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ABSTRACT 2. BICOHERENCE

The statistical properties for bicoherence estimation are Shown t01hare exist several ways to normalize the bispectrum [3]. We will
be strongly connected to the properties of the power- and bispectral

; ; - assume that the available dafm], » = 0,1,...,N—1,isfroma
estimator used. Data tapering will reduce spectral leakage and freg5) ang stationary process with zero mean and Fourier transform
guency smoothing will reduce the variance. It is shown that correctX(f) = 1/N E]%/_l x[nie—jZﬂ—fn. The bicoherencé(fi, f»)
normalization is essential to ensure unbiased results. The multi-,1 then be definne?joas ’
taper approach is shown to be superior to other non-parametric

estimators for bicoherence estimation. b(fi, f2) = Ms(f1, f2) 1)

VM (FO)M(£2) Mo (f1 + f2)

1. INTRODUCTION where
The bicoherence is a useful tool for classification and quantiza- My(f) = E[X(f)X™(f)] 2
tion of non-linearity and non-Gaussianity in time series. Since Ms(f1, fo) = E[X(Ff)X(F)X*(f1 + f2)]. (3)

a Gaussian linear processes theoretically has zero bicoherence, a

non-zero constant valued bicoherence indicates non-Gaussianity.  For stochastic processes, the Fourier transform does not strictly

Furthermore, a frequency dependent bicoherence value indicate§Xist. Still, the bicoherence definition in (1) is suitable, using

non-linearity [1]. In harmonic analysis, e.g. the classical three the relationship to the process power spect®(f) = NM(f)

wave phase coupling example [2], the bicoherence provides theand its bispectrunB(fi, f) = N>Ms3(fi1, f»). Keeping these

fraction of power carried by the non-linearity. relationships in mind, we will for the rest of the paper denote
Since bicoherence is a normalized version of the bispectrum, M2(f) andMs(f1, f2) as the process power- and bispectrum, re-

higher order spectra| ana|ysis p|ays a significant role in the esti- spectively. All estimators and statistical properties are related to

mation of the bicoherence from real data. It is well known that M2(f) and Ms(f1, f2), even if some references us¥f) and

the bispectrum estimates are prone to be noisy and statistically in-B(f1, f2).

consistent. To reduce the impact this can have on the bicoherence ~ Using the Fourier transforo ( f) of the whole data record di-

values, segment averaging and/or frequency smoothing have beefectly in calculation ofdf>(f) and Ms(f1, f2), known as the pe-

introduced in bicoherence estimation [2, 3]. In addition, data taper- fiodogramMZ“"(f) and biperiodogram estimata?“" ( f1, f2),

ing has been suggested to reduce the spectral leakage for processés however not recommended. This will always lead to a unity

with large dynamical range to avoid biased bicoherence estimatesmagnitude bicoherence since there is no expectation operations in-

Recently, several publications report the use of multitaper tech- volved in the estimation of the spectra. Thus, we will in the follow-

nique in bispectral estimation [4, 5, 6, 7]. In both power- and bi- ing discuss the case where dafa] forn = 0,1,..., N — 1 are
spectral estimation, the multitaper approach is superior to classicaidivided into.S segments, each with/ data points andv' = SM.
non_pai’ametric estimators in terms of bias and variance. For each Segment the power- and blSpeCtra are estlmated, and the

In this paper, we will study the effect of data tapering and fre- segment averaged resul{M;“" (f)] and A[MZ“" (f1, f2)] are
guency smoothing in the case of bicoherence estimation. Some pit-used in (1) to make a bicoherence-periodogbéffi( fi, f2).
falls in bicoherence estimation will be discussed. We will present Since the expected value of the periodogram and biperiodogram
the adaptive multitaper technique for bicoherence estimation, whichs unbiased in the case of no spectral leakage [8, 7§Pﬂ*re{f1, f2)
provides full control over the smoothing bandwidth and leakage, will also be approximate unbiased. Itis common to neglect the sta-
and demonstrate its superiority over non-parametric estimators fortistical variability of the denominator in (1), so that the variance

bicoherence estimation. can be approximated as [2]
The organization of this paper is as follows. In section 2 we 1
present the bicoherence and some of its properties. In section 3 Var [bp”(fl, f2)i =g (1- b>(f1, f2)) - 4)

we discuss tapering and frequency smoothing of power- and bi-

spectra, and we investigate the statistical properties of the resultingThis approximation clearly shows that the variance is low for unity
bicoherence estimators. Some illustrative numerical examples aretrue bicoherence, while in the case of zero-level true bicoherence
shown in section 4. Finally, section 5 contains some recommenda-the variance is constant and independent of the Fourier transform
tions and the conclusion. amplitude| X (f)].



