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ABSTRACT

Accurate and tractable channel modeling is critical to realizing the
full potential of antenna arrays in wireless communications. In
this paper we propose a framework for modeling multi-antenna
multipath channels based on the notion of virtual spatial angles.
The virtual angles are fixed a priori and are determined by the
number of antennas at the transmitter and receiver and the spac-
ing between the antennas. The model essentially corresponds to
a coordinate transformation via fixed spatial basis functions at the
transmitter and receiver. The resulting linear virtual channel rep-
resentation encompasses all existing models and provides a nat-
ural link between the physical propagation environment and the
channel statistics induced by it. For any given scattering environ-
ment, the model facilitates realistic estimates of channel capacity
and clearly reveals the two key parameters affecting capacity: the
number of parallel channels and the level of diversity.

1. INTRODUCTION

Antenna arrays holds great promise for bandwidth-efficient com-
munication over the harsh wireless channel. Maximal exploitation
of antenna arrays in wireless communication necessitates accurate
yet computationally tractable modeling of the multi-input multi-
output (MIMO) channel coupling the transmitter and receiver. Ex-
isting models represent two extreme approaches. On the one hand
are statistical models that are idealized abstractions of spatial prop-
agation characteristics and assume independent fading between
different transmit-receive element pairs. These models have been
heavily used in capacity calculations (see, e.g., [1]) and develop-
ment of space-time coding techniques. On the other hand are phys-
ical models, inspired by array processing techniques, that explic-
itly model signal copies arriving from different directions. While
more accurate descriptions of the actual propagation environment,
these models are nonlinear in spatial angles, thereby making it
rather difficult to incorporate them in transceiver design and ca-
pacity computations. Furthermore, the two approaches to MIMO
antenna array modeling exist in virtual isolation. A connection re-
lating them is very much desirable so that conclusions and insights
derived from the two approaches can be cross-leveraged from im-
proved transceiver designs.

There have been some recent attempts at bridging the gap be-
tween the two modeling philosophies (see, e.g., [2, 3]). However,
these approaches are heavily entrenched in the physical modeling
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paradigm and suffer from the drawbacks associated with nonlin-
ear modeling. We propose an approach that keeps the essence of
physical modeling without its complexity and imposes a natural
structure on channel statistics. Specifically, we model the channel
with respect to fixed spatial basis functions defined by fixed virtual
angles that are determined by the spatial array resolution. This is
analogous to beamspace ideas in array processing and yields an
analytically tractable linear channel characterization. The virtual
channel matrix also provides an intuitively appealing “image” of
the underlying scattering geometry that yields a simple interpreta-
tion of the two key factors affecting channel capacity: the number
of parallel of channels and the level of diversity. The simple in-
terpretation is formalized by a family of virtual channel models
that capture the two factors and yield a simple formula for channel
capacity. The virtual approach encompasses all existing model-
ing techniques and provide a natural framework for modeling and
estimating the capacity of realistic scattering environments.

The next section introduces virtual modeling of multi-antenna
channels and relates it to existing physical and statistical approaches.
Section 3 discusses a family of virtual channel models for captur-
ing realistic scattering environments. Section 4 illustrates capacity
calculations via virtual channel models.

2. VIRTUAL CHANNEL MODELING

Consider a transmitter array with nT elements and a receiver array
with nR elements. In the absence of noise, the transmitted and
received signals are related as

x =Hs (1)

where s is the nT dimensional transmitted signal, x is the nR di-
mensional received signal andH denotes the channel matrix cou-
pling the transmitter and receiver elements. Most capacity calcu-
lations use this model and assume H to consist of independent,
identically distributed (iid) Gaussian random variables — an ide-
alized, rich scattering environment.

Explicit modeling of physical propagation effects can be used
to impose structure on H as illustrated in Figure 1. The most
widely used physical model is

H =

LX
l=1

�laR(�R;l)a
H
T (�T;l) = AR(�

R
)HPA

H
T (�

T
) (2)

which couples the transmitter and the receiver via L propagation
paths with f�T;lg and f�R;lg as the spatial angles seen by the
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Fig. 1. A schematic illustrating physical channel modeling. Each
scattering path is associated with a fading gain (� l) and a unique
pair of transmit and receive angles (�T;l , �R;l) that connect phys-
ical scatterers distributed within the angular channel spreads.

