MODELING AND CAPACITY OF REALISTIC SPATIAL MIMO CHANNELS

Akbar M. Sayeed

Department of Electrical and Computer Engineering
University of Wisconsin-Madison
1415 Engineering Drive, Madison, WI 53706
akbar @engr.wisc.edu, http://dune.ece.wisc.edu

ABSTRACT

Accurate and tractable channel modeling iscritical to realizing the
full potential of antenna arrays in wireless communications. In
this paper we propose a framework for modeling multi-antenna
multipath channels based on the notion of virtual spatial angles.
The virtual angles are fixed a priori and are determined by the
number of antennas at the transmitter and receiver and the spac-
ing between the antennas. The model essentially corresponds to
acoordinate transformation via fixed spatial basis functions at the
transmitter and receiver. Theresulting linear virtual channel rep-
resentation encompasses al existing models and provides a nat-
ura link between the physical propagation environment and the
channel statistics induced by it. For any given scattering environ-
ment, the model facilitates realistic estimates of channel capacity
and clearly reveals the two key parameters affecting capacity: the
number of parallel channelsand the level of diversity.

1. INTRODUCTION

Antenna arrays holds great promise for bandwidth-efficient com-
munication over the harsh wireless channel. Maximal exploitation
of antennaarrays in wireless communi cation necessitates accurate
yet computationally tractable modeling of the multi-input multi-
output (MIMO) channel coupling the transmitter and receiver. Ex-
isting models represent two extreme approaches. On the one hand
are statistical model sthat areidealized abstractionsof spatia prop-
agation characteristics and assume independent fading between
different transmit-receive element pairs. These models have been
heavily used in capacity calculations (see, e.g., [1]) and develop-
ment of space-time coding techniques. On the other hand are phys-
ical models, inspired by array processing techniques, that explic-
itly model signal copies arriving from different directions. While
more accurate descriptions of the actual propagation environment,
these models are nonlinear in spatial angles, thereby making it
rather difficult to incorporate them in transceiver design and ca-
pacity computations. Furthermore, the two approachesto MIMO
antennaarray modeling exist in virtual isolation. A connectionre-
lating them is very much desirable so that conclusionsand insights
derived from the two approaches can be cross-leveraged from im-
proved transceiver designs.

There have been some recent attempts at bridging the gap be-
tween the two modeling philosophies (see, e.g., [2, 3]). However,
these approaches are heavily entrenched in the physical modeling
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paradigm and suffer from the drawbacks associated with nonlin-
ear modeling. We propose an approach that keeps the essence of

physical modeling without its complexity and imposes a natural

structure on channel statistics. Specifically, we model the channel

with respect to fixed spatial basisfunctions defined by fixed virtual

anglesthat are determined by the spatial array resolution. Thisis
analogous to beamspace ideas in array processing and yields an

analytically tractable linear channel characterization. The virtual

channel matrix also provides an intuitively appealing “image” of

the underlying scattering geometry that yieldsasimpleinterpreta-
tion of the two key factors affecting channel capacity: the number
of parallel of channels and the level of diversity. The simplein-

terpretation is formalized by a family of virtual channel models
that capture the two factorsand yield asimple formulafor channel
capacity. The virtual approach encompasses al existing model-

ing techniques and provide a natural framework for modeling and
estimating the capacity of realistic scattering environments.

The next section introducesvirtual modeling of multi-antenna
channelsandrelatesit to existing physical and statistical approaches.
Section 3 discussesa family of virtual channel models for captur-
ing realistic scattering environments. Section 4 illustrates capacity
calculationsviavirtual channel models.

2. VIRTUAL CHANNEL MODELING

Consider atransmitter array with n elementsand areceiver array
with nr elements. In the absence of noise, the transmitted and
received signalsarerelated as

x=Hs @

where s isthe nr dimensiona transmitted signal, « isthe n r di-
mensional received signal and H denotesthe channel matrix cou-
pling the transmitter and receiver elements. Most capacity calcu-
lations use this model and assume H to consist of independent,
identically distributed (iid) Gaussian random variables — an ide-
alized, rich scattering environment.

