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ABSTRACT

It is well known that dividing speech into frequency subbands
can improve the performance of a speech recognizer. This is es-
pecially true for the case of speech corrupted with noise. Subband
(SUB) features are typically extracted by dividing the frequency
band into subbands by using non-overlapping rectangular windows
and then processing each subband’s spectrum separately. How-
ever, multiplying a signal by a rectangular window creates dis-
continuities which produce large amplitude frequency coefficients
at high frequencies that degrade the performance of the speech
recognizer. In this paper we propose the Lapped Subband (LAP)
features which are calculated by applying the Discrete Orthogonal
Lapped Transform (DOLT) to the mel-scaled, log-filterbank en-
ergies of a speech frame. Performance of the LAP features was
evaluated on a phoneme recognition task and compared with the
performance of SUB features and MFCC features. Experimen-
tal results have shown that the proposed LAP features outperform
SUB features and Mel Frequency Cepstral Coefficients (MFCC)
features under white noise, band-limited white noise and no noise
conditions.

1. INTRODUCTION

Conventional feature extraction methods use the entire frequency
band to extract speech features for speech recognition. However,
as pointed out by Fletcher [1] (and reviewed by Allen in [2]),
the Human Speech Recognition (HSR) system works with partial
recognition information across frequency, probably in the form of
speech features that are local in frequency. Fletcher’s work [1]
led to the subband-based speech recognizer [3, 4]. Hermansky et
al. [4] and Bourlard et al. [3] also proposed subband-based speech
recognition systems. They simply divided the frequency band into
subbands, extracted features for each subband and then calculated
scores for each subband. Finally, they combined each subband’s
recognition score by using merging techniques. There are three
main motivations for the subband-based recognizer:

1. Some subbands of the speech spectrum may be inherently
more relevant than others to the task of speech recognition.
Therefore, the contribution of each subband to the overall
recognition decision can be weighted depending on the in-
formation that each subband conveys.
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2. Transitions between more stationary segments of speech do
not necessarily occur at the same time across the differ-
ent frequency bands. The subband-based approach may
have the potential of relaxing the synchrony inherent in
current HMM systems. A frame of speech may contain
information of two adjacent phonemes. If one of these
phonemes is voiced and the other is unvoiced, then the low-
frequency spectrum is dominated by voiced phoneme infor-
mation, and the high-frequency spectrum is dominated by
the unvoiced phoneme information. In traditional feature
extraction methods which are based on extracting speech
features using the full frequency band, we inherently as-
sume that a speech frame conveys information on only one
phoneme at a time. However, this asynchrony can be taken
into account by dividing the frequency band into subbands
and processing each subband separately.

3. Since the full spectrum of the speech signal is used to cal-
culate feature vectors for full-band recognizers, corruption
of a frequency band of speech by noise affects all coeffi-
cients. However, corruption of a frequency band affects
only a few coefficients if we use a subband based recog-
nizer. Therefore, we can decrease the effect of noise on
the performance of the subband-based recognizer by down
weighting the contributions from the corrupted subbands.

After pioneering works of Hermansky et al. [4] and Bourlard
et al. [3] on the subband-based recognizer, its advantages over full-
band based recognizers have been studied in [3–10]. Asynchrony
between frequency bands was studied in [3, 5, 8], and it has been
shown that accommodating asynchrony between frequency bands
improves performance. It also has been shown [4, 7] that subband-
based recognizers are robust to band-limited noise but not good for
white noise. In summary, subband-based recognizers have three
main advantages over full-band based recognizers: (1) they are
robust to band-limited noise, (2) they have the ability to incorpo-
rate asynchrony between subbands, and (3) they have the ability
to weight the contribution of each subband to the total recogni-
tion score. The first step in extracting speech features for subband
based recognizers is to divide the full speech spectrum into sub-
bands. This is typically done by dividing the full frequency band
into subbands using rectangular windows. However, the use of
rectangular windows creates large variations of some of the sub-
band coefficients. In this paper we proposed to use the DOLT
which uses smooth windows to overcome the problems caused by
using rectangular windows.
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Figure 1: Sub-band based speech recognizer

