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ABSTRACT tant, for instance, in parametric facial animation, where the
parameters used to control a synthetic face can be obtained

This paper presents a quantitative analysis of the relation’,. S
between speech acoustics and the 2D video signal of the faSjlreCtIy from the acoustic signal. Such a system can be used

cial motion that occurs simultaneously. 2D facial motion in videoconfgrencing, resulting in very IO.W bit-rates, since
is acquired using an ordinary video camera: after digitiz- only the audp signal needs to be transml.tted. )

ing a video sequence, a search algorithm is used for track- ' he relation between speech acoustics and facial mo-
ing markers painted on the speaker's face. Facial motiontion has been s.tudled for some time. Recent works [3] have
is represented by the 2D marker trajectories; whereas LspAnalyzed to which extent linear mappings can represent the
coefficients are used to parameterize the speech acoustic¥2rious relations among vocal tract motion, facial motion
LSP coefficients and the marker trajectories are then used t@"d Speech acoustics. The performance of linear and non-
train time-invariant and time-varying linear models, as well lINe&r mappings in the estimation of the facial motion from
as nonlinear (neural network) models. These models areSPEECh acoustics is analyzed, for example, in [4].

used to evaluate to which extent 2D facial motion is deter- ~ Compared with previous works, this paper presents two
mined from speech acoustics. The correlation coefficientsnew points: (i) facial motion is measured through ordinary
between measured and estimated trajectories are as high 24de0 cameras in contrast with sophisticated 3D motion
0.95. This estimation of facial motion from speech acous- tracker devices; (ii) ime-varying mappings are analyzed in

tics indicates a way to integrate audio and visual signals for2ddition to the time-invariant models, since the relation be-
efficient audiovisual speech coding. tween speech acoustics and facial motion may depend on

the spoken contents and manner [5].

This work relates speech acoustics and facial motion
using linear and nonlinear mappings. Nonlinear mappings
were implemented with three-layer artificial neural networks,

1. INTRODUCTION

During speech production, the vocal tract motion shapes ! X X )
not only the speech acoustics but also most of facial mo_where the hidden layer is nonlinear and the output layer is

tion, through the positioning of the jaw, shaping of the lips Iinear. The results obtained_ with timejinvariarjt linear map-
and motion of the cheeks. Therefore, there are visible char-PINgS Sérve as areference in comparisons with more elabo-
acteristics of speech that emerge as a consequence of thgit€ nonlinear and time-varying mappings.

articulator motion and these characteristics are distributed
over a much larger region of the face that only the immedi-

o, ,®
ate vicinity of the oral aperture [1, 2, 3]. This fact results in
the existence of an interrelation among these three measures
(vocal-tract motion, facial motion and speech acoustics) so L. o & ®,
that, if one of them is known, the other two can be estimated, o® g 33.13 o,
with a higher or lower degree of accuracy [3]. oo

This work presents and evaluates a method to estimate oo e

the facial motion from the speech acoustics. A system capa- f

ble of mapping speech acoustics to facial motion is impor-

“The first author developed this research with a scholarship from Fig. 1. Markers painted on the speaker’s face used in the
CAPES (Brazil). facial motion measurements.



2. DATABASE 3.2. Facial Parameterization

The experiments for data acquisition were carried out for Initially, each framem of data relative to facial motion is
a Brazilian Portuguese speaker. The data were acquired usiePresented as a vector of dimensiv = 36, whereN =
ing an analog camcorder during the utterance of the first two 18 is the number of markers, in cartesian coordinates
stanzas of the poedo< [6], which consist of 27 verses with

a duration of about 33 seconds. This allows the definition
of multiple training and test sets. The facial motion is rep- These vectors are then grouped in the following matrix
resented by the positiqns of points painfced on the speaker’s X =[x1 X2 ... Xu] . 4)

face called markers (Fig. 1). After shooting the speaker say- o _

ing the utterances, the video sequence was digitized at a raté-2-1. Principal Component Analysis

