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ABSTRACT wherep is a constant step sizél; is an estimate which,

presumably, reaches the optimum coefficient vettty,:
ast tends toward infinity, and; =| y; |* —y. Commonly,
v is set tol.

The CMA algorithm is widely studied in the literature
LS]. In particular, it is known that this algorithm can lead to
erroneous solutions [4]. This contribution proposes a new
algorithm for searching the surface of the CM performance
measure that does not exhibit local minima. Specifically, the

1. INTRODUCTION paper uses Newton’s method to obtain a solution in the kro-
necker product parameter space. The obtained augmented
The Constant Modulus (CM) minimization problem can be sojution is then converted back to yield the filter weights.
stated as followsGiven a set of n samples from a discrete Our results are expressed in terms of the statistics of the
time complex valued random sequence {z. }, itisdesiredto  sample sequence alone. As such, they apply to other areas
use these samples in order to obtain an estimate {y:} of & pesjdes equalization. Section 2 derives the new algorithm.

This paper uses Newton's method to seek the global mini-
mum of the constant modulus performance measure. Unlike
the common practice of using the constant modulus adaptive
algorithm, the new approach does not suffer from local min-
ima. The paper also discusses some implementation issue
of the new algorithm.

correlated, but unobservable, sequence {s}. Section 3 discusses some implementation issues. Section 4
The estimat@yt} is required to be of the form: offers Conc|uding remarks.
yr = WX, 1)

2. NEWTON'SMETHOD BASED CMA

I
whereX; = [z &1 .- Zt—ni1] IS then x 1vectorofthe L. o introduces a new iterative method for searching
sample valuedyV = [wow; ... w,_1] isthen x 1 vector . o
.. the CM function that does not converge to local minima.
of unknown, but constant parameters, and the superséripts e .
. Theorem: Given thel x 1 correlation vecto’,, and the
and* are the real and the complex transpose operators, re- . .
; : . : I x [ fourth order moment matriR,, of the received se-
spectively. The accuracy of this estimator is measured by

the CM, or the Godard, error criteriafi given indepen- quence{x;}, and given an arbitrary initial valué(~1),
dently b7y [1] and [2] as: ' of an unknown but constaiitx 1 vectoré, a variation of

Newton’s method for searching the constant modulus cost

1 5 5 function is formulated as:
J = 1Bl ye 7 =) )
Fork=0tok=N—1,
where| y; | is the modulus or the norm of the sequence V(k—1)=Ry,0(k—1)— P, 4)
{y:}, the symbolE][.] is the mathematical expectation oper- O(k) = 0(k — 1) — uR-IV(k — 1 5
ator taken over all possible sequences, and the symkml (k) ( )~ 1RV ) ®)
the dispersion constant of the sequefieg}. This perfor- wi(k) = /| Titng1) (B) [0(Ti(ng1) (k) (6)

mance measure has proven effective with a number of digi-
tally modulated signals including PAM, PSK and QAM.

A major appeal of the CM minimization is that it can here the symbaN is the number of iterations needed for
be implemented in real time using the Constant Modulus the algorithm to converge to an acceptable solution, the vari-
Adaptive (CMA) algorithm given by: ablesr; and¢(r;) are thei*" element of the vectdt and its
phase, respectively, the parameigris theit* element of
the coefficient vectol, and the variabléis obtained from

i=0,1,....,n—1

Wi =Wi1 — per—1ye—1 X1 (3



the data length as! = n%. The elements; of the param-  form in equation(10) is convex. Without loss of generality,
eter vectodV in equation (6) can also be extracted from the we also assume here that the maffix,, is nonsingular.

elements; of the augmented parameter vedas follows: Consequently, the gradiewt, J of the CM cost function7
f in equation(10), with respect to the new parameter vector
w;(k) = %, T0(k) # 0, 6, is given by:
T0 '
. oJ oJ oJ
Yk, i=0,1,...,n—1 7 J=|l——...— 11
' " (7) Vol = | 56,96, " 96 (1)

For real data, equation (7) remains the same, but equatior\Nhere the variablé. is thei
(3

th component of the vectdt,
(6) becomes: P

the quantity 25 = ﬁgi) + j%{’ei) defines the partial
Y N derivative of the real scalar functiofi with respect to the

wi(k) =FfI (k) |, i=0,1,...,n =1 (8) complex variablgd;, with ®(6;) and (6;) being the real

and the imaginary parts of the complex variai}e Evalu-

where the indey is given as: .
ere the indey is given as ating each of the terms, the expressftoh) becomes:

j=in-3k VoJ = R0 — P, (12)

k=0 Notice that equation (12) is the same as equation (4) where
the time indext — 1 has been omitted from equatigi2).