3. IMPROVED POWER- AND BISPECTRAL ESTIMATES In the case of signals with a large dynamic range, the adap-
tive multitaper approach introduces frequency dependent weight-
Even if the segment averaged method provides a consistent estifunctionsd; (f) that will down-weight the result from each taper
mator for the bicoherence, there are some problems that have to b@nly where leakage is present. In case of no spectral leakage, the
taken into account. First, to obtain a reasonable zero level bico-adaptive approach will perform similarly to the normal multitaper

herence in the white Gaussian case requifes> 1 [3]. Second, spectral estimates. The adaptive approach is discussed in detail in
in the case of data with large dynamic range, spectral leakage carjg, 10].
introduce severely biased bicoherence estimates. The multitaper estimator for bicoherens®®(f1, f») is ob-

It is possible to obtain lower variance in the bicoherence esti- tained using the segment averaged multitaper power- and bispectral
mate if we introduce frequency smoothing in addition to the seg- estimatesA[]\//fgnt(f)] and A[M* (f1, f2)] respectively, in (1).
ment averaging. The improvement in variance properties is ob-
tained at the cost of poorer frequency resolution [3]. Note that the
power- and the bispectral estimate should be smoothed with the
same bandwidth. The bias and variance for multitaper spectral estimates can be de-

Spectral leakage can be reduced through data tapering [2].scribed through the total spectral winddw»(f) and total bi-

A typical “bell-shaped” data window is the Hanning taper, which spectral windowWVs(f1, f2), respectively. Similar results for both
have significantly lower sidelobes than the rectangular data win- power- and bispectral estimates can be obtained for all conven-
dow. The improvement in leakage resistance is obtained at the costional non-parametric techniques [9, 7, 11].

of poorer frequency resolution since the main lobe is widened. We

strongly recommend one to normalize the power- and bispectral32 1. Expected value

estimates by the window energy and the bispectral window “en- ] ) ]
ergy” of the data window used [9, 7]. This will ensure unbiased The expected value of the multitaper power- and bispectral esti-

3.2. Statistical properties

estimates of constant valued bicoherence. mates can be written as [10, 7]
| | E(M(H] = Walf) s Ma(f) (10)
3.1. Multitaper estimates
Trmt _
Maximizing the spectral concentrationof the tapew|[m] subject E [M?’ (fl’f2)] = Ws(fi, f2) * Ma(f1, f2) 11
to a chosen half bandwidtfs where denotes one- and two dimensional convolution, respec-

f? V(P tively. HereW,(f) andW3s(f1, f2) can be written as
—JB

max\= —2——— (5) K1

T R (P Wa(f) = & T P (12)
whereV (f) is the Fourier transform affm] andm = 0,1,..., M — W _ 1 & P W 13
1, leads to a set oM orthonormal data windows called the Dis- 2(f1, f2) Us k1k22k3=0 brkaks Wiskota (f1, f2) - (13)

crete Prolate Spheroidal Sequences (DPSS) [10]. Normally, the ,
_ i i WhereWs, koks (f1, f2) = Vi, (f1) Vo (f2) Vi, (f1+£2) andVi (f)
K = 2M fg tapers with the largest spectral concentrations are . the Fourier transform of the-th DPSS ?apelvk[m]. Using

used in the multitaper approach. We denote these tapers and thei . o :
. . ) PSS tapersW-(f) is the best approximation to a normalized
corresponding spectral concentrationsuggm] and Ay, respec ideal filter in terms of spectral concentration [10, 9]. Similarly,

tively. . .
zor each data segment, a family of tapered data is obtained adV3(f1, f2) corresponds to a normalized ideal hexagonal smoother

. . — In the bi-frequency domain [7].
zr[m] = z[m]vi[n]. Tapered periodogram/; (f) and tapered We will approximate the expected value of the multitaper bi-

biperiodogramZy*¥23 (1, f) can now be found as coherence estimator by
B () = X ¢ ] = E (3 (1. 12)]
MR8 (£ o) = Xao (1) Xea () Xiy (2 + fo)y (7) (1, f2)] = Je T e [ € [ o]
2 1 2 2 2 1 2
whereXy (f) = 1/M 3-M 2} ), [m]e 72"f™ is the Fourier trans- (14)

form of the data tapered by window nfe. . . o
The multitaper spectral estimates can thus be found as an avAlthough this is an approximate expression, it has, however, proven
erage over all individual tapered estimates very useful in interpreting the effect that difference power- and bi-

spectral estimators have on bicoherence estimation.