transmitter and receiver, respectively, and f�lg as the correspond-
ing fading gains. The angles f�R;lg lie in within SR, the angular
spread of scatterers as seen by the receiver, whereas f� T;lg lie
within ST , the angular spread of scatterers as seen by the trans-
mitter. aR(�R) represents the array response vector for a plane
wave arriving from the direction �R and aT (�T ) represents the
transmitter steering vector for the direction �T . In the case of uni-
form linear arrays with spacings dR and dT at the transmitter and
receiver, respectively, the array steering and response vectors take
the form1

aT (�T ) =
�
1; e�j2��T ; � � � ; e�j2�(nT�1)�T

�T
(3)

aR(�R) =
�
1; e�j2��R ; � � � ; e�j2�(nR�1)�R�T (4)

where �T = dT sin(�T )=� and �R = dR sin(�R)=�. In the ma-
trix representation in (2), AR(�

R
) = [aR(�R;1); � � � ;aR(�R;L)]

is an nR � L matrix, AT (�
T
) = [aT (�T;1); � � � ;aT (�T;L)] is

an nT � L matrix, andHP = diag(�1; � � � ; �L) is an L� L di-
agonal matrix. The model is linear in the channel gains f� lg but
nonlinear in the spatial angles f�R;l; �T;lg.

The finite dimensionality of the spatial signal space (due to
the finite number of antenna elements) can be exploited to develop
a linear channel model which uses spatial beams in fixed, virtual
directions. The virtual model, illustrated in Figure 2, can be ex-
pressed as

H =

nRX
q=1

nTX
p=1

HV (q; p)aR('R;q)a
H
T ('T;p) = eARHV

eAH

T

(5)
where f'R;qg and f'T;pg are fixed virtual angles that result in
full-rank matrices eAR = [aR('R;1); � � � ;aR('R;Q)] (nR � nR)
and eAT = [aT ('T;1); � � � ;aT ('T;P )] (nT �nT ). The nR� nT
matrix HV is the virtual channel representation. The following
represent a natural choice for virtual spatial angles

'T;p = sin�1
�

p�

nT dT

�
; 'R;q = sin�1

�
q�

nRdR

�
(6)

where p = �(nT � 1)=2; � � � ; (nT � 1)=2 for nT odd and p =
�nT =2; � � � ; nT =2 � 1 for nT even, and similarly for the index q

1Formulations for arbitrary geometries can also be developed.
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Fig. 2. A schematic illustrating virtual channel modeling. The vir-
tual angles are fixed a priori and their spacing is determined by the
antenna spacing and defines the spatial resolution. Virtual chan-
nel representation does not distinguish between scatterers that are
within the spatial resolution; the scatterers corresponding to the
physical angles �T;1 and �T;2 in Figure 1, for example. The chan-
nel is characterized by the coefficients, fHV (p; q) = hp;qg, that
couple the nT virtual transmit angles, f'T;pg, with the nR virtual
receive angles, f'R;qg. For angles where there is no significant
scattering, the corresponding coefficients are approximately zero
(e.g., h21 and h52).

in (6). For the above choice of angles, the matrices eAR and eAT

are unitary — discrete Fourier transform matrices.
Virtual channel modeling is analogous to beamspaceideas used

in array processing. The extent of the spatial horizon covered by
the virtual angles depends on the spacing between the antenna ele-
ments. For dT = dR = �=2, the virtual angles (6) cover the entire
([��=2; �=2]) spatial horizon. However, larger antenna spacings
result in a narrower antenna beam with spatially aliased copies of
the beam spanning the entire spatial horizon. This is particularly
useful in spatial multiplexing applications. In contrast to the phys-
ical model (2), the virtual model is linear and is characterized by
HV . However, the matrixHV is not diagonal in general.

Since eAR and eAT are unitary, HV is related to H as

HV = eAH

RH
eAT (7)

and thus HV is unitarily equivalent to H and captures all infor-
mation. In fact, HV can be thought of as a Fourier domain repre-
sentation ofH . Similarly, HV is related to HP as

HV = bAR(�
R
)HP bAH

T (�
T
) (8)

where bAR(�
R
) = eAH

RAR(�
R
) = [baR(�R;1); � � � ; baR(�R;L)]

is a nR � L matrix whose columns represent the projection of the
physical array response vectors onto the virtual array response vec-

tors and bAT (�
T
) = eAH

T AT (�
T
) = [baT (�T;1); � � � ;baT (�T;L)]

is a similarly definednT �Lmatrix. We note that the vector ba(�l)
(at the transmitter or receiver) peaks at the few virtual angles in the
neighborhood of the physical angle � l.

3. VIRTUAL MODELING OF REALISTIC CHANNELS

Realistic scattering environments can be modeled via a superposi-
tion of scattering clusters with limited angular spreads (see, e.g.,
[2]). By imposing a structure on the non-vanishing elements of



HV , we can capture a fairly rich class of realistic scattering en-
vironments with a corresponding statistical model for H. Each
cluster corresponds to a nonvanishingsubmatrix ofH V and can be
construed as a separate spatial channel . Virtual modeling clearly
reveals the two key factors that affect the capacity of each cluster:
1) the number of virtual angles within the angular spread which
determine the rank of the matrix and hence the number of parallel
channels, and 2) the nature of scattering within the cluster which
determines the level of diversity.

