

~
�
2(x)x2; (11)

where 
 is de�ned as:


 = �
2
H
=�

2
n

(12)



4. ASYMPTOTIC CAPACITY

ForN !1 (11) and (10):

4.1. Numerical results

(a) Uniform loading (b) Optimum Loading

Fig. 3. Comparison between theory and simulation.
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