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ABSTRACT

The statistical properties for bicoherence estimation are shown to
be strongly connected to the properties of the power- and bispectral
estimator used. Data tapering will reduce spectral leakage and fre-
quency smoothing will reduce the variance. It is shown that correct
normalization is essential to ensure unbiased results. The multi-
taper approach is shown to be superior to other non-parametric
estimators for bicoherence estimation.

1. INTRODUCTION

The bicoherence is a useful tool for classification and quantiza-
tion of non-linearity and non-Gaussianity in time series. Since
a Gaussian linear processes theoretically has zero bicoherence, a
non-zero constant valued bicoherence indicates non-Gaussianity.
Furthermore, a frequency dependent bicoherence value indicates
non-linearity [1]. In harmonic analysis, e.g. the classical three
wave phase coupling example [2], the bicoherence provides the
fraction of power carried by the non-linearity.

Since bicoherence is a normalized version of the bispectrum,
higher order spectral analysis plays a significant role in the esti-
mation of the bicoherence from real data. It is well known that
the bispectrum estimates are prone to be noisy and statistically in-
consistent. To reduce the impact this can have on the bicoherence
values, segment averaging and/or frequency smoothing have been
introduced in bicoherence estimation [2, 3]. In addition, data taper-
ing has been suggested to reduce the spectral leakage for processes
with large dynamical range to avoid biased bicoherence estimates.
Recently, several publications report the use of multitaper tech-
nique in bispectral estimation [4, 5, 6, 7]. In both power- and bi-
spectral estimation, the multitaper approach is superior to classical
non-parametric estimators in terms of bias and variance.

In this paper, we will study the effect of data tapering and fre-
quency smoothing in the case of bicoherence estimation. Some pit-
falls in bicoherence estimation will be discussed. We will present
the adaptive multitaper technique for bicoherence estimation, which
provides full control over the smoothing bandwidth and leakage,
and demonstrate its superiority over non-parametric estimators for
bicoherence estimation.

The organization of this paper is as follows. In section 2 we
present the bicoherence and some of its properties. In section 3
we discuss tapering and frequency smoothing of power- and bi-
spectra, and we investigate the statistical properties of the resulting
bicoherence estimators. Some illustrative numerical examples are
shown in section 4. Finally, section 5 contains some recommenda-
tions and the conclusion.

2. BICOHERENCE

There exist several ways to normalize the bispectrum [3]. We will
assume that the available data� � � � , � � � � � � 
 
 
 � � � � , is from a
real and stationary process with zero mean and Fourier transform� � � � � � � � � � � �� � � � � � � � �  ! " $ �

. The bicoherence% � � � � � ! �
can then be defined as
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For stochastic processes, the Fourier transform does not strictly
exist. Still, the bicoherence definition in (1) is suitable, using
the relationship to the process power spectrum, - � . / 0 1 2 - � .
and its bispectrum3 - � 4 5 � . / 0 2 1 6 - � 4 5 � 2 .

. Keeping these
relationships in mind, we will for the rest of the paper denote1 2 - � .

and
1 6 - � 4 5 � 2 .

as the process power- and bispectrum, re-
spectively. All estimators and statistical properties are related to1 2 - � .

and
1 6 - � 4 5 � 2 .

, even if some references use, - � .
and3 - � 4 5 � 2 .

.
Using the Fourier transform9 - � .

of the whole data record di-
rectly in calculation of

1 2 - � .
and

1 6 - � 4 5 � 2 .
, known as the pe-

riodogram
1 : ; <2 - � .

and biperiodogram estimator
1 : ; <6 - � 4 5 � 2 .

,
is however not recommended. This will always lead to a unity
magnitude bicoherence since there is no expectation operations in-
volved in the estimation of the spectra. Thus, we will in the follow-
ing discuss the case where data= > ? @ for ? / A 5 B 5 C C C 5 0 D B

are
divided into E segments, each with

1
data points and

0 / E 1
.

For each segment the power- and bispectra are estimated, and the
segment averaged resultsF > 1 : ; <2 - � . @ and F > 1 : ; <6 - � 4 5 � 2 . @ are
used in (1) to make a bicoherence-periodogramG H : ; < - � 4 5 � 2 .

