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ABSTRACT

In adaptive signal processing the principle of exponen-
tially weighted recursive least-squares plays a major role in
developing various estimation algorithms. It is based on
the concept of discounting of old measurements and allows
for better performance in problems with time-varying sig-
nals and signals in nonstationary noise. In this paper we
show how this concept can be combined with the Bayesian
methodology. We propose that the discounting of old mea-
surements within the Bayesian framework be implemented
by employing particle filters. The main idea is presented
by way of a simple example. The methodology is very at-
tractive and can be used in a very wide range of scenar-
ios including ones that involve highly nonlinear models and
non-Gaussian noise.

1. INTRODUCTION

Adaptive signal processing is a very important part of sta-
tistical signal processing and has applications in diverse ar-
eas including communications, controls, radar, sonar, and
biomedical engineering. A wide variety of signal process-
ing problems involve nonstationary signals or time-varying
models, and the standard approach to resolving them in-
volves application of adaptive filters. The number of appli-
cations where they have been successfully employed is very
large, and examples of it such as linear prediction, channel
equalization, beamforming, interference cancellation, and
system identification abound in many standard textbooks
1], [21, [3l.

A big class of adaptive filtering methods is based on
the principle of recursive least-squares (RLS). In applica-
tions where the signals have time-varying parameters or the
noise is nonstationary, and the time-varying nature of the
unknowns is not known, the RLS algorithm is modified to
exponentially weighted RLS. The objective of the exponen-
tial weighting is to give more weight to more recent than
to older observations. Here we show how this idea can be
used within the framework of Bayesian methodology. It is
shown that if the equation that represents the model of the
observations is extended with a state equation in the form
of a random walk model, we obtain the effect of discounting
of old measurements.

The objective of this work is twofold. First and fore-
most, we want to extend the idea of discounted measure-
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ments to Bayesian methods. Second, the intention is to
exploit this approach for solving as wide range of prob-
lems as possible. This can be achieved if we implement the
adaptive processing scheme with discounted measurements
by particle filters [4], [5]. Particle filters are based on track-
ing posterior densities of interest by propagating samples
(particles) that are drawn from these densities. If particles
from the posteriors are available at any instant of time, all
kinds of estimators can be constructed for extracting de-
sired information. Expectations of various functions can
be estimated, MMSE estimates can be easily obtained, and
uncertainties about the estimates can readily be quantified.

The paper is organized as follows. In Section 2 we
present the main idea by working on a very simple example.
Then, in Section 3, we discuss the implementation of the
proposed method by particle filters. A simulation example
is provided in Section 4, which shows that our expectations
of the proposed method are met. Section 5 concludes the
paper with some brief remarks.

2. DISCOUNTING OF OLD MEASUREMENTS
AND BAYESIAN SIGNAL PROCESSING

Here we proceed by way of a very simple example. Suppose
that the data y;, t = 1,2,--- are observed, and that

Yo =0+ ug (1)

where 6 is an unknown parameter, the noise samples u; are
independent and identically distributed, and u; ~ N(0, 05),
with o2 being known. After receiving one sample, all the
information about 6 is in its posterior, which takes the form

F(6lyr) ox exp (—M> (@)
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where the prior of 6 is assumed () o ¢, with ¢ being a con-
stant. When the next sample y» is received, the posterior
f(Blyr) is updated to f(8|y2,y1) according to

FOly2,y1) o f(y210)F(0lyr) 3)

which results in
6 — 6,)?
f(9|y2,y1) X exp <—¥> (4)

Oy

where n
b, = L8, (5)



Note that in (3), the posterior from (2) acts as a prior for 6
when it is estimated from y2, and it is multiplied with the
likelihood f(y2]6). As new data are collected, this process
is repeated. When y; is received, we have

fOlyy.,) o< f(yel0) f(Olyie—1) (6)

where y1.¢ = [y1 y2 -+

F(ly1.e) ox exp (—M> ()

y¢], and the posterior becomes

where .
S 1
b= Z:l Yn. (8)

It is obvious that the MAP estimate of 6 after ¢ samples is
f: and that it can be obtained by

b =01 + % (yt - ét—l) . 9)

At this juncture, it is important to note that the RLS
estimate of # is found by minimizing the criterion

t

Jo=Y (yu—0) (10)

n=1

and that the resulting estimator is identical to (9). The
difference between the estimators is that the Bayesian esti-
mator tracks the full posterior of 6, whereas the RLS esti-
mator provides only a point estimate. The RLS estimator,
however, does not make distributional assumptions about
the noise .