Explicit modeling of physical propagation effects can be used
to impose structure on H as illustrated in Figure 1. The most
widely used physical model is

L
H = ZﬁlaR(¢R,Z)a¥(¢T,Z) = AR(?R)HPA%I(?T) 2

=1

which couplesthe transmitter and the receiver via L propagation
paths with {¢7,;} and {¢r,} as the spatial angles seen by the
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Fig. 1. A schematicillustrating physical channel modeling. Each
scattering path is associated with a fading gain (3:) and a unique
pair of transmit and receive angles (¢ 1,1, ¢ r,1) that connect phys-
ical scatterers distributed within the angular channel spreads.

transmitter and receiver, respectively, and {3;} asthe correspond-
ing fading gains. Theangles{¢ r;} liein within Sr, the angular
spread of scatterers as seen by the receiver, whereas {¢ 1, } lie
within St, the angular spread of scatterers as seen by the trans-
mitter. ar(¢r) represents the array response vector for a plane
wave arriving from the direction ¢z and ar(¢1) represents the
transmitter steering vector for the direction ¢ 1. In the case of uni-
form linear arrays with spacingsd r and dr at the transmitter and
receiver, respectively, the array steering and response vectors take
the form!
—J2mop

ar(ér) = [1,6 7...76_J27T(77‘T_1)9T:|T ©)
aR(¢R) = 6_J2Tr(nR_1)9R:|T (4)

where 81 = drsin(ér)/X axdbfr = drsin(¢r)/A. Inthema
trix representationin (2), Ar(¢,) = [ar(ér1), -, ar(¢r,L)]
isanng x L matrix, Ar(¢,) = [ar(¢r.1), -, ar(ér.L)]is
annr x L matrix, and H p = diag(3:,---,0c) isan L x L di-
agonal matrix. The model is linear in the channel gains {3} but
nonlinear in the spatial angles{¢ r,i, ¢7,:}.

The finite dimensionality of the spatial signal space (due to
thefinite number of antennaelements) can be exploited to develop
alinear channel model which uses spatial beams in fixed, virtual
directions. The virtual modedl, illustrated in Figure 2, can be ex-
pressed as

—J2m0R
[l,e e

nr np

~ ~H

H=) > Hvlgpar(enaaf (¢ry) = ApHyAr

g=1 p=1

®
where {¢r o} and {¢7} are fixed virtual angles that result in
full-@nk matricesAR = [aR(goRyl), BN aR(goRyQ)] (nR X nR)
and Ar = [ar(pr1), -, ar(erp)] (nr x nr). Theng x nr

matrix Hv is the virtual channel representation. The following
represent anatural choicefor virtual spatial angles

A
oTp = sin™* (ﬂ) , YRq= sin™* (q—) (6)
’ nrdr ’ nrdr

wherep = —(nr — 1)/2,---,(nr — 1)/2 for ny oddand p =
—nr/2,---,n7/2 — 1 for nr even, and similarly for the index ¢

1Formulations for arbitrary geometries can also be devel oped.
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Fig. 2. A schematicillustrating virtual channel modeling. Thevir-

tual anglesare fixed apriori andtheir spacingis determined by the
antenna spacing and defines the spatial resolution. Virtual chan-

nel representation does not distinguish between scatterersthat are
within the spatial resolution; the scatterers corresponding to the
physical angles¢ 1 andé > in Figure 1, for example. The chan-
nel is characterized by the coefficients, { H v (p, q) = hp,q}, that
couplethen ¢ virtual transmit angles, {¢r , }, with thenr virtua
receive angles, {¢ r,q}. For angles where there is no significant
scattering, the corresponding coefficients are goproximately zero
(e.g., hot andh52).

in (6). For the above choice of angles, the matrices Ar and Ar
are unitary — discrete Fourier transform matrices.