i | K1~ For slowly varying processes, both power- and bispectral multi-
M3"(f) = Uy ];0 M3 (f) (®) taper estimates are unbiased. Consequently, the bicoherence esti-
K1 B mator is also unbiased in that case.
MIt(fu, f2) = U% S Pahoks MR (£ £5).(9) ~Near rapidly varying true bicoherence, the smoothing effects
k1 kokz=0 imply local bias in the bicoherence. Sharp maxima will be smoothed

out, and since the maxima will be more spread out in the bispectral
HerePy, koks = Yo m—o Vk: [M]vk, [m]usy [m] is a”bienergy” weig-  case, the resulting bicoherence estimate will be lower than the true
hting function, and/; = M-K andUs = M? Eﬁ,b,/@:o P,flk2k3 value. If e.g. only the bispectral estimate is smoothed, sharp max-
are normalization constants to ensure approximately unbiased powiena in the true bicoherence will appear as a dip in an artificial
and bispectral estimates respectively. raised smoothed platform.



3.2.2. Variance 0 1 0 1 L
. . . . 0.2 0.8 0.2 0.8
Only considering the smoothing effect from the multitaper ap-
proach, the variance of the power- and bispectral estimates can _%* | 06 04 'l 0.6
be approximated by [9, 7] 0.6 04 06 0.4
— 0.8 0.2 0.8 0.2
var [315" ()] = W () * M3(f) (15) ) R i
o - 0 0.5 1 0 0.5 1
Var [Mgzt(fl,b)] = W3(fi, fo) * VM (fi, f2)], (16) i i
0 1 0 1
where Va[J/\/I\?{’”(fl, f2)] is the variance of the biperiodogram. 02 | 08 02 ! 08
Since bottiV (f) andWs(f1, f2) have an approximately flat smooth- : 06 o4 06
ing support, a higher smoothing bandwidth will provide wider s o
supports and thereby lower variances. 06 o4 08 04
Neglecting the variability of the denominator in (1), the vari- 08 02 08 0.2
ance of the multitaper bicoherence estimator can similarly be ap- 1 o 1 0
proximated by 0 °f'15 ! 0 0,‘15 t

Varb™ (f1, f2)] = W3 (f1, f2) * Varo™" (f1, f2)]  (17)

In the case of white noise, the variance reduction factor is Fig. 1. Modulus of expected value for bicoherence estimators with
3(Mfg)? [4, 7]. For rapidly varyingMs(f), Ms(f1, f-) and/or M = 128 andS = 4. Upper left: Using periodogram and bi-
b(f1, f2), the bias in expected bicoherence values will effect the periodogram. Upper right: Using Hanning tapered periodogram
variance. This can partly be described using the estimators ex-and biperiodogram. Lower left: Using normalized Hanning ta-
pected value instead of the true bicoherence value in (4) pered periodogram and biperiodogram. Lower right: Multitaper

Since multitaper estimators have been shown superior to otherestimator withM fg = 2.
non-parametric estimators for both power- [10, 9] and bispectra [7]
in terms of bias and variance, the multitaper bicoherence estimator

will have the same superiority based on (14) and (17). In the upper left corner of Fig. 1, is the expected magnitude for
the bicoherence using periodogram and biperiodogram estimators.
4. NUMERICAL EXAMPLES Since the harmonic frequencies match the discrete frequency bin
available, the mean values shows clear identification of the degree

4.1. Phase coupling of coupling. The problem is that the variance for the noise floor can

be too high to distinguish between noise and true phase coupling.
The Hanning tapered bicoherence, whose expected magnitude

is shown in the upper right corner of Fig. 1, introduces correla-
tion between nearby frequencies. Near the bicoherence maxima,
the neighboring frequencies are over estimated, as is the the noise

1 floor level. Correct normalized Hanning tapers in the power- and
z[m] = cos(wym + 65) + cos(wem + bc) + 2 cos(wam + 0a) bispectral estimates provide the correct noise level, but the peak
values of the phase couplings are also lowered as shown in lower

+ cos(wsm + 6p) cos(wem + bc) + nfm] left corner ofFI):ig. 1. WF; fi%d that the variance of correct nor-

malized bicoherence estimator is lower than in the untapered case.