of 30 frames/s. The acoustic signal and the 2D positions of Due the high redundancy in the data, Principal Component
the markers were extracted from the digitized video. To ex- Analysis (PCA) [8] is used in order to reduce the number of
tract the marker positions from the digitized video a robust Parameters in the estimators. The first step is to compute the
algorithm was developed. This algorithm receives the imagecovariance matrix of the vectors relative to facial motion
sequence as input and provides the temporal patterns of the C— 1 X — 41X — ylt 5
markers as output. The marker positions were interpolated M [ g u ®)

in order to obtain facial motion at a rate of 60 frames/s. The \yhere,, represents the mean facial vector (the elements of
markers on the forehead and nose were used for head Mopis vector are the means of the rows of mafiy. Next

tion compensation, whereas the remainMg- 18 markers  gingular Value Decompositids] is used to express the co-
were used to represent facial motion. variance matrix as

Xm = [l'lm T2m .- -T(2N)m]t . (3)

_ t
3. PARAMETERIZATION C=USU". (6)

At this point, the data available are the audio signal and the U is & unitary matrix whose columns are the eigenvectors
temporal patterns of the markers. However, these data arénormalized to unit Euclidean norm) & ands is a diag-
not yet in an appropriate form for the study of the relation ©nal matrix with the corresponding eigenvalues. The sum
between the acoustic and facial motion domains. This sec-Of all eigenvalues is equal to the total variance observed in
tion describes suitable parametric representations that willX. Therefore, if the sum of the first™ largest eigenval-

help in the study of the relation between the two domains. U€s reaches a given proportion (e.g. 99%) of the sum of all
eigenvalues, then the firéf eigenvectors ofC (contained

3.1. Acoustic Parameterization in the first K columns ofU) will equal this proportion of
the total variance of the data set. Thus, any vektoan be
n&pproximated as a linear combination of the fiSeigen-
vectors ofC (which are the firs& principal components of
g(), providedK is sufficiently large. For the facial motion
data used in this work, a proportion of 99% was considered

) - to be adequate. This value was attained wWith= 7 prin-
was applied to each frame. The LPC coefficients were thenCiloal components. Thus, a matit% formed by the first 7

converted into LSP coefficients. The LSP coefficients are columns ofU can be used to define a linear transformation
useful because they are strongly related to the speech for-
mants, which are basically determined by the vocal tract p=Ul(x—p). 7
shape. The vocal tract motion, in turn, is the main responsi-
ble for the facial motion during speech.

Thus, each frame: of digitized speech (acquired simul- x~Urp+p. (8)
taneously with facial motion) is represented aB & 10-
dimensional vector of LSP coefficients

The speech acoustics is represented by LSP (Line Spectru
Pairs) coefficients [7] as follows: the audio signal, acquired
at a rate of 8040 samples per second, was analyzed usin
a frame length of 16.67 ms, yielding a rate of 60 frames/s.
LPC (Linear Predictive Coding) analysis of ordér= 10

The original vectok can be recovered in the following way

The vectorp € RX is a vector formed by principal com-
ponent coefficients. The linear transformation defined by

£ = [fim fomn .. me]t ’ 0 E)? 7 allpws the repreientation of any facial position vec-

x of dimension2N = 36 by means of a vectop of
: dimensionk = 7.

where[]" denotes transpose. These vectors can then be g, marizing, the speech acoustics domain is represented
grouped in the following matrix by the vectors (Eq. (1)) of LSP coefficients and the facial
motion domain by the vectogs (Eq. (7)) of principal com-
ponent coefficients. The problem now consists of finding a
mapping capable of relating these two domains.