The parameter § however may change with time, and
then its value at time instant ¢ is denoted by ;. A standard
approach to tracking its changes is to use the exponentially
weighted RLS method that minimizes the criterion

t

To= N (g~ 6)° (1)

n=1

where the A,’s are constants, and 0 < A, < 1. In that case
the RLS estimator is modified to [2]

ét = ét71 + vt (yt - ét—l) (12)

Yt—1 Yt—1
= (1-—]. 13
n At < At + Ye—1 > (13)

The idea behind the use of the criterion (12) is to discount
old measurements and allow newer measurements to affect
the estimate of 8; more than older measurements.

In absence of a function that models the dynamic nature
of 6 with time, is there an equivalent Bayesian approach to
estimating 6, which in the case of Gaussian noise yields
MAP estimate identical to the one given by (12)? The
answer is yes. The following shows how we can find this
estimator.

After receiving the first measurement, the posterior of
61 is given by (2). When y» is obtained, we can decrease the

where

effect of y1 on A by using a different prior for #> than the
original one, which was f(02]y1) = f(61]y1). The modified
prior has the form

Gy — 2
F(Bslyi, ) o exp (——( 2 o) ) (14)
bey
When this prior is combined with the likelihood f(y2|62),

we obtain

(62 — 1957 (2 + Myn))®
F(O2]y2,y1, A1) o< exp (_ 1+>\12(r2

14+

(15)
Next we receive y3, and the posterior (15) before becom-
ing prior of 03 is spread out to reflect discounting of the
measurements y; and y2, or

(63 — 7957 (2 + Ayn))?
f(93|y27y17 )\27 )‘1) X exp <_ 1+/\12o-2 .
A2 (14+A1) (16)
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The new posterior then becomes

03 — 63)°
£ (Bslys, y2, 31, 22, Ar) ox exp (—¥> (17)
1+/\2+1i\2>\1

where

3 (ys + A2y2 + A2 Aiyr). (18)

T T4+ en

The derivation of the following posteriors is analogous,
and it is not difficult to show that the general expression
for it is

F(Bely 1, Ar:e—1) o< exp <—M> (19)

20}
where oy oy
N Yt + En:l Yn k=n Ak
br = t—1 1qt—1 (20)
1 + Zn:l k=n Ak
and

2
o = Tu : 21

REES i )
It can be readily proved that the MAP estimate 6, given by
(20) is identical to the RLS estimate (13). So, in summary,
we conclude that we can invoke the concept of discounting
measurements with the Bayesian methodology. This is done
by appropriately modifying the posteriors, which serve as
priors of the parameters that model the measurements yet
to be taken.

The above example is for a very simple model and for
Gaussian noise. It is not difficult to show that it can be
straightforwardly replicated for more complex models, which
not only can be nonlinear, but can also be models that in-
volve non-Gaussian noise. Here we continue the work on
our example, where the noise now is a Gaussian mixture
with p components, i.e.,

P
ug ~ Z wiN(0,07,) (22)
i=1



where the coefficients of the mixands are known, Ele w
=1, and o, # Uij for i # 7.
It can be shown that the posterior of 6; given y:, y:—1,
-+, y1 can be written as

tp
FO|y:e, A1ie—1) x Zﬁ)kftk (6¢) (23)
k=1

where the coefficients &y, and the mixands f, (6;) can easily
be determined. It is obvious, however, that the number of
terms in the posterior grows exponentially as new measure-
ments arrive, which makes the whole method of discounting
old measurements in this case impossible to implement.

The tedious process of evaluating the posteriors when
we have complicated posterior functions can be avoided if
we adopt the concept of particle filters. Instead of track-
ing the analytical functions that represent the posterior, we
follow a set of particles that come from the posterior and
thereby approximate it. Any estimate that is of interest
can then be easily obtained by using these particles. But
how do we implement the discounting of old measurements
using particle filters? An answer to this question is given
in the next section.

3. IMPLEMENTATION BY PARTICLE
FILTERS

First, we briefly explain the concept of particle filters. Sup-
pose that an observed phenomenon is described by the equa-
tions

0r = he(Oe—1,us) (24)
v = gt(f,vr) (25)

where h(-) and g:(-) are some known functions, and u; and
vt are noise samples from known distributions. The process
f; is not observed, that is, it is hidden, and the objective is
to track it sequentially using the samples y; as soon as they
become available.

We reiterate that all the information about 8; is in its
posterior density f(6¢|y1:t), so the best we can do is if a
method is developed to track f(f¢|yi.t). Obviously, the
nature of the method must be recursive, and therefore once
Yi+1 is received, the main idea is to modify f(6¢|y1:t) to
f(6es1|y1:t+1). The recursive formula for the updating is

fWet1]0841) f(Bet1lyiee) (26)

fOrgalyries1) = fe1lye)

where

f(Oex1ly1e) = /f(9t+1|9t)f(9t|}’1:t)d9t. (27)

When the functions in (24) and (25) are linear and the
noises are Gaussian, the posteriors in (26) are also Gaus-
sian, and as a result, it is sufficient to track only the first
two moments of the posterior. In fact, the solution can then
be obtained analytically, and the result is the Kalman filter.
Deviations from linearity and Gaussianity lead to approx-
imate solutions of which perhaps the most popular is the
extended Kalman filter.