.
Since the expected value of the periodogram and biperiodogram

is unbiased in the case of no spectral leakage [8, 7], theG H : ; < - � 4 5 � 2 .
will also be approximate unbiased. It is common to neglect the sta-
tistical variability of the denominator in (1), so that the variance
can be approximated as [2]

Var K G H : ; < - � 4 5 � 2 . L N B
E O

B D H
2

- � 4 5 � 2 . P C
(4)

This approximation clearly shows that the variance is low for unity
true bicoherence, while in the case of zero-level true bicoherence
the variance is constant and independent of the Fourier transform
amplitude Q 9 - � . Q .



3. IMPROVED POWER- AND BISPECTRAL ESTIMATES

Even if the segment averaged method provides a consistent esti-
mator for the bicoherence, there are some problems that have to be
taken into account. First, to obtain a reasonable zero level bico-
herence in the white Gaussian case requiresS T U [3]. Second,
in the case of data with large dynamic range, spectral leakage can
introduce severely biased bicoherence estimates.

It is possible to obtain lower variance in the bicoherence esti-
mate if we introduce frequency smoothing in addition to the seg-
ment averaging. The improvement in variance properties is ob-
tained at the cost of poorer frequency resolution [3]. Note that the
power- and the bispectral estimate should be smoothed with the
same bandwidth.

Spectral leakage can be reduced through data tapering [2].
A typical “bell-shaped” data window is the Hanning taper, which
have significantly lower sidelobes than the rectangular data win-
dow. The improvement in leakage resistance is obtained at the cost
of poorer frequency resolution since the main lobe is widened. We
strongly recommend one to normalize the power- and bispectral
estimates by the window energy and the bispectral window “en-
ergy” of the data window used [9, 7]. This will ensure unbiased
estimates of constant valued bicoherence.

3.1. Multitaper estimates

Maximizing the spectral concentrationV of the taperW X Y Z subject
to a chosen half bandwidth[ \

] ^ _` a b d V e f
b gi b g j k m [ n j o p [

f q r oi
q r o j k m [ n j o p [ (5)

wherek m [ n is the Fourier transform ofW X Y Z ands t u v w v x x x v y zw , leads to a set ofy orthonormal data windows called the Dis-
crete Prolate Spheroidal Sequences (DPSS) [10]. Normally, the{ t | y } ~ tapers with the largest spectral concentrations are
used in the multitaper approach. We denote these tapers and their
corresponding spectral concentrations as� � � s � and � � , respec-
tively.

For each data segment, a family of tapered data is obtained as� � � s � t � � s � � � � � � . Tapered periodogram�y �� � } � and tapered
biperiodogram�y � � � � � �� � } � v } � � can now be found as

�y �� � } � t � � � � } � � �
(6)
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where� � � } � t w � y � � � �� � � � � � s � � � � � � � �
is the Fourier trans-

form of the data tapered by window no.� .
The multitaper spectral estimates can thus be found as an av-

erage over all individual tapered estimates

�y � �� � } � t �  � ¡ - ��� � � �y �� � } � (8)
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Here ¢ � � � � � � t � � � �� � � � � � � s � � � � � s � � � � � s � is a ”bienergy” weig-
hting function, and£ � t y ¤ {

and £ � t y � � ¡� � ¥ � � ¥ � � � � ¢
�� � � � � �

are normalization constants to ensure approximately unbiased power-
and bispectral estimates respectively.

In the case of signals with a large dynamic range, the adap-
tive multitaper approach introduces frequency dependent weight-
functions ¦ � � } � that will down-weight the result from each taper
only where leakage is present. In case of no spectral leakage, the
adaptive approach will perform similarly to the normal multitaper
spectral estimates. The adaptive approach is discussed in detail in
[6, 10].

The multitaper estimator for bicoherence§ ¨ � � � } � v } � � is ob-
tained using the segment averaged multitaper power- and bispectral
estimates,© � �y � �� � } � � and © � y � �� � } � v } � � � respectively, in (1).

3.2. Statistical properties

The bias and variance for multitaper spectral estimates can be de-
scribed through the total spectral window« ¬ ­ ® ¯ and total bi-
spectral window« ° ­ ® ± ² ® ¬ ¯ , respectively. Similar results for both
power- and bispectral estimates can be obtained for all conven-
tional non-parametric techniques [9, 7, 11].