2. SUBBAND-BASED RECOGNIZER AND FEATURE
EXTRACTION USING THE LAPPED ORTHOGONAL

TRANSFORM

In this section the subband-based recognizer [3, 4, 9, 10] is ex-
plained first. Then feature extraction using the Lapped Orthogonal
Transform [11] is presented. Figure 1 depicts the subband-based
speech recognition system. As seen in Figure 1, the frequency
spectrum of the speech signal is divided into subbands that may
overlap. Then speech features from each subband are extracted.
Next, a likelihood for each subband is calculated. Finally, recog-
nition scores from each subband are merged to give the total score.
The most critical part of the subband based recognizer is the merg-
ing algorithm. The merging algorithm weights the partial recog-
nition scores of subbands based on information conveyed in sub-
bands and/or the signal-noise ratio of each subband. In this pa-
per all subband scores are weighted equally. Since the purpose
of this paper is to investigate the effect of using smooth windows
instead of rectangular windows to divide the frequency band into
subbands, the subband model was kept simple. For example, we
did not weight the score of the subbands, and asynchrony between
subbands is not incorporated into recognizer.

The Lapped Orthogonal Transform is an alternative to the Block
Transform. The Block Transform of a signal is calculated by first
dividing the signal into blocks by using nonoverlapping rectangu-
lar windows and then transforming each block. The Block Trans-
form has an important disadvantage because of the large varia-
tions in the resulting frequency domain coefficients due to the use
of rectangular windows. The Lapped Orthogonal Transform uses
smooth overlapping windows instead of nonoverlapping rectangu-
lar window to divide the signal into blocks. It has been shown [11]
that the basis functions of the Lapped Orthogonal Transform can
be obtained from the basis function of an orthogonal transform as
follows.

Let fek(t)gk2Nbe a basis of L2[0; 1] (space of the square in-
tegrable functions of the interval [0; 1]). Let gp be the window of
the p’ th block with support [ap�np; ap+1+np+1] (see Figure 2).
Also, define lp = ap+1 � ap. Let

g
2
p(t) + g

2
p+1(t) = 1 for t 2 [ap+1 � np+1; ap+1 + np+1]: (1)

Define

~ek(t) =

8>>>>><
>>>>>:

ek(t) if t 2 [0; 1];

ek(�t) if t 2 [�1; 0);
�ek(2� t) if t 2 (1; 2];

�ek(2 + t) if t 2 [�2;�1);
0 otherwise:

(2)
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Figure 2: Division of the signal using smooth overlapping win-
dows

Then the family(
gp;k(t) = gp(t)

1p
lp

~ek(
t� ap

lp
)

)
k2N;p2Z

(3)

is an orthonormal basis of L2(R) (space of the square integrable
functions). Z denotes integers, and N denotes positive integers
including 0.

The next step is to choose a basis fek(t)gk2N . The basis func-
tions of the Orthogonal Lapped Transform will be discontinuous,
which is not desirable, if the ek(t)

0 are not properly chosen. The
cosine-IV basis functions are good choices as the ek(t) in that the
resulting basis functions gp;k(t) are continuous. The cosine-IV
basis of L2[0; 1] is given below.

ek(t) =
np

2cos[(k + 1=2)�t]
o
k2N

(4)

Any window that satisfies (1) can be used for the overlapping win-
dows. Since our signal is discrete, we need the discrete version
of the Lapped Orthogonal Transform. The discrete version can
be obtained [11] by replacing the orthogonal basis of L

2[0; 1]
with a discrete basis of Cn (the set of n-tuples of complex num-
bers) and uniformly sampling the overlapping windows gp(t). Let
fapgp2Zbe a sequence of half integers, ap + 1=2 2 Z with
lim ap
p!�1

= �1 and lim ap
p!+1

= +1: Let fek;l[n]g0�k<l be an

orthogonal basis of signals defined for 0 � n < l; l; n 2 Z; and
let gp[n] = gp(t)t=n: Define

~ek[n] =

8>>>>><
>>>>>:

el;k[n] if n 2 [0; l� 1];

el;k[�1� n] if n 2 [�l;�1];
�el;k[2l � 1� n] if n 2 [l; 2l � 1];

�el;k[2l + n] if n 2 [�2l;�l� 1];

0 otherwise:

(5)

Then the family�
gp;k[n] = gp[n]~ek;lp [n� ap]

