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ABSTRACT

This paper uses Newton’s method to seek the global mini-
mum of the constant modulus performance measure. Unlike
the common practice of using the constant modulus adaptive
algorithm, the new approach does not suffer from local min-
ima. The paper also discusses some implementation issues
of the new algorithm.

1. INTRODUCTION

The Constant Modulus (CM) minimization problem can be
stated as follows:Given a set of n samples from a discrete
time complex valued random sequence fxtg; it is desired to
use these samples in order to obtain an estimate fytg of a
correlated, but unobservable, sequence fstg.

The estimatefytg is required to be of the form:

yt = W
�
Xt (1)

whereXt = [xt xt�1 : : : xt�n+1]
0 is then�1 vector of the

sample values,W = [w0 w1 : : : wn�1]
0 is then� 1 vector

of unknown, but constant parameters, and the superscripts0

and� are the real and the complex transpose operators, re-
spectively. The accuracy of this estimator is measured by
the CM, or the Godard, error criterionJ given indepen-
dently by [1] and [2] as:

J =
1

4
E[(j yt j

2 �
)2] (2)

wherej yt j is the modulus or the norm of the sequence
fytg, the symbolE[:] is the mathematical expectation oper-
ator taken over all possible sequences, and the symbol
 is
the dispersion constant of the sequencefstg. This perfor-
mance measure has proven effective with a number of digi-
tally modulated signals including PAM, PSK and QAM.

A major appeal of the CM minimization is that it can
be implemented in real time using the Constant Modulus
Adaptive (CMA) algorithm given by:

Wt = Wt�1 � �"t�1yt�1Xt�1 (3)

where� is a constant step size,Wt is an estimate which,
presumably, reaches the optimum coefficient vectorWopt

ast tends toward infinity, and"t =j yt j2 �
. Commonly,

 is set to1:

The CMA algorithm is widely studied in the literature
[3]. In particular, it is known that this algorithm can lead to
erroneous solutions [4]. This contribution proposes a new
algorithm for searching the surface of the CM performance
measure that does not exhibit local minima. Specifically, the
paper uses Newton’s method to obtain a solution in the kro-
necker product parameter space. The obtained augmented
solution is then converted back to yield the filter weights.
Our results are expressed in terms of the statistics of the
sample sequence alone. As such, they apply to other areas
besides equalization. Section 2 derives the new algorithm.
Section 3 discusses some implementation issues. Section 4
offers concluding remarks.

2. NEWTON’S METHOD BASED CMA

This section introduces a new iterative method for searching
the CM function that does not converge to local minima.

Theorem: Given thel� 1 correlation vectorP' and the
l � l fourth order moment matrixR'' of the received se-
quencefxtg, and given an arbitrary initial value,�(�1),
of an unknown but constantl � 1 vector�; a variation of
Newton’s method for searching the constant modulus cost
function is formulated as:

For k = 0 to k = N � 1;

r(k � 1) = R''�(k � 1)� P' (4)

�(k) = �(k � 1)� �R
�1
''r(k � 1) (5)

wi(k) =

q
j �i(n+1)(k) j�(�i(n+1)(k)) (6)

i = 0; 1; : : : ; n� 1

where the symbolN is the number of iterations needed for
the algorithm to converge to an acceptable solution, the vari-
ables�i and�(�i) are theith element of the vector� and its
phase, respectively, the parameterwi is theith element of
the coefficient vectorW , and the variablel is obtained from



the data lengthn asl = n
2
: The elementswi of the param-

eter vectorW in equation (6) can also be extracted from the
elements�i of the augmented parameter vector� as follows:

wi(k) =
�i(k)p
j �0(k) j

; �0(k) 6= 0;

8k; i = 0; 1; : : : ; n� 1 (7)

