A FUNCTIONAL ARTICULATORY DYNAMIC MODEL FOR SPEECH PRODUCTION
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ABSTRACT

This paper introduces a new statistical speech production
model. The model synthesizes natural speech by model-
ing some key dynamic properties of vocal articulators in a
linear/nonlinear state-space framework. The goal-oriented
movements of the articulators (tongue tip, tongue dorsum,
upper lip, lower lip, and jaw) are described in a linear dy-
namic state equation. The resulting articulatory trajectories,
combined with the effects of the velum and larynx, are non-
linearly mapped into the acoustic feature space (MFCCs).
The key challenges in this model are the development of
a nonlinear parameter estimation methodology, and the in-
corporation of appropriate prior assumptions to assert in the
articulatory dynamic structure. Such a model can also be
directly applied to speech recognition to better account for
coarticulation and phonetic reduction phenomena with con-
siderably fewer parameters than HMM based approaches.

1. INTRODUCTION

Despite forty years of past studies into human speech pro-
duction and an array of increasingly detailed and sophis-
ticated proposed models [1], they have had at best only a
limited impact on computer synthesized human speech and
on automatic speech recognition. From a practical point
of view, the proposed models are either too complicated to
implement or they lack the comprehensiveness in covering
all classes of sounds. On the other hand, the current cut
and paste approach used in commercial speech synthesizers
clearly fails to provide phoneme transition as naturally as
human articulatory system.

The focus of this paper is to model the key dynamic
characteristics of the articulators which are essential to nat-
ural speech. We will not describe the detailed underlying
physiological mechanism which governs the movement of
articulators in our model, although clearly our model must
reflect the constraints in this movement. Rather, we propose
a target-oriented, parameterized linear state equation where
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Fig. 1. A block diagram of the speech production model.

the parameters are learned automatically from real speech
data, hence the name functional model. In terms of speech
recognition, such an articulatory model represents a consid-
erable departure from traditional HMM modeling, because
we are directly representing the physical speech production
process. However, our model can represent the underly-
ing articulatory movement quite accurately with very low
state dimension (between 4 and 10), implying that only very
few parameters need to be estimated, in sharp contrast with
HMM models. The simplicity of our model promises conve-
nience in applying it to problems of statistical speech recog-
nition.

The remainder of this paper is organized as follows: The
proposed model is detailed in Section 2, followed by au-
tomatic parameter estimation strategies in Section 3. Sec-
tion 4 shows preliminary results and lists possible further
improvements and research directions of the model, fol-
lowed by a brief discussion and conclusion in Section 5.



2. MODEL DESCRIPTION

A block diagram of the proposed speech production model
is shown in Fig. 1. The underlying articulatory dynamics
and the acoustic features are related by the following state-
space model:

z(k+1) = ®z(k)+ 9T+ w(k), (1)
o(k) = hlz(k)] +v(k). )

The state vector z(k) represents the positions of key articu-
lators, listed in Fig. 2, at time k. The acoustic features o(k),
chosen to be Mel-frequency cepstral coefficients (MFCCs)
in our model, are generated through nonlinear function h[ ].

The key parameterized elements of our model are the
quantities ®, ¥, and 7": Matrix & encodes the time inter-
action among the articulatory components; vector T is the
target position of the articulators (in hypothetical steady-
state); and matrix ¥ describes the control effect of the tar-
gets on the articulatory movement. All three quantities are
phone dependent, although for implementation purposes the
values @ and ¥ may each be tied for broader classes of
phones. Due to the well-known forward-anticipation prop-
erty of the articulators, the boundaries for these parameters
(especially the target T) should be in advance of the actual
acoustic boundaries. The quantitative degree of anticipation
is one additional parameter to be learned from the articu-
latory data. Finally the nonlinear observation function A[ |
represents the articulatory-to-acoustic mapping. Both w(k)
and v(k) are discrete-time white Gaussian noise processes,
with time-invariant covariance matrices Q and R respec-
tively.