	
0�k<lp;p2Z

(6)

is a lapped orthonormal basis of I2(Z) (the space of square sum-
mable sequences). In this paper we used Discrete Cosine-IV basis
vectors for el;k[n]: The discrete, translated versions of sin and cos
were used as overlapping parts of windows. If we use Discrete
Cosine-IV basis vectors as el;k[n]; the discrete lapped orthogonal
basis vectors will be as follows.(

gp;k[n] = gp[n]

s
2

lp
cos[�(k + 1=2)

n � ap

lp
]

)
0�k<lp;p2Z

(7)



When the signal is of finite length as in our case, the left side of the
left-most window and the right side of the right-most window still
will have abrupt transitions which will cause large variations in the
high frequency coefficients (which represent the left-most and the
right-most parts of the signal). The typical practice to reduce these
artifacts is to use the Cosine-IV basis for the left most window
and use the Cosine-I basis for the right most window [11]. When
we use the Discrete Cosine-I basis, the discrete lapped orthogonal
basis vectors are as follows.(

gp;k[n] = gp[n]

s
2

lp
�kcos[�k

n� ap

lp
]

)
0�k<lp;p2Z

(8)

where �k = 1 for 0 < k < lp end �k = 1p
2

for k = 0:

3. EXPERIMENTAL SETUP AND TASK

3.1. Task and Database

We used the TIMIT [12] database to evaluate and compare the per-
formance of the proposed features with MFCC subband features
on a phoneme recognition task. 22 phone labels of 61 quasiphone-
mic labels defined in the TIMIT database were merged into the re-
maining 39 as in [13]. 39 separate categories are fuw uxg, fuhg,
fah,ax,ax-hg, faa,aog, faeg, fehg, fih, ixg, feyg, fiyg, fyg, fayg,
fowg, fawg, foyg, fer, axrg, frg, fl,elg, fwg, fm, emg, fn, en,
nxg, fng, engg, fdxg, fvg, fthg, fdhg, fhh, hvg, fzg, fsg, fbcl,
dcl, kcl, pcl, tcl, epi, ps, q, paug. The confusions within the same
categories are not counted in calculating classification accuracy.
The sentences which are common to all speakers (labeled ”sa” in
the TIMIT database) are not used to avoid possible bias towards
certain phones. We used complete training and test sets defined in
the TIMIT database. There are 168 speakers and 1,344 sentences
in the test set, and 442 speakers and 3,536 sentences in the train-
ing set. Phones less than two frames in duration were not used.
Speakers of the training set and test set are disjoint.

Three-state, left-to-right no-skip, content independent HMM
models were constructed for each phoneme category. The output
probability distribution of each state was modeled by a mixture
of five multivariate Gaussian density functions with diagonal co-
variance matrix. HTK [14] software was used for training and
recognition.

3.2. Feature Extraction

The speech signal sampled at 16 kHz is analyzed with a 32 ms
Hamming window every 10 ms. The FFT of each frame is taken to
calculate the power spectrum of the signal. For the computation of
mel-scaled, log-filterbank energies, 32 triangular mel-scaled band-
pass filters were designed [14]. The definitions of feature vectors
are given below.

1. MFCC: MFCC [15] are computed by taking the DCT of the
mel-scaled, log-filterbank energies. The first sixteen (1-16)
of the MFCC are used.

2. SUB-i Features (subband features): Mel-scaled, log-filterbank
energies are divided into subbands using non-overlapping
rectangular windows. Then each subband’s MFCC are cal-
culated. SUB-i denotes the feature vector, calculated by
dividing the frequency band into i subbands using nonover-
lapping rectangular windows and then determining the MFCC
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Figure 3: Overlapping windows for LAP feature extraction. (a)
to (g) show overlapping windows for LAP-2 to LAP-7. The ” .”
shows the sampling points of the windows.

of each subband. The vector size is 16 for all SUB-i fea-
tures. We attempted to evenly divide the frequency band
into subbands. The division of the frequency band into sub-
bands resulted in the following subbands: SUB-2(16, 16),
SUB-3(12, 10, 10), SUB-4(8, 8, 8, 8), SUB-5(8, 6, 6, 6, 6),
SUB-6(6, 6, 6, 6, 4, 4), SUB-7(6, 6, 4, 4, 4, 4, 4), SUB-
8(4, 4, 4, 4, 4, 4, 4, 4). (The numbers inside the parenthesis
show the division of the frequency band). For example, the
notation SUB-2(16, 16) means that the first band includes
16 log-filterbank energies and the second band includes 16
log-filterbank energies.