For real data, equation (7) remains the same, but equation
(6) becomes:

wi(k) = �
q
j �j(k) j; i = 0; 1; : : : ; n� 1 (8)

where the indexj is given as:

j = in�

i�1X
k=0

k

Proof: Beginning with the equation of the CM cost func-
tion in (2); we replace the signalfytg by its formula from
equation(1): Then, we expand the expression of the func-
tionalJ to obtain:

J =
1

4
E[J0]�




2
E[J1] +



2

4
(9)

J0 = (W
�
XtX

�

tW )(W
�
XtX

�

tW )

J1 = W
�
XtX

�

tW

To proceed, define thel � 1 kronecker product coefficients
vector� and thel � 1 kronecker product data vector' t as:

� = W 
W = [w0W
�
w1W

�
: : : wn�1W

�
]
0

't = Xt 
Xt = [xtX
�

t xt�1X
�

t : : : xt�n+1X
�

t ]
0

where
 designates the kronecker product operator [5]. Then,
notice that the termJ1 can be written as:

J1 = (W 
W )
�

(Xt 
Xt)

Similarly, the termJ0 can be expressed as:

J0 = (W 
W )
�
(Xt 
Xt)(Xt 
Xt)

�
(W 
W )

Hence, the cost functionJ in (9) becomes:

J =
1

4
�
�
R''� �




2
�
�
P' +



2

4
(10)

P' = E['t]

R'' = E['t'
�

t ]

Notice that the term��R''� is given by:

�
�
R''� = E[j yt j

4
]

SinceE[j yt j
4
] � 0, we conclude that the matrixR'' is

Hermitian and positive semi–definite. Thus, the quadratic

form in equation(10) is convex. Without loss of generality,
we also assume here that the matrixR'' is nonsingular.
Consequently, the gradientr�J of the CM cost functionJ
in equation(10); with respect to the new parameter vector
�; is given by:

r�J =

�
@J

@�0

@J

@�1

: : :
@J

@�l�1

�
0

(11)

where the variable�i is theith component of the vector�,
the quantity @J

@�i
=

@J

@<(�i)
+ j

@J

@=(�i)
defines the partial

derivative of the real scalar functionJ with respect to the
complex variable�i, with <(�i) and=(�i) being the real
and the imaginary parts of the complex variable� i: Evalu-
ating each of the terms, the expression(11) becomes:

r�J = R''� � P' (12)

Notice that equation (12) is the same as equation (4) where
the time indexk � 1 has been omitted from equation(12).
This shows that equation (4) is the gradient of the CM per-
formance cost function with respect to the augmented pa-
rameter vector�.
Now, the Hessian matrixH�J of the second order deriva-
tives of the CM function with respect to the augmented pa-
rameter vector� is computed as:

H�J = r�(r
0

�J) = R'' (13)

Using equations (12), (13) and (14), the innovation term
R
�1
''r(k � 1) in equation (5) can be written as:

R
�1
''r(k � 1) = [H�J ]

�1r�J (14)

This shows that the innovation term in equation (5) is the in-
verse of the Hessian matrix of the second order derivatives
of the CM performance measure with respect to the vector
� multiplied by the gradient of the same function. Hence,
the combination of equations (4) and (5) forms Newton’s
method recurrence formula in terms of the augmented pa-
rameter vector�.
Now, observe that equation (6) is an output equation only.
It is used to extract instantaneous values of the parameter
vectorW only and does not enter into the feedback loop for
calculating the next iterate for�. As a result, equation (6)
does not affect the dynamic properties of the iterative pro-
cess. The same is true for equations (7) and (8) when real
data is used instead. Thus, the algorithm defined by equa-
tions (4), (5) and (6) or (7) and the one defined by equations
(4), (5) and (8) are Newton’s methods for searching the CM
cost function in the space spanned by�. This completes the
proof of the theorem.

