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ABSTRACT

This paper presents a quantitative analysis of the relation
between speech acoustics and the 2D video signal of the fa-
cial motion that occurs simultaneously. 2D facial motion
is acquired using an ordinary video camera: after digitiz-
ing a video sequence, a search algorithm is used for track-
ing markers painted on the speaker’s face. Facial motion
is represented by the 2D marker trajectories; whereas LSP
coefficients are used to parameterize the speech acoustics.
LSP coefficients and the marker trajectories are then used to
train time-invariant and time-varying linear models, as well
as nonlinear (neural network) models. These models are
used to evaluate to which extent 2D facial motion is deter-
mined from speech acoustics. The correlation coefficients
between measured and estimated trajectories are as high as
0.95. This estimation of facial motion from speech acous-
tics indicates a way to integrate audio and visual signals for
efficient audiovisual speech coding.

1. INTRODUCTION

During speech production, the vocal tract motion shapes
not only the speech acoustics but also most of facial mo-
tion, through the positioning of the jaw, shaping of the lips
and motion of the cheeks. Therefore, there are visible char-
acteristics of speech that emerge as a consequence of the
articulator motion and these characteristics are distributed
over a much larger region of the face that only the immedi-
ate vicinity of the oral aperture [1, 2, 3]. This fact results in
the existence of an interrelation among these three measures
(vocal-tract motion, facial motion and speech acoustics) so
that, if one of them is known, the other two can be estimated,
with a higher or lower degree of accuracy [3].

This work presents and evaluates a method to estimate
the facial motion from the speech acoustics. A system capa-
ble of mapping speech acoustics to facial motion is impor-
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tant, for instance, in parametric facial animation, where the
parameters used to control a synthetic face can be obtained
directly from the acoustic signal. Such a system can be used
in videoconferencing, resulting in very low bit-rates, since
only the audio signal needs to be transmitted.

The relation between speech acoustics and facial mo-
tion has been studied for some time. Recent works [3] have
analyzed to which extent linear mappings can represent the
various relations among vocal tract motion, facial motion
and speech acoustics. The performance of linear and non-
linear mappings in the estimation of the facial motion from
speech acoustics is analyzed, for example, in [4].

Compared with previous works, this paper presents two
new points: (i) facial motion is measured through ordinary
video cameras in contrast with sophisticated 3D motion
tracker devices; (ii) time-varying mappings are analyzed in
addition to the time-invariant models, since the relation be-
tween speech acoustics and facial motion may depend on
the spoken contents and manner [5].

This work relates speech acoustics and facial motion
using linear and nonlinear mappings. Nonlinear mappings
were implemented with three-layer artificial neural networks,
where the hidden layer is nonlinear and the output layer is
linear. The results obtained with time-invariant linear map-
pings serve as a reference in comparisons with more elabo-
rate nonlinear and time-varying mappings.
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Fig. 1. Markers painted on the speaker’s face used in the
facial motion measurements.



2. DATABASE

The experiments for data acquisition were carried out for
a Brazilian Portuguese speaker. The data were acquired us-
ing an analog camcorder during the utterance of the first two
stanzas of the poemJośe[6], which consist of 27 verses with
a duration of about 33 seconds. This allows the definition
of multiple training and test sets. The facial motion is rep-
resented by the positions of points painted on the speaker’s
face called markers (Fig. 1). After shooting the speaker say-
ing the utterances, the video sequence was digitized at a rate
of 30 frames/s. The acoustic signal and the 2D positions of
the markers were extracted from the digitized video. To ex-
tract the marker positions from the digitized video a robust
algorithm was developed. This algorithm receives the image
sequence as input and provides the temporal patterns of the
markers as output. The marker positions were interpolated
in order to obtain facial motion at a rate of 60 frames/s. The
markers on the forehead and nose were used for head mo-
tion compensation, whereas the remainingN = 18 markers
were used to represent facial motion.

3. PARAMETERIZATION

At this point, the data available are the audio signal and the
temporal patterns of the markers. However, these data are
not yet in an appropriate form for the study of the relation
between the acoustic and facial motion domains. This sec-
tion describes suitable parametric representations that will
help in the study of the relation between the two domains.