3.2.1. Expected value

The expected value of the multitaper power- and bispectral esti-
mates can be written as [10, 7]

E ³ ´µ ¶ ·¬ ­ ® ¯ ¸ ¹ « ¬ ­ ® ¯ º µ ¬ ­ ® ¯ (10)

E ³ ´µ ¶ ·° ­ ® ± ² ® ¬ ¯ ¸ ¹ « ° ­ ® ± ² ® ¬ ¯ º µ ° ­ ® ± ² ® ¬ ¯ (11)

where º denotes one- and two dimensional convolution, respec-
tively. Here « ¬ ­ ® ¯ and « ° ­ ® ± ² ® ¬ ¯ can be written as

« ¬ ­ ® ¯ ¹ ±» ¼ ½ ¾ ±¿À Á Â Ã Ä À ­ ® ¯ Ã ¬ (12)

« ° ­ ® ± ² ® ¬ ¯ ¹ ±» Å ½ ¾ ±¿À Æ À ¼ À Å Á Â Ç À Æ À ¼ À Å « À Æ À ¼ À Å ­ ® ± ² ® ¬ ¯ (13)

where« À Æ À ¼ À Å ­ ® ± ² ® ¬ ¯ ¹ Ä À Æ ­ ® ± ¯ Ä À ¼ ­ ® ¬ ¯ Ä ÈÀ Å ­ ® ± + ® ¬ ¯ and Ä À ­ ® ¯
is the Fourier transform of theÉ -th DPSS taperÊ À Ë Ì Í . Using
DPSS tapers,« ¬ ­ ® ¯ is the best approximation to a normalized
ideal filter in terms of spectral concentration [10, 9]. Similarly,Î Ï Ð Ñ Ò Ó Ñ Ô Õ

corresponds to a normalized ideal hexagonal smoother
in the bi-frequency domain [7].

We will approximate the expected value of the multitaper bi-
coherence estimator by

E Ö × Ø Ù Ú Ð Ñ Ò Ó Ñ Ô Õ Û Ü E Ö ÝÞ Ù ÚÏ Ð Ñ Ò Ó Ñ Ô Õ Û
ß

E Ö ÝÞ Ù ÚÔ Ð Ñ Ò Õ Û
E Ö ÝÞ Ù ÚÔ Ð Ñ Ô Õ Û

E Ö ÝÞ Ù ÚÔ Ð Ñ Ò
+

Ñ Ô Õ Û à
(14)

Although this is an approximate expression, it has, however, proven
very useful in interpreting the effect that difference power- and bi-
spectral estimators have on bicoherence estimation.

For slowly varying processes, both power- and bispectral multi-
taper estimates are unbiased. Consequently, the bicoherence esti-
mator is also unbiased in that case.

Near rapidly varying true bicoherence, the smoothing effects
imply local bias in the bicoherence. Sharp maxima will be smoothed
out, and since the maxima will be more spread out in the bispectral
case, the resulting bicoherence estimate will be lower than the true
value. If e.g. only the bispectral estimate is smoothed, sharp max-
ima in the true bicoherence will appear as a dip in an artificial
raised smoothed platform.



3.2.2. Variance

Only considering the smoothing effect from the multitaper ap-
proach, the variance of the power- and bispectral estimates can
be approximated by [9, 7]

Var Ö ÝÞ Ù ÚÔ Ð Ñ Õ Û á Î ÔÔ Ð Ñ Õ â Þ ÔÔ Ð Ñ Õ
(15)

Var Ö ÝÞ Ù ÚÏ Ð Ñ Ò Ó Ñ Ô Õ Û á Î ÔÏ Ð Ñ Ò Ó Ñ Ô Õ â
Var ã ÝÞ ä å æÏ Ð Ñ Ò Ó Ñ Ô Õ ç Ó

(16)

where Varã ÝÞ ä å æÏ Ð Ñ Ò Ó Ñ Ô Õ ç
is the variance of the biperiodogram.

Since both
Î Ô Ð Ñ Õ

and
Î Ï Ð Ñ Ò Ó Ñ Ô Õ

have an approximately flat smooth-
ing support, a higher smoothing bandwidthè é will provide wider
supports and thereby lower variances.