Virtual channel modelingisanal ogousto beamspaceideas used
in array processing. The extent of the spatial horizon covered by
the virtual anglesdependson the spacing between the antennaele-
ments. For d7 = dr = A/2, thevirtual angles(6) cover theentire
([—=/2,=/2]) spatial horizon. However, larger antenna spacings
result in a narrower antennabeam with spatially aliased copies of
the beam spanning the entire spatial horizon. Thisis particularly
useful in spatial multiplexing applications. In contrast to the phys-
ical model (2), the virtual model is linear and is characterized by
H . However, the matrix H v isnot diagonal in general.

Since Ar and At areunitary, Hv isrelated to H as

Hy = ASHA, @

and thus H v is unitarily equivalent to H and captures all infor-
mation. In fact, Hv can bethought of asaFourier domain repre-
sentation of H. Similarly, Hv isrelatedto H p as

Hy =Ax(¢ )HrAr(s,) ®)

—R =T

where Ar(¢,) = ApnAr(9,) = [r(dr,1), - dr(énr)]

isangr x L matrix whose columns represent the projection of the
physical array responsevectorsonto thevirtual array responsevec-
torsand Ar(¢,) = A7 Ar(¢,) = [@r(éra ), dr(ér)]
isasimilarly definedn ¢ x L matrix. We notethat the vector a(¢;)
(at thetransmitter or receiver) peaksat the few virtual anglesin the
neighborhood of the physical angle ¢ ;.

3. VIRTUAL MODELING OF REALISTIC CHANNELS

Redlistic scattering environments can be modeled via a superposi-
tion of scattering clusters with limited angular spreads (see, e.g.,
[2]). By imposing a structure on the non-vanishing elements of



H v, we can capture a fairly rich class of realistic scattering en-
vironments with a corresponding statistical model for H. Each
cluster correspondsto anonvanishing submatrix of H v and canbe
construed as a separate spatial channel . Virtual modeling clearly
reveals the two key factors that affect the capacity of each cluster:
1) the number of virtual angles within the angular spread which
determine the rank of the matrix and hence the number of parallel
channels, and 2) the nature of scattering within the cluster which
determinesthe level of diversity.

Redlistic virtual channel modeling is motivated by the“image”
of the physical scattering geometry provided by H v, asillustrated
in Figure 3 for two clusters. Consider a single cluster of dense
contiguous scattererswith Sg = [Sr—, Sr+] C [-7/2, /2] and
St = [Sr—, St+] C [—=/2,=/2]. The nonvanishing subma-
trix of Hv (p, ¢) for thiscluster correspondstog = Q—, -+, @+,
p = P_,---,Py where Q_ =~ |ngrsin(Sgr—)dr/A|, @+ =
[nrsin(Sry)dr/A], and smilarly for P_ and P;. Thus, the
rank r of H inthiscaseisgivenby r ~ min(Q4+ — Q- +
1, Py — P_ + 1). For example, for the top left cluster in Fig-
ure 3, Sg = [x/16,3%/16] and St = [—37/16, —=/16]. For
nt =nr =2l anddr = dr = )\/2, thlsylelds (Q_,Q+) =
(2,6) and (P, Py) = (—2,—6) resultingina5 x 5 cluster sub-
matrix. Hy corresponding to multiple clusters is a superposition
of nonvanishing cluster submatrices, asin Figure 3. The rank of
H is bounded by the sum of the ranks of cluster submatrices of
Hy.

T/8-WIDE SCATTERING CLUSTERS CENTERED AT (v8,1V8) AND (-1v8,-1/8); n=21, L=200
0.4 T T T T T T T

0.3 1

o1t & ]

RECEIVE ANGLE
=)
T
L

0.4 L L L L I I I
-0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4

0
TRANSMIT ANGLE

Fig. 3. “Imaging” of the scattering environment via H v. nr =
nr = 21 and H is generated via the physical model (2) using
L = 200 paths associated with two = /8-wide clusters centered at
(¢7,¢r) = (7/8, —7/8) and(—= /8, 7/8).