This shows that equation (4) is the gradient of the CM per-

formance cost function with respect to the augmented pa-

Proof: Beginning with the equation of the CM cost func-
tion in (2), we replace the signdly; } by its formula from
equation(1). Then, we expand the expression of the func-

tional 7 to obtain: rameter vectod.
J Now, the Hessian matri%lyJ of the second order deriva-
1 ~ 72 tives of the CM function with respect to the augmented pa-
J = ZE[JO] - §E[J1] + 4 ©) rameter vecto# is computed as:
Jo = (WX X;W)W*X, X;W) HoJ = Vo(VhJ) = Ry (13)
Jo= WX Xiw

Using equations (12), (13) and (14), the innovation term
To proceed, define thiex 1 kronecker product coefficients R;;V(k — 1) in equation (5) can be written as:
vectord and thel x 1 kronecker product data vectgr, as:

R,V (k—1) = [HeJ] ' VoJ (14)
—_ T/ — * * *1/
o = We V_V = [woW"un W™ .., W] This shows that the innovation term in equation (5) is the in-
or = Xi@ X = [0 Xz X] w1 X7 verse of the Hessian matrix of the second order derivatives

of the CM performance measure with respect to the vector
6 multiplied by the gradient of the same function. Hence,
the combination of equations (4) and (5) forms Newton'’s

where designates the kronecker product operator [5]. Then
notice that the terny; can be written as:

T = (W o W) (X: X method recurrence formula in terms of the augmented pa-
rameter vectof.

Similarly, the termJ,, can be expressed as: Now, observe that equation (6) is an output equation only.
. o o o It is used to extract instantaneous values of the parameter

Jo=W W) (X; ® X)) (X @ X¢)" (W@ W) vectorW only and does not enter into the feedback loop for

o calculating the next iterate fé. As a result, equation (6)

Hence, the cost functiod in (9) becomes: does not affect the dynamic properties of the iterative pro-
1 5 2 cess. The same is true for equations (7) and (8) when real
J = 10*RW0 - 50*& +r (10) data is used instead. Thus, the algorithm defined by equa-

tions (4), (5) and (6) or (7) and the one defined by equations
. (4), (5) and (8) are Newton’s methods for searching the CM
Ry = Elpipy] cost function in the space spannedéy his completes the
proof of the theorem.
The theorem introduces a new algorithm for minimizing
0*R,.0 = E[| y; |] the CM performance measure. Unlike the original CMA al-
gorithm where a formula for the sought after optimum solu-
SinceE|[| y: |} > 0, we conclude that the matrik,, is tion is not known, this new algorithm seeks the optimum so-
Hermitian and positive semi—definite. Thus, the quadratic lution 8,,; which makes the gradient of equation (12) equal

P, = E[S@t]

Notice that the ter* R, .0 is given by:



to zero. This solution is given by:

Oopt = RSP, (15)

3. IMPLEMENTATION ISSUES

The operations of the new algorithm for searching the CM

It should be emphasized here that the theorem searchedunction are straightforward. At each iteration of tifaehe

the function of equation (10) and not that of equation (2).

new algorithm computes a new valfig:) of an augmented

These two functions are generally not equal except in the parameter vector using its previous vali{¢ — 1) and the

special case when the augmented veétoan be decom-

received sequence statistifs andR,. Then, it uses the

posed into a kronecker product form. In fact, there is a gap valued(k) to calculate a new valu@’ (k) of the filter's pa-

between the minimum values of expressions (2) and (10).

This gap goes to zero only when the estimated sigpa}
matches perfectly the unknown sigral; }. We argue here,

rameter vector. The process is repeated until the update term
vanishes and the optimum solution is reached. At the start, a
known initial valuef(—1) of the augmented parameter vec-

however, that if the signal model is adequate, this gap is tor is required to proceed. Unlike the case of the original

small enough. In this case, the vecidr obtained by the
theorem is close to that of the global minimum of the CM
function. This can be seen by lettify,. be the parameter
vector extracted form,,; using either equation (6), (7) or
(8), and defining a vectdt, as:

9* = W* ® W*
If 6,,: is a kronecker product form, théhn is equal taf, .

CMA algorithm, the null vector can be used as an initial
condition if a better choice fa#(—1) is not available. This

is true because the update term of the new algorithm is not
equal to zero for a null vector as seen from equation (4).