The theorem introduces a new algorithm for minimizing
the CM performance measure. Unlike the original CMA al-
gorithm where a formula for the sought after optimum solu-
tion is not known, this new algorithm seeks the optimum so-
lution �opt which makes the gradient of equation (12) equal



to zero. This solution is given by:

�opt = R
�1
''P' (15)

It should be emphasized here that the theorem searches
the function of equation (10) and not that of equation (2).
These two functions are generally not equal except in the
special case when the augmented vector� can be decom-
posed into a kronecker product form. In fact, there is a gap
between the minimum values of expressions (2) and (10).
This gap goes to zero only when the estimated signalfy tg
matches perfectly the unknown signalfstg: We argue here,
however, that if the signal model is adequate, this gap is
small enough. In this case, the vectorW obtained by the
theorem is close to that of the global minimum of the CM
function. This can be seen by lettingW� be the parameter
vector extracted form�opt using either equation (6), (7) or
(8), and defining a vector�� as:

�� = W� 
W �

If �opt is a kronecker product form, then�� is equal to�opt.
Thus, the values of expressions (2) and (11) are the same.
In other words, the vectorW� operates at the absolute min-
imum of the CM performance measureJ . However, if�opt
is not a kronecker product form, then the vector� � is differ-
ent from, but close to the optimum vector�opt. In fact, ��
is the closest vector to�opt that can be decomposed into a
kronecker product form. Notice that while the vector� opt

solves the system of equations in (12) when equated to zero,
the extracted vector�� solves the system of equations:

R''�� = P�

The vectorWc at the global minimum of the CM function
on the other hand verifies the system of equations:

R''�c = Pc

where the vector�c is defined as:

�c = Wc 
W c

Using perturbation theory [6], the norm of the difference
between the two solutions�opt and�� is bounded as:

jj �opt � �� jj

jj �opt jj
� "K(R��)

jj P� � P' jj

jj P' jj

where" is an arbitrarily small variable andK(R��) is de-

fined asK(R��) =
�max(R��)

�min(R��)
, with�max(R��) and�min(R��)

being the maximum and the minimum eigenvalues of the
matrixR��, respectively.
Similarly, the norm of the difference between the two solu-
tions�opt and�c is bounded as:

jj �opt � �c jj

jj �opt jj
� "K(R��)

jj Pc � P' jj

jj P' jj

These differences are small when the signal model is ade-
quate and the noise is not excessive.

3. IMPLEMENTATION ISSUES

The operations of the new algorithm for searching the CM
function are straightforward. At each iteration of timek, the
new algorithm computes a new value�(k) of an augmented
parameter vector using its previous value�(k � 1) and the
received sequence statisticsP' andR''. Then, it uses the
value�(k) to calculate a new valueW (k) of the filter’s pa-
rameter vector. The process is repeated until the update term
vanishes and the optimum solution is reached. At the start, a
known initial value�(�1) of the augmented parameter vec-
tor is required to proceed. Unlike the case of the original
CMA algorithm, the null vector can be used as an initial
condition if a better choice for�(�1) is not available. This
is true because the update term of the new algorithm is not
equal to zero for a null vector as seen from equation (4).

The new algorithm is different from the method of New-
ton when used to search the standard mean square error
function in three ways. First, the proposed algorithm per-
forms the iterations on an augmented parameter vector�

instead of the actual parameter vectorW directly. The num-
ber of components of the augmented vector� is equal to the
square of the number of components of the parameter vec-
tor W . This means that the new algorithm is much more
computationally intensive than Newton’s method applied to
the standard mean square error minimization. Second, the
new algorithm uses the second and the fourth order statistics
P' andR'' of the received sequence instead of the usual
second order statistics needed for Wiener filter. Again, this
makes the new algorithm more computationally expensive
than Newton’s method when used to obtain Wiener solu-
tion. Finally, the proposed algorithm differs from Newton’s
method for searching the mean square cost function by us-
ing an output blockC(:) to compute the values of the pa-
rameter vectorW (k) from those of the augmented param-
eter vector�(k). The output blockC(:) can be viewed as
a measurement block in the same way as used in control
systems and Kalman filtering. However, the output block
C(:) in our scheme is a nonlinear vector function while the
measurement block in Kalman filtering is generally a simple
constant coefficients matrix.