The nature of scattering within each cluster determines the
diversity afforded by each cluster. To illustrate this concept, let
nt = nr = n and consider asingle cluster covering the entire
spatial horizon (Sr— = Sr— = —#/2 and Sry = Sr4+ = 7/2).
On one extreme is “diagonal scattering” (H v diagona) in which
each transmit virtual angle couples only with a single virtual re-
ceive angle. On the other extreme “maximally rich” scattering in
which each transmit virtual angle couples with all virtual receive
angles (all elementsof H v nonzero). Thissuggeststhe following
k-diagonal virtual model to capture the nature of scattering in the

two extreme and intermediate cases
min(n,p+k)

Hy = Z Z Hv (g, p)ar(erq)ar (erp)  (9)

p=1 g=max(1l,p—k)

where0 < k < n — 1. kK = 0 correspondsto diagonal scattering
andk = n — 1 correspondsto maximally rich scattering.

We note that the elements of H v are always approximately
uncorrelated under the assumption of uncorrelated spatial scatter-
ing (uncorrelated 3; in (2)) Using this fact, the above k-diagonal
model directly imposes a structure on the statistics of H. Let
hy, = vec(H ) where vec(H') represents a vector obtained by
stackingthe columnsof H . Thecorrelation matrix Ry = E[hrh}]
takesthe form

min(n,p+k)

mo- Y Y

p=1 g=max(1,p—k)
[aijg(@T,p) @ ag(goqu)] (10)

where @ represents the kronecker product and we have used the
identity vec(ADB) = [B” @ Alvec(D). In (10), oo, =
E[|Hv (g, p)|*] is the power in each uncorrelated virtual channel
coefficient. The nonzero {77 ,,} in (10) represent active scatter-
ing between the p'” transmit 4" receive virtual angles. We note
thak = n— 1 and o), = 1 in (10) correspondsto maximally
rich scattering and yields the extreme case of iid elements of H
(R, = I) that is assumed in most capacity calculations. For
diagonal virtua scattering (k¢ = 0 in (10)), there is significant
correlation between elements of H. As demonstrated in the next
section, H, (diagonal) and H,,_; (iid) have nearly identical er-
godic capacities (same rank) under appropriate power normaliza-
tion, but radically different outage capacities due to higher diver-
Sty inH,_;.

aiyp[aT (¢1,p) @ ar(¥R,q)]

4. VIRTUAL CAPACITY CALCULATIONS

In this section, weillustrate the ease of computation and simplein-
terpretation afforded by virtual modeling for capacity calculations.
We first discuss two key parameters that control capacity and re-
late them to physical characteristics. Our focus here is on outage
capacity, ametric more appropriatein fading channels. The capac-
ity of afading channel is a random variable under decoding delay
constraints and outage capacity reflectsthe maximum rate that can
be guaranteed with a certain probability.

Parallel Channels and Diversity: The “image” of the scatter-
ing environment provided by H v isintimately related to two key
parameters that affect channel capacity: the number of parallel
channels, P, that controls ergodic capacity, and the level of di-
versity per parallel channel, D, that controls the outage capac-
ity. P < Prmse = min(nr,ngr) and there have to be at least
L = min(nr,ngr) physical paths with distinct transmit/receive
virtual anglesto achieve Pras. D < Doz = max(nr,ng) and
in order to achieve D, ., each virtua transmit angle must cou-
ple with D, ., distinct virtual receive angles via different paths.
Thus, we need at least min(n 7, nr) X max(nr,nr) = nr X nr
physical paths corresponding to distinct virtual anglesto achieve
both P = Ppar and D = Dy,q,. This requires maximum scat-
tering spreads and maximally rich scattering. Smaller spreads and
less rich scattering resultsin lower valuesof P and ). For exam-
ple, the diagonal model H, can achieve P = Pjq, but D = 1



whereasthe full iid model H,,—;, canattain both P = P,,,, and
D = Dyaq.. We note that the requirement for paths with distinct
virtual anglesisimportant — for example, if all pathsare confined
within the virtual spatial resolution, P and D> will be closeto 1 no
matter how many paths there are.