Realistic virtual channel modeling is motivated by the “image”
of the physical scattering geometry provided byH V , as illustrated
in Figure 3 for two clusters. Consider a single cluster of dense
contiguous scatterers with SR = [SR�; SR+] � [��=2; �=2] and
ST = [ST�; ST+] � [��=2; �=2]. The nonvanishing subma-
trix of HV (p; q) for this cluster corresponds to q = Q

�

; � � � ;Q+ ,
p = P

�

; � � � ; P+ where Q
�

� bnR sin(SR�)dR=�c, Q+ �
dnR sin(SR+)dR=�e, and similarly for P

�

and P+. Thus, the
rank r of H in this case is given by r � min(Q+ � Q

�

+
1; P+ � P

�

+ 1). For example, for the top left cluster in Fig-
ure 3, SR = [�=16; 3�=16] and ST = [�3�=16;��=16]. For
nT = nR = 21 and dT = dR = �=2, this yields (Q

�

;Q+) =
(2; 6) and (P

�

; P+) = (�2;�6) resulting in a 5� 5 cluster sub-
matrix. HV corresponding to multiple clusters is a superposition
of nonvanishing cluster submatrices, as in Figure 3. The rank of
H is bounded by the sum of the ranks of cluster submatrices of
HV .
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Fig. 3. “Imaging” of the scattering environment via H V . nT =
nR = 21 and H is generated via the physical model (2) using
L = 200 paths associated with two �=8-wide clusters centered at
(�T ; �R) = (�=8;��=8) and (��=8; �=8).

The nature of scattering within each cluster determines the
diversity afforded by each cluster. To illustrate this concept, let
nT = nR = n and consider a single cluster covering the entire
spatial horizon (SR� = ST� = ��=2 and SR+ = ST+ = �=2).
On one extreme is “diagonal scattering” (H V diagonal) in which
each transmit virtual angle couples only with a single virtual re-
ceive angle. On the other extreme “maximally rich” scattering in
which each transmit virtual angle couples with all virtual receive
angles (all elements of HV nonzero). This suggests the following
k-diagonal virtual model to capture the nature of scattering in the

two extreme and intermediate cases

Hk =

nX
p=1

min(n;p+k)X
q=max(1;p�k)

HV (q; p)aR('R;q)a
H
T ('T;p) (9)

where 0 � k � n � 1. k = 0 corresponds to diagonal scattering
and k = n� 1 corresponds to maximally rich scattering.

We note that the elements of HV are always approximately
uncorrelated under the assumption of uncorrelated spatial scatter-
ing (uncorrelated �l in (2)) Using this fact, the above k-diagonal
model directly imposes a structure on the statistics of H . Let
hk = vec(Hk) where vec(H) represents a vector obtained by
stacking the columns ofH . The correlation matrixRk = E[hkhHk ]
takes the form

Rk =

nX
p=1

min(n;p+k)X
q=max(1;p�k)

�2q;p[aT ('T;p)
 aR('R;q)]

[aHT ('T;p)
 aHR ('R;q)] (10)

where 
 represents the kronecker product and we have used the
identity vec(ADB) = [BH 
 A]vec(D). In (10), �2q;p =
E[jHV (q; p)j2] is the power in each uncorrelated virtual channel
coefficient. The nonzero f� 2

q;pg in (10) represent active scatter-
ing between the pth transmit qth receive virtual angles. We note
that k = n � 1 and �2q;p = 1 in (10) corresponds to maximally
rich scattering and yields the extreme case of iid elements of H
(Rn = I) that is assumed in most capacity calculations. For
diagonal virtual scattering (k = 0 in (10)), there is significant
correlation between elements of H . As demonstrated in the next
section, H0 (diagonal) and Hn�1 (iid) have nearly identical er-
godic capacities (same rank) under appropriate power normaliza-
tion, but radically different outage capacities due to higher diver-
sity inHn�1.

4. VIRTUAL CAPACITY CALCULATIONS

In this section, we illustrate the ease of computation and simple in-
terpretation afforded by virtual modeling for capacity calculations.
We first discuss two key parameters that control capacity and re-
late them to physical characteristics. Our focus here is on outage
capacity, a metric more appropriate in fading channels. The capac-
ity of a fading channel is a random variable under decoding delay
constraints and outage capacity reflects the maximum rate that can
be guaranteed with a certain probability.