3.1. Acoustic Parameterization

The speech acoustics is represented by LSP (Line Spectrum
Pairs) coefficients [7] as follows: the audio signal, acquired
at a rate of 8040 samples per second, was analyzed using
a frame length of 16.67 ms, yielding a rate of 60 frames/s.
LPC (Linear Predictive Coding) analysis of orderP = 10
was applied to each frame. The LPC coefficients were then
converted into LSP coefficients. The LSP coefficients are
useful because they are strongly related to the speech for-
mants, which are basically determined by the vocal tract
shape. The vocal tract motion, in turn, is the main responsi-
ble for the facial motion during speech.

Thus, each framem of digitized speech (acquired simul-
taneously with facial motion) is represented as aP = 10-
dimensional vector of LSP coefficients

fm = [f1m f2m : : : fPm]
t
; (1)

where [�]t denotes transpose. These vectors can then be
grouped in the following matrix

F = [f1 f2 : : : fM ] : (2)

3.2. Facial Parameterization
Initially, each framem of data relative to facial motion is
represented as a vector of dimension2N = 36, whereN =
18 is the number of markers, in cartesian coordinates

xm =
�
x1m x2m : : : x(2N)m

�t
: (3)

These vectors are then grouped in the following matrix

X = [x1 x2 : : : xM ] : (4)

3.2.1. Principal Component Analysis
Due the high redundancy in the data, Principal Component
Analysis (PCA) [8] is used in order to reduce the number of
parameters in the estimators. The first step is to compute the
covariance matrix of the vectors relative to facial motion

C =
1

M
[X� �] [X� �]

t
; (5)

where� represents the mean facial vector (the elements of
this vector are the means of the rows of matrixX). Next,
Singular Value Decomposition[8] is used to express the co-
variance matrix as

C = USUt : (6)

U is a unitary matrix whose columns are the eigenvectors
(normalized to unit Euclidean norm) ofC andS is a diag-
onal matrix with the corresponding eigenvalues. The sum
of all eigenvalues is equal to the total variance observed in
X. Therefore, if the sum of the firstK largest eigenval-
ues reaches a given proportion (e.g. 99%) of the sum of all
eigenvalues, then the firstK eigenvectors ofC (contained
in the firstK columns ofU) will equal this proportion of
the total variance of the data set. Thus, any vectorx can be
approximated as a linear combination of the firstK eigen-
vectors ofC (which are the firstK principal components of
X), providedK is sufficiently large. For the facial motion
data used in this work, a proportion of 99% was considered
to be adequate. This value was attained withK = 7 prin-
cipal components. Thus, a matrixU7 formed by the first 7
columns ofU can be used to define a linear transformation

p = Ut7 (x� �) : (7)

The original vectorx can be recovered in the following way

x � U7p+ � : (8)

The vectorp 2 R
K is a vector formed by principal com-

ponent coefficients. The linear transformation defined by
Eq. (7) allows the representation of any facial position vec-
tor x of dimension2N = 36 by means of a vectorp of
dimensionK = 7.

Summarizing, the speech acoustics domain is represented
by the vectorsf (Eq. (1)) of LSP coefficients and the facial
motion domain by the vectorsp (Eq. (7)) of principal com-
ponent coefficients. The problem now consists of finding a
mapping capable of relating these two domains.



4. MAPPING
The objective here is to find a mapping capable of model-
ing the relation between speech acoustics and facial motion.
With this purpose, it is assumed that this relation can be de-
scribed by a functionp = ~(f), wheref (Eq. (1)) andp
(Eq. (7)) are the vectors representing, respectively, speech
acoustics and facial motion. Linear and nonlinear estima-
tors are used to approximate the behavior of~(�).

4.1. Linear Estimators
Here, vectorsp are a linear transformation of vectorsf

p = Af : (9)

A linearminimum squared error(MSE) estimatorA can be
obtained as follows

A = PFt(FFt)�1 ; (10)

where the matrixF is given by Eq. (2) andP is a matrix
whose columns are formed by vectorsp.