3. LAP-i Features: The LAP-i features are subband features,
calculated by taking the mel-scaled, log-filterbank energies.
LAP-i denotes the feature vector obtained by dividing the
speech spectrum into i subbands using smooth overlapping
windows and then taking Discrete Cosine-IV or Discrete
Cosine-I Transform of the subbands. Figure 3 shows the
windows used to divide the mel-scaled, log-filterbank ener-
gies into subbands using smooth overlapping windows. The
vector size is 16 for all LAP-i features. Since the means
of the basis vectors of DOLT are non zero, the mean of
each subband is removed before taking the DOLT of mel-
scaled, log-filterbank energies. Otherwise, subband coeffi-
cients will have extra variation due to the DC value of each
subband that may degrade the performance of the recog-
nizer.

All feature vectors also include delta coefficients and delta en-
ergy to represent dynamic characteristics. Lp-white noise denotes
low-pass filtered, white noise with a cut-off frequency of 1.2 kHz.



Table 1: Phoneme recognition rates for MFCC and SUB features for clean and noisy speech
MFCC SUB-2 SUB-3 SUB-4 SUB-5 SUB-6 SUB-7 SUB-8

Clean 59.68 60.17 59.50 58.11 57.73 56.20 55.63 54.00
20-db white noise 47.33 50.81 49.97 47.55 47.38 45.24 44.06 42.23
10-db white noise 21.27 23.42 27.01 24.57 24.73 24.28 23.00 20.14
20-db lp white noise 54.62 54.95 55.49 54.66 53.69 51.06 50.49 49.15
10-db lp white noise 45.78 48.68 48.04 44.44 41.83 41.46 40.46 39.08
5-db lp white noise 37.10 40.45 39.65 28.89 27.43 31.45 30.18 29.31

Table 2: Phoneme recognition rates for LAP features for clean and noisy speech
LAP-2 LAP-3 LAP-4 LAP-5 LAP-6 LAP-7 LAP-8

Clean 61.27 60.52 60.56 60.84 60.57 60.10 59.62
20-db white noise 51.13 50.90 51.27 52.67 51.68 50.82 50.70
10-db white noise 23.57 27.45 26.95 28.91 28.91 29.49 28.36
20-db lp white noise 56.04 57.21 56.73 56.45 56.58 54.15 55.47
10-db lp white noise 49.39 51.42 48.23 48.70 47.01 48.14 47.68
5-db lp white noise 41.53 40.69 36.66 37.77 33.55 38.71 34.35

4. EXPERIMENTAL RESULTS

Table 1 shows the recognition rates for MFCC and SUB features
for different noise conditions, and Table 2 shows the recognition
rates for LAP features for different noise conditions. As seen from
the Table 1 and Table 2 the proposed LAP features yielded bet-
ter results than the SUB features for a given number of subbands
for all noise conditions. The other observation is that recognition
rates for SUB features, unlike those for LAP features, decreased
drastically as we increased the number of subbands. The number
of subbands is important for dealing with noisy speech, since in
general, we have better control on decreasing the effect of noise if
we divide the frequency band into more slots. From Table 1 and
Table 2, we can conclude that for clean speech LAP-3 features are
best. However, LAP-7 or LAP-8 features are more effective for
noisy speech.

5. CONCLUSION

A new feature extraction method has been proposed for a subband-
based recognizer that uses the Discrete Orthogonal Lapped Trans-
form. This method uses smooth overlapping discrete windows to
divide the frequency band into subbands. Experimental results
have shown that the proposed features consistently yield better
results than traditional subband features for a given number of
subbands, under all noise conditions investigated. The number of
subbands is important for dealing with noisy speech. More sub-
bands allow more control on the effect of noise on the recognition
rate. One important advantage of the proposed features over the
traditional subband features is that the recognition rate does not
decrease significantly as the number of subbands is increased.
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