The new algorithm can be implemented in several ways.
For example, observe that equation (5) provides a clear and
explicit description of the parameter�(k) in terms of the
parameter�(k � 1). This is very useful for theoretical pur-
poses. However, this equation is generally never used in
practice. Instead, it is rewritten as:

R''(�(k)� �(k � 1)) = ��r(k � 1) (16)

Equation (16) is better for computation than equation (5)
since it does not require the explicit calculation of the in-
verse of the matrixR''. Instead, the system of equation
(16) is solved directly using efficient techniques such as LU
decomposition or other methods.



This algorithm can also be implemented as a block opti-
mization procedure. In this case, there is a preamble period
of durationN needed for the iterations of equations (4) and
(16) to converge to an acceptable value of the optimum aug-
mented parameter vector�opt on the basis of the statistics
P' andR'' of the received sequencefxtg, with the time
t � N . Once a reasonable estimate of�opt is reached, we
proceed with equation (6), (7) or (8) to estimateW opt and
yt on the basis of this solution and the sample vectorX t,
with t � N . Note that no estimation ofWopt or of yt is
performed prior to timeN . This block optimization is most
effective when implemented in two separate chips. The first
chip hosts equations (4) and (16) and runs at rate that is
much faster than the communications link. The second chip
performs the operations of equation (6), (7) or (8) and runs
at the same rate as the communications link. The rate of the
first chip is such that the augmented optimum solution�opt

is reached before the next cycle of the communications link
comes around.

Parallel or systolic arrays implementations of the algo-
rithm of theorem 1 can also be devised to lessen the com-
putational burden of this algorithm. These methods will,
however, not be presented in this paper. Instead, we focus
on the convergence properties of the new algorithm. It is
hoped that a better dynamical behavior will offset the addi-
tional algorithmic complexity and computational demands
introduced by the new algorithm.

Notice also that when the quantitiesP' andR'' are
known a priori, one can proceed directly to determine the
optimum weights and the optimum output using equations
(4) through (8). However, these statistics may not be avail-
able in practice. In this case, they can be estimated using
then� 1 vectorXt of the sample values as follows:

bP' =
1

M

M�1X
t=0

't (17)

bR'' =
1

M

M�1X
t=0

't'
�

t (18)

where the symbolM represents the data length used for the
estimation of the statistics, and the augmented data vector
't is obtained from the sample vectorXt as defined earlier.

Finally, observe that the estimates of equations (17) and
(18) are both unbiased and consistent. The calculations of
these estimate statistics can also be added as a third stage
to the front of the procedure described earlier. In this case,
there is a first preamble period of durationM used to evalu-
ate the statistics of expressions (17) and (18) on the basis of
the observed samples of the received sequencefx tg, with
t � M . Once the estimatesbP' and bR'' are obtained, we
proceed with the iterations of equations (4) and (16). As
seen earlier, there is a second preamble period of duration

N used to obtain an appropriate value the augmented op-
timum parameter vector�opt on the basis of the estimated
statistics of the received sequence, withM � t � N . Then,
estimates ofWopt andyt on the basis offxtg, with t � N

are finally obtained. Again, this block optimization proce-
dure is most effective when each of these three stages is
implemented on a separate chip with an adequate rate.

4. CONCLUSIONS

The CMA algorithm has emerged as the method of choice in
blind adaptive equalization in recent years. This paper has
introduced a new iterative algorithm for minimizing the CM
performance function using Newton’s method of search. Un-
like the original CMA algorithm, the new iterative proce-
dure has the advantage of converging to a desired solution
only. Expressed in terms of the statistics of the sample se-
quence only, the new algorithm can also be used with other
applications besides equalization.
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