By definition, our state equation (1) must satisfy the as-
sumed asymptotic target; that is, z(k) — T as k — oo,
which places constraints on @ and ¥. A convenient choice,
which we assume throughout this paper, isto let & = I — &,
in which case (1) becomes

z(k+1) =®z(k) + (I-2)T + w(k), ©))

As shown in Fig. 2, the state variable z is chosen to be
the joint positions of jaw, upper lip, lower lip, tongue tip and
tongue dorsum (each with = and y positions), i.e.,

z = [Jz, Jy, ULz, ULy, LLz, LLy,
TTz, TTy, TDx, TDy]". (4)

The purpose of matrix @ is to represent our assumptions re-
garding the interrelationships between z(k) and z(k + 1).
In particular, we can identify approximate conditional inde-
pendences among articulators; for example the movement
of the upper lip, related to that of the lower lip, is largely
independent of the jaw position. One possible ® matrix, de-
termined after exploring all such conditional independence

Fig. 2. Measured articulators: 1 - Jaw, 2 - Upper Lip, 3 -
Lower Lip, 4 - Tongue Tip, 5 - Tongue Dorsum.

relations, follows:
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Clearly the detailed structure of this matrix will be the sub-
ject of continued research. Note that asserting this struc-
ture simultaneously reduces the number of parameters and
makes the parameter estimation more robust. For the pa-
rameter estimation problem it is even more desirable for &
to be block diagonal, achieved through a change of basis,

z = [Jz, Jy, ULz, ULy, LLx — Jz, LLy — Jy,
TTx — Jz, TTy — Jx, TDx — Jx, TDy — Jy]?,

(6)
leading to a revised & matrix
(oo dor O O O O O O O O ]
pro¢11 0 0 0O O O O O O
0 0 @22 P2z poaps 0 0 0 O
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Finally, the form of A is extremely difficult to visual-
ize, so deducing an appropriate representation is challeng-
ing. We have had some success [2] using a mixture linear



model; more recently Gao et al [3] used a MLP with one
hidden layer and 100 neurons in the layer.

The very final stage of our speech production model is
conversion from MFCCs to a speech waveform, which is
carried out as a separate step.

3. MODEL PARAMETER LEARNING

The recent availability of the University of Wisconsin X-
ray microbeam speech production database (UW-XRMB)
allows us to train our model on simultaneously-recorded ar-
ticulatory and acoustic data. In the event that the amount
of such complete data is inadequate, model training can be
supplemented using acoustic data alone under a more gen-
eral EM framework.

We first assume the articulatory phone boundaries are
known. Suppose that the collection of state variables Z =
{z(0),z(1),...,2z(K)}, belonging to the same phone, are
fully observable. Then the maximum likelihood estimates
of ® and T follow:

$ = BA!, 8
T=@-1"-
1 K-1 1 K-1
— z( z(k+1) 9)
JERNUIRE SRR
where
| K=1 | K-1 T
A= lE Zz(k)] lE z(k)] —
k=0 k=0
1 K-1
7 2 [20)2(R)], (10)
k=0
| K-1 | K-1 T
k=0 k=0
1 K-1
% 2 [+ 1)z(k)"] . (11)
k=0

The above result applies to estimating a general, uncon-
strained matrix ®. In the block-diagonal case (7) the above
estimator is just applied separately to each block. Notably,
the above estimator does not apply to the more interesting
constrained case (5); we have derived such an estimator,
however the result cannot be expressed in a succinct, closed
form and the relatively complicated expressions are omit-
ted.

As is typical, the assumption that A is nonsingular holds
with sufficient training data; because of the efficiency of our
model and the few degrees of freedom needed to parameter-
ize it, only a very modest amount of data is required.