F=[ff ... fu]. )



4. MAPPING The temporal patterns shown in Fig. 4 show that the
The Objective here is to find a mappmg Capab|e of model- regions of the main articulators, like chin and lower lip,
ing the relation between speech acoustics and facial motionWwere relatively well estimated compared to other regions.
With this purpose, it is assumed that this relation can be de-It should be noted that these regions are fundamental for a
scribed by a functiop = A(f), wheref (Eq. (1)) andp good estimation of the whole facial motion during speech.
(Eq (7)) are the vectors representing, respective|y, Speecﬁrhe cheek motion was also relatively well recovered, indi-
acoustics and facial motion. Linear and nonlinear estima-cating that its motion is strongly related to speech acoustics.

tors are used to approximate the behaviokGf. It was observed, however, that the correlation coeffi-

_ ) cients depend on the spoken utterance. The mapping ob-

4.1. Linear Estimators tained with data relative to a specific utterance can estimate
Here, vectory are a linear transformation of vectdts the facial motion reasonably well for repetitions of the same
utterance, but not for different utterances. This fact moti-

p=Af. () vated the use of time-varying mappings. These mappings

have the same structure of those in Eq. (9), but their pa-

rameters are updated at regular time intervals (.5 s in

this work). Results obtained with time-varying mappings

A = PF!{(FF), (10) are shoyvn in Flg_. 5 These are the best r_esults, W|_th aglobal
correlation coefficient of 0.95. The physical meaning of the

A linearminimum squared errofMSE) estimatorA can be
obtained as follows

whose columns are formed by vectgrs namic prppe;rties of the system (g.g. muscle eIasticiFy) vary
slowly with time and position. This may be related with the

4.2. Neural Networks equilibrium point hypothesis [11].

Artificial neural networks can be used to model the nonlin- Analyzing the phonetic contents of the utterances, it was

ear mapping between vectdrsind vectorg [4, 9]. In this observed that, not surprisingly, the models fail for cases
work, independent neural networks were used to map thesuch as nasal sounds, when the coupling between acous-
vectorsf of LSP coefficients to each of the 7 components tics and facial position simply does not exist. This point is
that form the vectorp. Neural networks with one nonlin- illustrated in Fig 2.

ear hidden layer and a linear output layer were used. The

number Of neurons USEd in the h|dden Iayer was 4. ThIS 157 Facial Markers: vowel /a/ 151 Facial Markers: nasal /n/

number was obtained empirically and seems to be suitable = |e o lz lo o

The networks were trained using the Levenberg-Marquardt & ° ° S e °

algorithm [10]. 3 e e 0o © 2 e o0 ©

Once all the networks are trained, a set of 7 neural net- g ® ° ‘_g ® P i

works is obtained, each of them receiving as input a vector > s o0 S5 o s

f representing the speech acoustics and giving as output on © e 0 o ®

of the components of a vectpr. Therefore, the outputs of °

the 7 networks form together a complete vegiorFinally, Horizontal A Gm) Horizontal Ans ey

the facial position vectax is recovered using Eq. (8). Fig. 2. Measured (filled circles) and estimated (empty cir-
cles) facial marker positions compared for the cases of an

5. RESULTS oral vowel /a/ and a nasal /n/.
The results obtained with time-invariant estimators are il-
lustrated in Fig. 3 (linear estimator) and Fig. 4 (nonlinear 6. CONCLUSIONS

neural network estimator). The training set consists of threeln this paper time-invariant and time-varying, linear and
utterances of the sentence /E agorag26éverses 1, 12 and nonlinear mappings to estimate 2D facial motion from
27 of the poem), whereas the test set consists of one utterspeech acoustics were presented. The speech acoustics were
ance of the same sentence (verse 6 of the poem). Each paneépresented by LSP coefficients and the facial motion was
shows the correlation coefficients [3] between the measuredrepresented by the principal component coefficients of a set
signal and the signal estimated from the speech acousticsof marker positions placed on the face. The results obtained
The global correlation coefficients are 0.67 and 0.83, for with nonlinear (neural network) mappings show global cor-
linear and nonlinear estimators, respectively. These resultgelation coefficients as high as 0.83, but these values depend
agree with the results obtained previously for American En- strongly on the training and test data sets. To overcome this
glish and Japanese speakers [4], where about 70% and 85%roblem, time-varying mappings were used, resulting in a
of the facial motion could be recovered from the speech mean global correlation coefficient of 0.95, independently
acoustics using, respectively, linear and nonlinear mappingsof the spoken contents.
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