Parallel Channels and Diversity: The “image” of the scatter-
ing environment provided byHV is intimately related to two key
parameters that affect channel capacity: the number of parallel
channels, P , that controls ergodic capacity, and the level of di-
versity per parallel channel, D, that controls the outage capac-
ity. P � Pmax = min(nT ; nR) and there have to be at least
L = min(nT ; nR) physical paths with distinct transmit/receive
virtual angles to achieve Pmax. D � Dmax = max(nT ; nR) and
in order to achieve Dmax each virtual transmit angle must cou-
ple with Dmax distinct virtual receive angles via different paths.
Thus, we need at least min(nT ; nR)�max(nT ; nR) = nT �nR
physical paths corresponding to distinct virtual angles to achieve
both P = Pmax and D = Dmax . This requires maximum scat-
tering spreads and maximally rich scattering. Smaller spreads and
less rich scattering results in lower values of P and D. For exam-
ple, the diagonal model H 0 can achieve P = Pmax but D = 1



whereas the full iid modelHn�1, can attain both P = Pmax and
D = Dmax . We note that the requirement for paths with distinct
virtual angles is important — for example, if all paths are confined
within the virtual spatial resolution, P and D will be close to 1 no
matter how many paths there are.

Capacity Expressions: Consider the noisy channel,x =
p
PHs+

w, whereP is the transmitted power (E[ksk2] = 1) andw is zero-
mean complex Gaussian noise vector with E[wwH ] = I . Given
the knowledge of channel coefficients (H orH V ) at the receiver,
the channel capacity is given by [1]

C(HV ) = log2
�
det

�
I + PHVH

H
V =n

��
bits=s=Hz (11)

where we have used unitary equivalence of H and H V . The er-
godic capacity is given by CE = E[C(HV )] where the expecta-
tion is over the statistics of HV . If the propagation environment
consists of a superposition of scattering clusters, the imaging in-
terpretation ofHV implies that (11) can be further simplified to

C(HV ) =

NcX
i=1

log2
�
det(I + PHV (i)H

H
V (i)=n)

�
bits=s=Hz

(12)
where Nc is the number of distinct clusters andHV (i) is the sub-
matrix corresponding to the ith cluster.2 For example, the two
�=8-wide clusters in Figure 3, result in a block diagonal matrix
HV = diag(HV (1);HV (2)) consisting of two 5 � 5 matrices.
EachHV (i) in (12) can be further modeled as a k-diagonal virtual
matrix representing the nature of scattering within the cluster. The
cluster decomposition in (12) has the following simple approxi-
mate interpretation:

An arbitrary spatial channel can be decomposed into N c

independent parallel virtual channels that are represented by
the matrices fHV (i) : i = 1; � � � ;Ncg, each HV (i) in turn
modeled by a k-diagonal iid matrix that reflects the nature of
scattering in the cluster.

Numerical Examples: We present numerical results for two dif-
ferent environments: An idealized rich scattering environment and
a more realistic environment consisting of two scattering clusters
with smaller angular spreads. In both cases, nT = nR = 10 and
SNR = 10 log10(P ) = 20dB.

The channel in the rich scattering case is directly modeled via
H with elements given by iid complex zero-mean Gaussian ran-
dom variables of unit variance. We compare the outage capacity
of various k-diagonal virtual models computed from 1000 inde-
pendent realizations of H.3 The matrix Hk is scaled so that the
received SNR is the same as in all cases. Figure 4(a) illustrates
this comparison which captures the effect of diversity on outage
capacity — D increases with the number of diagonals k. As evi-
dent, the performance of a 3-diagonal approximation is very close
to the iid channel (k = 9), demonstrating that for the same re-
ceived SNR the 3-diagonal system captures most of the diversity
advantage. We note that the ergodic capacity is virtually identical
for all k.

Figure 4(b) compares the capacity of a more realistic scatter-
ing environment for different k-diagonal virtual approximations
with no SNR normalization. H is simulated via the physical model

2The relation (12) assumes that each cluster corresponds to distinct
transmit and receive virtual angles. However, this assumption can be re-
laxed via a permutation of virtual angles.

3HV for computingH k in (9) is computed fromH via (7)

(2) corresponding to two �=8-wide clusters centered at �R =
�T = ��=4, analogous to Figure 3. There are L = 100 paths in
each cluster. The angles f�T;l; �R;lg for the paths are uniformly
distributed over the angular spreads and the fading gains f� lg are
simulated as iid zero-mean complex Gaussian random variables of
unit variance. As evident, the capacity of a 2-diagonal virtual ap-
proximation is very close to that of the full iid (9-diagonal) chan-
nel. This is becauseD is relatively small in this case due to limited
scattering spread.
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Fig. 4. (a) Capacity comparison of k-diagonal models in a rich
scattering environment with all models having the same received
SNR. The level of diversity is the main difference between the
models. (b) Capacity comparison without SNR normalization in a
realistic environment consisting of two �=8-wide clusters.