We will first investigate data with different degree of phase cou-
pling between harmonic frequencies. The data are similar to the
example given in [2], but we have chosen other frequencies and
additive non-Gaussian zero-mean white noise. The test signal is

wherew; = = f; fori = b,c andd, f, = 0.375, f. = 0.5 and This variance reduction is connected to the frequency correlation
fi = fo + fo. The noise is defined agm] = e[m] — 1, where introduced by the tapering itself [7].
e[m] is exponentially distributed with unity mean = 1, unity The multitaper bicoherence expected magnitude is presented

variancey: = 1, and skewnesss = 2. Each segment contains  in lower right corner of Fig. 1. For slowly varying parts of values
M = 128 data points, and we average ov&r= 4 segments of  inthe true bicoherence, this estimator provides unbiased estimates
data. The phasek, 6. andd, are independently drawn for each  with very low variance. The variance result in the noise region, as
segment from a uniform distribution -7, ). indicated in right hand columb of Table 1, is close to the theoretical

The true bicoherence for this process contains a flat back-result (/3(M fg)>S = 0.021) from (17). Near the bicoherence
ground noise with magnitudg: /\/M~3 ~ 0.177. Sum and dif- peaks the hexagonal frequency smoothing effect is obvious, but
ference non-linear interaction are present at bifrequeri¢ies’, ) still the different phase coupling can be identified clearly.
and (f», fc — f»), respectively. Except for these two points, the
true bicoherence will have low values along the harmonic axes 45 Tension Lag Platform (TLP) data
fi, fo, fr+ fo € (fe = fo, fo, fo, fo + fo).

Estimates of the expected value and the variance for the bi- A TLP is a buoyant floating platform, tethered to sea bed by ten-
coherence estimators are found usif@00 independent Monte  sioned tendons. The resonant frequency of horizontal motion is
Carlo simulations. The modulus of the expected value using four designed to be below the expected frequency band of input sea-
different bicoherence estimators are shown in Fig. 1. In Table 1, wave to avoid linear resonance. However, it is found that high-
we have listed some important values for easier reference, and werequency incoming sea-waves can excite low-frequency drift os-
have included the variance results. cillations in the horizontal plan due to second-order nonlinear ef-



| Mean/ Var | (fc_fln fb) | (fba fC) | (025’0'75) |
Theoretical .943/.027 | .686/.133| .177/.250
(Bi-) periodogram| .924/.023 | .660/.103| .162/.252
Tapering .892/.032 | .644/.109| .217/.258
Norm. tapering .658/.017 | .475/.059| .160/.140
Multitaper .466/.007 | .355/.030| .162/.024

Table 1. Mean and variance results for three bi-frequencies in the
bicoherence. Theoretical variance results are obtained using (4).
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Fig. 2. Power spectrum (upper row) and magnitude bicoherence
estimates (lower row) from TLP surge data, wBh= 22, M =

256. Left: Using periodogram and biperiodogram. Right: Using
adaptive multitaper estimation witfp = 4/M.

fects [12]. The data we will use, comes from a model test of a
TLP carried out in the wave basin of the Offshore Technology Re-
search Center located at Texas A&M University. Using full scale
measurements, the model had natural drift frequenéy0at Hz,
while the random sea-waves were simulated as a Gulf of Mexico
storm with most of their energy at frequencies aro@al Hz.

The TLP surge motion data, after decimation, were divided into
S = 22 segments each with/ = 256 data points.

The averaged periodogram and a multitaper estimate of the
surge power spectrum is shown in upper left and upper right cor-
ners of Fig. 2, respectively. The power spectra have two clear
peeks, one near zero frequency (close to horizontal resonance fre
quency 0f0.007 Hz) and the other aroun@l07 Hz. The adaptive
multitaper estimator [6] with bandwidtliz = 4/M, provides a
smoothed estimate without any ripples. Furthermore, since the

5. CONCLUSIONS

Using the standard bicoherence estimator with periodogram and
biperiodogram estimates, we have explained the statistical behav-
ior involved with tapering and/or frequency smoothing for the bi-
coherence estimation case. To obtain an unbiased estimate, we
have shown that it is extremely important to use correctly normal-
ized power- and bispectral estimates. Tapering will reduce spectral
leakage, and frequency smoothing will reduce the variance in bi-
coherence estimation.

We have suggested the use of a multitaper approach in bicoher-
ence estimation to provide a clearly defined smoothing bandwidth.
The multitaper approach has been shown to be superior to other
non-parametric bicoherence estimators, and an adaptive approach
can be used to reduce the leakage.
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