An interesting alternative to the standard solutions can
be sought by employing particle filters, which are based on
the concept of sequential importance sampling (SIS) [4],
[6]. The main idea behind SIS is to approximate the pos-
terior densities by samples (particles). Suppose that Q(m)
m=1,2,---,M are particles from the den51ty f(9t|y1_t)
each with probablhty mass wt ) where E (m) =
The particles with their probability masses represent an ap-
proximation of the posterior density from which they are
drawn, i.e.,

M

> wi™e6 - 6™ (28)

m=1

9t|Y1t

where d(-) is the Dirac’s delta function. As new data be-
come available, the main idea is to propagate the particles
and modify their weights so that the new set of particles
and weights approximate f(0¢+1|y1:¢41).

Note that we can modify the posterior f(61:¢|y1:¢), with
the arrival of y¢41, according to

f(We+1]0t41) f(Be+1]604)
F(yet1lyr:e)

f(O1:¢ly1:e)-

(29)
The value of this expression is in that using the concept of
particles it can be implemented recursively. If at time ¢, we
have a set of particles and their weights from f(61.¢| y1.¢),
they can be updated to particles with associated weights
from f(01: t+1|y1:t+1) by applying the following sequential
importance sampling procedure [4]:

fOrtq1lyr:e41) =

1. Draw particles 9t+1: m = 1,2,---, M, from a pro-
posal density, known as importance function, g(6¢+1|
9t, Y1:t+1)-

2. Compute the weights of the particles by

comy _ 0 Fp 8D FOIN6)
Wik = (m) 9 (m) (30)
(9t+1|9t yY1it+1)
and )
. w*m
Wil = o (31)

Ek 1 w;(-kl)

For details on the application of the procedure, see for ex-
ample [4]. It is important to note that the accuracy of the
method and the algorithms depends on the used importance
function. For some choices of importance functions, consult
[4], [5], [6], [7] -

We now get back to our original topic of discussion,
the enforcing of discounting of measurements with parti-
cle filters. It is worth noting two points: (a) the particle
filters have no difficulties in handling hard problems like
the one with Gaussian mixture presented above, and (b)
in our problem statement we do not assume any model for
the changes of the signal parameters. Now, the discounting
of old measurements can easily be imposed if we use the
particle filtering scheme on the following model:

9t = 9t71 =+ v (32)
Yt = 9t + Wt (33)
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Figure 1: Performance comparison of the exponentially

weighted RLS and proposed Monte Carlo sampling methods
for parameter estimation. The noise variance o2 = 1.

where v; is a zero mean noise sample with a know distri-
bution, say Gaussian. It is obvious that the samples 6; will
have a wider distribution than the samples of #,_: because
their distribution is convolved with the distribution of wvy.
The value of the variance of v¢ is easily deduced from (32),
and it should be

1
U'?,t = agt_l (Xt — 1) . (34)

In summary, the discounting of measurements is im-
posed by adding a system equation to the data model that
represents a random walk. The resulting system is sim-
ple, and the tracking of the posterior density of 6; by using
particles is straightforward.

4. SIMULATION RESULTS

To illustrate the performance of the proposed methodology,
we proceed with our simple example and compare its perfor-
mance to that of the conventional RLS method. The model
of the observations y1 is given by (1), ; varies with time in
an unknown way, and wu; is Gaussian with zero mean. To
observe the behavior of the proposed method, 6; was varied
between the values 2 and 3, as shown in Figures 1 and 2.
The simulation was run for ¢ = 300 time samples, and o2
was 1 for the simulations in Figure 1 and 0.25 for Figure 2.
The forgetting factor A used for both the particle filter and
RLS method was A\t = 0.9, ¢t =1,2,---,300.

In both figures we observe that the particle filter algo-
rithm tracks 6; as well as the RLS method. As expected,
due to the low value of the forgetting factor, there is consid-
erable alertness to the dynamic nature of ;. However, the
price is that the estimates are jittery and not very accurate.
Note that the tracking performance of the particle filter is
quite faithful to that of the conventional RLS.
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Figure 2: Performance comparison of the exponentially
weighted RLS and proposed Monte Carlo sampling methods
for parameter estimation. The noise variance o2 = 0.25.

5. CONCLUSIONS

We have proposed a Bayesian procedure for adaptive signal
processing that employs discounting of old measurements.
The discounting is implemented by convolving the most re-
cent posterior of the tracked parameters with another den-
sity. The resulting density serves as a prior in processing
the next observation. It is also proposed that the scheme
is carried out by particle filters. A powerful feature of the
method is that it can be readily applied to highly nonlinear
problems that involve non-Gaussian noise.
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