Neglecting the variability of the denominator in (1), the vari-
ance of the multitaper bicoherence estimator can similarly be ap-
proximated by

Var ê ë í î ï ð è ñ ò è ó ô õ ö ÷ óø ð è ñ ò è ó ô ù Var ê ë í ú û ü ð ý ñ ò ý ó ô õ (17)

In the case of white noise, the variance reduction factor isþ ð ÿ ý � ô ó [4, 7]. For rapidly varyingÿ ó ð ý ô , ÿ ø ð ý ñ ò ý ó ô and/or
í ð ý ñ ò ý ó ô , the bias in expected bicoherence values will effect the
variance. This can partly be described using the estimators ex-
pected value instead of the true bicoherence value in (4)

Since multitaper estimators have been shown superior to other
non-parametric estimators for both power- [10, 9] and bispectra [7]
in terms of bias and variance, the multitaper bicoherence estimator
will have the same superiority based on (14) and (17).

4. NUMERICAL EXAMPLES

4.1. Phase coupling

We will first investigate data with different degree of phase cou-
pling between harmonic frequencies. The data are similar to the
example given in [2], but we have chosen other frequencies and
additive non-Gaussian zero-mean white noise. The test signal is

� � � � � � 	 � � � � � � � � � � � 	 � � � � � � � � � � �� � 	 � � � � � � � � �
� � 	 � � � � � � � � � � 	 � � � � � � � � � � � � � �

where � � � � � � for  � ! " # and $ , � � � % & ' ) * , � � � % & * and� � � � � � � � . The noise is defined as� � � � � , � � � - � , where, � � � is exponentially distributed with unity mean. / � � , unity
variance. 0 � � , and skewness. 1 � �

. Each segment contains2 � �
� 3

data points, and we average over4 � 5 segments of
data. The phases� � " � � and � � are independently drawn for each
segment from a uniform distribution on� - � " � � .

The true bicoherence for this process contains a flat back-
ground noise with magnitude. 0 7 8 2 . 10 9 % & � ) ) . Sum and dif-
ference non-linear interaction are present at bifrequencies� � � " � � �
and � � � " � � - � � � , respectively. Except for these two points, the
true bicoherence will have low values along the harmonic axes� / " � 0 " � / � � 0 < � � � - � � " � � " � � " � � � � � � .

Estimates of the expected value and the variance for the bi-
coherence estimators are found using� % % % % independent Monte
Carlo simulations. The modulus of the expected value using four
different bicoherence estimators are shown in Fig. 1. In Table 1,
we have listed some important values for easier reference, and we
have included the variance results.
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Fig. 1. Modulus of expected value for bicoherence estimators with= >
�

� 3
and ? > @

. Upper left: Using periodogram and bi-
periodogram. Upper right: Using Hanning tapered periodogram
and biperiodogram. Lower left: Using normalized Hanning ta-
pered periodogram and biperiodogram. Lower right: Multitaper
estimator with

= A B > �
.

In the upper left corner of Fig. 1, is the expected magnitude for
the bicoherence using periodogram and biperiodogram estimators.
Since the harmonic frequencies match the discrete frequency bin
available, the mean values shows clear identification of the degree
of coupling. The problem is that the variance for the noise floor can
be too high to distinguish between noise and true phase coupling.

The Hanning tapered bicoherence, whose expected magnitude
is shown in the upper right corner of Fig. 1, introduces correla-
tion between nearby frequencies. Near the bicoherence maxima,
the neighboring frequencies are over estimated, as is the the noise
floor level. Correct normalized Hanning tapers in the power- and
bispectral estimates provide the correct noise level, but the peak
values of the phase couplings are also lowered as shown in lower
left corner of Fig. 1. We find that the variance of correct nor-
malized bicoherence estimator is lower than in the untapered case.
This variance reduction is connected to the frequency correlation
introduced by the tapering itself [7].

The multitaper bicoherence expected magnitude is presented
in lower right corner of Fig. 1. For slowly varying parts of values
in the true bicoherence, this estimator provides unbiased estimates
with very low variance. The variance result in the noise region, as
indicated in right hand columb of Table 1, is close to the theoretical
result (� C D E

= A B F G ? > H I H �
� ) from (17). Near the bicoherence

peaks the hexagonal frequency smoothing effect is obvious, but
still the different phase coupling can be identified clearly.