4.2. Neural Networks
Artificial neural networks can be used to model the nonlin-
ear mapping between vectorsf and vectorsp [4, 9]. In this
work, independent neural networks were used to map the
vectorsf of LSP coefficients to each of the 7 components
that form the vectorsp. Neural networks with one nonlin-
ear hidden layer and a linear output layer were used. The
number of neurons used in the hidden layer was 4. This
number was obtained empirically and seems to be suitable.
The networks were trained using the Levenberg-Marquardt
algorithm [10].

Once all the networks are trained, a set of 7 neural net-
works is obtained, each of them receiving as input a vector
f representing the speech acoustics and giving as output one
of the components of a vectorp. Therefore, the outputs of
the 7 networks form together a complete vectorp. Finally,
the facial position vectorx is recovered using Eq. (8).

5. RESULTS
The results obtained with time-invariant estimators are il-
lustrated in Fig. 3 (linear estimator) and Fig. 4 (nonlinear
neural network estimator). The training set consists of three
utterances of the sentence /E agora, Jos´e?/ (verses 1, 12 and
27 of the poem), whereas the test set consists of one utter-
ance of the same sentence (verse 6 of the poem). Each panel
shows the correlation coefficients [3] between the measured
signal and the signal estimated from the speech acoustics.
The global correlation coefficients are 0.67 and 0.83, for
linear and nonlinear estimators, respectively. These results
agree with the results obtained previously for American En-
glish and Japanese speakers [4], where about 70% and 85%
of the facial motion could be recovered from the speech
acoustics using, respectively, linear and nonlinear mappings.

The temporal patterns shown in Fig. 4 show that the
regions of the main articulators, like chin and lower lip,
were relatively well estimated compared to other regions.
It should be noted that these regions are fundamental for a
good estimation of the whole facial motion during speech.
The cheek motion was also relatively well recovered, indi-
cating that its motion is strongly related to speech acoustics.

It was observed, however, that the correlation coeffi-
cients depend on the spoken utterance. The mapping ob-
tained with data relative to a specific utterance can estimate
the facial motion reasonably well for repetitions of the same
utterance, but not for different utterances. This fact moti-
vated the use of time-varying mappings. These mappings
have the same structure of those in Eq. (9), but their pa-
rameters are updated at regular time intervals (� 0:5 s in
this work). Results obtained with time-varying mappings
are shown in Fig. 5. These are the best results, with a global
correlation coefficient of 0.95. The physical meaning of the
time-varying mappings is related with the fact that the dy-
namic properties of the system (e.g. muscle elasticity) vary
slowly with time and position. This may be related with the
equilibrium point hypothesis [11].

Analyzing the phonetic contents of the utterances, it was
observed that, not surprisingly, the models fail for cases
such as nasal sounds, when the coupling between acous-
tics and facial position simply does not exist. This point is
illustrated in Fig 2.
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Facial Markers: vowel /a/
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Facial Markers: nasal /n/

Fig. 2. Measured (filled circles) and estimated (empty cir-
cles) facial marker positions compared for the cases of an
oral vowel /a/ and a nasal /n/.

6. CONCLUSIONS
In this paper time-invariant and time-varying, linear and
nonlinear mappings to estimate 2D facial motion from
speech acoustics were presented. The speech acoustics were
represented by LSP coefficients and the facial motion was
represented by the principal component coefficients of a set
of marker positions placed on the face. The results obtained
with nonlinear (neural network) mappings show global cor-
relation coefficients as high as 0.83, but these values depend
strongly on the training and test data sets. To overcome this
problem, time-varying mappings were used, resulting in a
mean global correlation coefficient of 0.95, independently
of the spoken contents.
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Fig. 3. Measured (thin line) and estimated (thick line) facial
motion for the utterance /E agora, José?/ using linear map-
ping. The global correlation coefficient is 0.67.
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Fig. 4. Measured (thin line) and estimated (thick line) facial
motion for the utterance /E agora, José?/ using nonlinear
mapping. The global correlation coefficient is 0.83.
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Fig. 5. Measured (thin line) and estimated (thick line) facial
motion for the utterance /E agora, José?/ using time varying
mappings. The global correlation coefficient is 0.95.