Articulator Boundary Estimation

Typically we don’t know the articulatory boundaries where
the targets switch values, as required by the parameter es-
timation of the state equation. In many cases the acoustic
phone boundaries may be available, such as in the TIMIT
or UW-XRMB databases, or they need to be suboptimally
approximated [4]. Since each articulatory boundary nor-
mally lies within adjacent acoustic boundaries (especially
for tongue, but less so for lips and velum), we can search
through all frames within two acoustic boundaries P;_; and
P; for the optimal articulatory boundary ;, i.e.,

P
S _ 2
%i=arg, min_, k; |a(k) —z(k)*,  (12)
i—1

where

a(k+1) = &;2(k) + (I— )Ty, 7 < k < 7i41,13)
#(0) = 2(0). (14)

&; and T; are obtained by assuming a given ~;, and ~; itself
varies between two adjacent acoustic boundaries.

Parameter Learning from Acoustic Data

The convenience of simultaneously-recorded articulatory
and acoustic data is rare. Normally our model has to be
based on acoustic data alone. One effective solution is to
apply the EM algorithm which iteratively uses a Kalman
smoother to compute the likelihood L(®,T), and then
varies the parameters to maximize the likelihood function.
Because our observation model is nonlinear, we actually ap-
ply the extended Kalman smoother, which requires the Jaco-
bian of the nonlinear observation function h[]. For example,
for a MLP that we have implemented with one hidden layer
the Jacobian is

Jmn = 2 szwzng lz 'wmzn‘| > (15)

where W and w are the weights of the MLP and g is the
sigmoid function.

4. RESULTSAND FURTHER IMPROVEMENTS

Fig. 3 illustrates one example of fitting our linear dynamic
state equation to the tongue-position trajectories of a simple
sentence. We adopt the block diagonal structure from (7),
and the articulatory phone boundaries are also learned auto-
matically, based on (12). The fitted trajectories are produced
by (13) and (14) with the optimal boundaries. Our model
produces an excellent fit, especially considering that the
model, containing only three-hundred degrees of freedom
(parameters), is being used to fit a total of 4800 articulatory
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Fig. 3. Articulatory trajectory fitting for: When can we go
home; solid line: real trajectory; broken line: fitted one.

data points. Two model-data mismatches can be observed:
at the end of the sentence, where the articulators start go-
ing to the rest position after realizing the last phone, and the
small jump at the boundary between /ao/ and /h/, which we
postulate stems from having only zeroth-order (i.e., continu-
ity) constraints in z(k), rather than higher-order derivative
constraints. Arguably the model is promising at reflecting
the true dynamics of articulatory movements. The follow-
ing represent future developments:

1. Our state z contains only articulatory elements, so our
first-order model (3) affects the continuity of z, but
not of its derivatives. We can enforce higher-order
constraints, as appropriate, by including certain artic-
ulatory derivatives in the state.

2. Targets of different articulators do not switch syn-
chronously during speech, as can be observed from
Fig. 3, consistent with past work on overlapping of
articulatory features [5, 6]. Since the articulatory
boundary ; can be learned separately for each artic-
ulator, it should be possible to derive a mechanism to
deduce overlapping articulatory features and provide
them as input to the model.

3. Our current implementation fixes the articulator tar-
get position T to a single value for each phone. To
better account for compensatory articulation, it may
be more desirable to model the target as a multivari-
ate distribution.

5. DISCUSSIONS

Recently in speech recognition, new models incorporating
dynamic properties of human speech have been proposed
[2, 3, 7] to better account for coarticulation and phonetic
deduction phenomena in casual speech and to overcome
some known limitations of HMM-based approaches. The
speech production model described in this paper is intended
for the same purpose by providing a more accurate model
of human speech that directly takes into account articula-
tory dynamics. We have reached a stage of research where
the model structure has been designed, parameter learning
algorithms been developed, and the effectiveness of the al-
gorithms been verified. Future work will focus on integrat-
ing all components of the model and evaluating the model
on speech synthesis and recognition tasks.
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