The new algorithm is different from the method of New-
ton when used to search the standard mean square error
function in three ways. First, the proposed algorithm per-
forms the iterations on an augmented parameter vettor

Thus, the values of expressions (2) and (11) are the sameinstead of the actual parameter vediérdirectly. The num-

In other words, the vectdl . operates at the absolute min-
imum of the CM performance measufe However, iff
is not a kronecker product form, then the vedors differ-
ent from, but close to the optimum vecidy,;. In fact, 6.
is the closest vector t8,,; that can be decomposed into a
kronecker product form. Notice that while the vectqy,:

ber of components of the augmented veét@ equal to the
square of the number of components of the parameter vec-
tor W. This means that the new algorithm is much more
computationally intensive than Newton’s method applied to
the standard mean square error minimization. Second, the
new algorithm uses the second and the fourth order statistics

solves the system of equations in (12) when equated to zero,P, and R, of the received sequence instead of the usual

the extracted vectdt, solves the system of equations:
R,,0. = P,
The vectorl¥, at the global minimum of the CM function
on the other hand verifies the system of equations:
R,.0. = P.
where the vectdd.. is defined as:
6. =W.0 W,
Using perturbation theory [6], the norm of the difference
between the two solutiorts,,; andd. is bounded as:
|| opt — - || | P = Py ||
Il Oopt || Il Py ||
wheree is an arbitrarily small variable ankl(R¢,) is de-
fined asC(Ree) = %, With Ajpaq (Ree) andAp,in (Ree)
being the maximum and the minimum eigenvalues of the
matrix Re¢, respectively.
Similarly, the norm of the difference between the two solu-
tionsd,,: andé, is bounded as:
|| 00pt — 0. ||
|| eopt ||

< 8]C(R55)

| Pe = Py ||

e A

second order statistics needed for Wiener filter. Again, this
makes the new algorithm more computationally expensive
than Newton’s method when used to obtain Wiener solu-
tion. Finally, the proposed algorithm differs from Newton’s
method for searching the mean square cost function by us-
ing an output blockC(.) to compute the values of the pa-
rameter vecto#V (k) from those of the augmented param-
eter vecto(k). The output blockC(.) can be viewed as

a measurement block in the same way as used in control
systems and Kalman filtering. However, the output block
C(.) in our scheme is a nonlinear vector function while the
measurement block in Kalman filtering is generally a simple
constant coefficients matrix.

The new algorithm can be implemented in several ways.
For example, observe that equation (5) provides a clear and
explicit description of the parameté(k) in terms of the
parametef(k — 1). This is very useful for theoretical pur-
poses. However, this equation is generally never used in
practice. Instead, it is rewritten as:

Rop(@(k) —0(k —1)) = —uV(k—1)  (16)

Equation (16) is better for computation than equation (5)
since it does not require the explicit calculation of the in-
verse of the matrix?,. Instead, the system of equation

These differences are small when the signal model is ade-(16) is solved directly using efficient techniques such as LU

guate and the noise is not excessive.

decomposition or other methods.



This algorithm can also be implemented as a block opti- N used to obtain an appropriate value the augmented op-
mization procedure. In this case, there is a preamble periodtimum parameter vectdt,,; on the basis of the estimated
of durationN needed for the iterations of equations (4) and statistics of the received sequence, with< ¢t < N. Then,

(16) to converge to an acceptable value of the optimum aug- estimates of¥,,; andy, on the basis o{z,}, witht > N
mented parameter vectéy,; on the basis of the statistics are finally obtained. Again, this block optimization proce-
P, andR,, of the received sequende }, with the time dure is most effective when each of these three stages is
t < N. Once a reasonable estimatedgf; is reached, we  implemented on a separate chip with an adequate rate.
proceed with equation (6), (7) or (8) to estiméig,,, and

y: on the basis of this solution and the sample vecfor 4. CONCLUSIONS

with ¢ > N. Note that no estimation df/’,,; or of y; is

performed prior to timeV. This block optimizationis most  The CMA algorithm has emerged as the method of choice in
effective when implemented in two separate chips. The first plind adaptive equalization in recent years. This paper has
chip hosts equations (4) and (16) and runs at rate that isintroduced a new iterative algorithm for minimizing the CM
much faster than the communications link. The second Chlp performance function using Newton’s method of search. Un-
performs the operations of equation (6), (7) or (8) and runs |ike the original CMA algorithm, the new iterative proce-
at the same rate as the communications link. The rate of thedure has the advantage of converging to a desired solution
first chip is such that the augmented optimum soluéion only. Expressed in terms of the statistics of the sample se-
is reached before the next cycle of the communications link guence on|y’ the new a|gorithm can also be used with other
comes around. applications besides equalization.
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