Capacity Expressions; Consider thenoisy channel, = P Hs+
w, where P isthe transmitted power (E[||s||?] = 1) and w iszero-
mean complex Gaussian noise vector with E[ww 7] = I. Given
the knowledge of channel coefficients (H or H v) at the receiver,
the channel capacity is given by [1]

C(Hv) =log, [det (I + PHvHY [n)] bits/s/Hz (11)

where we have used unitary equivalenceof H and H v. Theer-
godic capacity is given by C'r = E[C(H )] where the expecta-
tion is over the statistics of H v . If the propagation environment
consists of a superposition of scattering clusters, the imaging in-
terpretation of H v impliesthat (11) can be further simplified to

Ne
C(Hvy) = Zlog2 [det(I + PHy (i)H7 (i1)/n)] bits/s/Hz
=1

(12)
where N, isthe number of distinct clustersand H v (¢) is the sub-
matrix corresponding to the ;" cluster? For example, the two
#/8-wide clusters in Figure 3, result in a block diagona matrix
Hv = diag(H v (1), Hv(2)) consisting of two 5 x 5 matrices.
Each H v (i) in (12) can befurther modeled asa k-diagonal virtual
matrix representing the nature of scattering within the cluster. The
cluster decomposition in (12) has the following simple approxi-
mate interpretation:

An arbitrary spatial channel can be decomposed into N .
independent paralléel virtual channelsthat are represented by
the matrices {Hv (i) : 1 = 1,---, N}, each Hy(7) in turn
modeled by a k-diagonal iid matrix that reflectsthe nature of
scatteringin the cluster.

Numerical Examples: We present numerical results for two dif-
ferent environments: An idealized rich scattering environment and
amore redlistic environment consisting of two scattering clusters
with smaller angular spreads. In both cases, n = nr = 10 and
SNR = 101log, o(P) = 20dB.

The channel in therich scattering caseis directly modeled via
H with elements given by iid complex zero-mean Gaussian ran-
dom variables of unit variance. We compare the outage capacity
of various k-diagonal virtual models computed from 1000 inde-
pendent realizations of H.® The matrix H , is scaled so that the
received SNR is the same asin al cases. Figure 4(a) illustrates
this comparison which captures the effect of diversity on outage
capacity — I increases with the number of diagonalsk. Asevi-
dent, the performance of a 3-diagonal approximation is very close
to the iid channel (¢ = 9), demonstrating that for the same re-
ceived SNR the 3-diagonal system captures most of the diversity
advantage. We note that the ergodic capacity is virtually identical
for al k.

Figure 4(b) compares the capacity of a more redlistic scatter-
ing environment for different k-diagonal virtual approximations
with no SNR normalization. H issimulated viathe physical model

2The relation (12) assumes that each cluster corresponds to distinct
transmit and receive virtual angles. However, this assumption can be re-
laxed via a permutation of virtual angles.

SHy, for computing H . in (9) is computed from H via(7)

(2) corresponding to two =/8-wide clusters centered at ¢ r =
¢r = *+x/4, andogousto Figure 3. Thereare L = 100 pathsin
each cluster. Theangles{¢ 7,1, ¢ r, } for the paths are uniformly
distributed over the angular spreads and the fading gains {3} are
simulated asiid zero-mean complex Gaussian random variables of

unit variance. As evident, the capacity of a 2-diagonal virtual ap-
proximation is very closeto that of the full iid (9-diagonal) chan-
nel. Thisisbecause D isrelatively small in this casedueto limited
scattering spread.
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Fig. 4. (a) Capacity comparison of k-diagonal models in a rich
scattering environment with all models having the same received
SNR. The level of diversity is the main difference between the
models. (b) Capacity comparison without SNR normalization in a
redlistic environment consisting of two = /8-wide clusters.