4.2. Tension Lag Platform (TLP) data

A TLP is a buoyant floating platform, tethered to sea bed by ten-
sioned tendons. The resonant frequency of horizontal motion is
designed to be below the expected frequency band of input sea-
wave to avoid linear resonance. However, it is found that high-
frequency incoming sea-waves can excite low-frequency drift os-
cillations in the horizontal plan due to second-order nonlinear ef-



Mean/ Var J K M - K N O K N Q J K N O K M Q J R T U W O R T X W Q
Theoretical .943/ .027 .686/ .133 .177/ .250
(Bi-) periodogram .924/ .023 .660/ .103 .162/ .252
Tapering .892/ .032 .644/ .109 .217/ .258
Norm. tapering .658/ .017 .475/ .059 .160/ .140
Multitaper .466/ .007 .355/ .030 .162/ .024

Table 1. Mean and variance results for three bi-frequencies in the
bicoherence. Theoretical variance results are obtained using (4).

0 0.1 0.2

−40

−30

−20

−10

0

10
M

2
per(f) [dB]

f [Hz]
0 0.1 0.2

−40

−30

−20

−10

0

10
M

2
mt(f) [dB]

f [Hz]

0

0.2

0.4

0.6

0.8

1

f
1
 [Hz]

f 2 [H
z]

| bper(f
1
,f

2
) |

0 0.1 0.2

0

0.05

0.1

0.15

0.2

0.25
0

0.2

0.4

0.6

0.8

1

f
1
 [Hz]

f 2 [H
z]

| bmt(f
1
,f

2
) |

0 0.1 0.2

0

0.05

0.1

0.15

0.2

0.25

Fig. 2. Power spectrum (upper row) and magnitude bicoherence
estimates (lower row) from TLP surge data, withY Z [ [ , \ Z

[ ] ^ . Left: Using periodogram and biperiodogram. Right: Using
adaptive multitaper estimation with_ ` Z a b \ .

fects [12]. The data we will use, comes from a model test of a
TLP carried out in the wave basin of the Offshore Technology Re-
search Center located at Texas A&M University. Using full scale
measurements, the model had natural drift frequency atc d c c e Hz,
while the random sea-waves were simulated as a Gulf of Mexico
storm with most of their energy at frequencies aroundc d c e Hz.
The TLP surge motion data, after decimation, were divided into

Y Z [ [ segments each with\ Z [ ] ^ data points.
The averaged periodogram and a multitaper estimate of the

surge power spectrum is shown in upper left and upper right cor-
ners of Fig. 2, respectively. The power spectra have two clear
peeks, one near zero frequency (close to horizontal resonance fre-
quency ofc d c c e Hz) and the other aroundc d c e Hz. The adaptive
multitaper estimator [6] with bandwidth_ ` Z a b \ , provides a
smoothed estimate without any ripples. Furthermore, since the
leakage is reduced through the adaptive approach, it also shows
some very low valued results near the Nyquist frequency (_ f Z

c d [ ^ g ] Hz).
In lower left and right corner of Fig. 2, the magnitude bico-

herence estimate are shown for (bi-) periodogram (\ h i jk l _ m n _ o p )
and multitaper approach (\ q rk l _ m n _ o p ), respectively. The leakage
produce wrong valued “stripes” in\ h i jk l _ m n _ o p , and the remain-
ing area is noisy. In the multitaper case, we see no “stripes” from
leakage and the bicoherence magnitude can be found strongly fre-
quency dependent.

5. CONCLUSIONS

Using the standard bicoherence estimator with periodogram and
biperiodogram estimates, we have explained the statistical behav-
ior involved with tapering and/or frequency smoothing for the bi-
coherence estimation case. To obtain an unbiased estimate, we
have shown that it is extremely important to use correctly normal-
ized power- and bispectral estimates. Tapering will reduce spectral
leakage, and frequency smoothing will reduce the variance in bi-
coherence estimation.

We have suggested the use of a multitaper approach in bicoher-
ence estimation to provide a clearly defined smoothing bandwidth.
The multitaper approach has been shown to be superior to other
non-parametric bicoherence estimators, and an adaptive approach
can be used to reduce the leakage.
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