
A UNIFORM TRANSFORM DOMAIN VIDEO CODEC BASED ON DUAL
TREE COMPLEX WAVELET TRANSFORM

Kamakshi Sivaramakrishnan †and Truong Nguyen ‡

Boston University
Electrical and Computer Engineering Department

Boston MA 02215
†kamakshi@bu.edu, ‡nguyent@engc.bu.edu

ABSTRACT

This paper describes a uniform transform domain Video
Codec where the motion estimation/compensation (ME) is
performed in the transform domain. The estimation tech-
nique discussed here is a subpixel transform domain ME
based on the Dual Tree Complex Wavelet Transform (DT
CWT) and a maximum phase correlation technique. The
DT CWT is a multiresolution fine-to-coarse bandpass fil-
tered decomposition of each still frame and has desirable
properties of shiftablility , directional selectivity and per-
fect reconstruction (PR). Estimation is first performed at
the finest resolution and successively proceeds to the coarse
resolutions using a fine-to-coarse strategy. This gives mul-
tiresolution motion estimates enabling estimation of current
frame transform coefficients from the corresponding ones in
previous frame. The key difference of this approach is the
transform domain error frames - a uniform transform do-
main Video Codec. This further simplifies the encoder and
decoder resulting in computational savings with compara-
ble performance to the standards.

1. INTRODUCTION

The intensity-based block matching (BKM) ME techniques
are a good approximation of the underlying 3-D motion.
However the ambiguity of the very measure of motion (pat-
tern of intensity changes) may result in an erroneous rep-
resentation of the 2-D projected motion. The conventional
hybrid video coding techniques like the MPEG and H.263
comprise of a spatial domain ME (SD-ME) block which in-
states a heavily loaded feedback loop in the encoder shown
in Fig.1(a). The Inverse transform (T−1), is solely for the
purpose of spatial domain ME and has been long recog-
nized as a major bottleneck of the video coding system for
high speed real-time video networks. A possible solution to
this problem is to perform the motion estimation in the
transform domain (TD-ME), thus moving the transform
(T) block out of the loop and removing the (T−1) block.
This results in a uniform transform-domain Video codec cir-
cumventing the shortcomings in the conventional codec. In
this paper, we propose a modified transform domain Video
codec as shown in the Fig.1 (b).

An approach to the problem of transform domain ME is
the phase-matching technique, which is feasible if local dis-
placements in the spatial domain can be approximated by
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Fig. 1. Block diagram of (a) conventional and (b) Proposed
Video encoder

the linear phase-shifts in the transform domain. Adelson
and Bergen et. al [1] designed a bank of spatio-temporal
filters that decomposed the signal into channels that are
tuned to different speeds and orientations and hence repre-
sentative of the underlying motion components in the sig-
nal. This gives rise to the phase-based optical flow con-
straint

(∇φi)Tv +
∂φi
∂t

= 0 (1)

where φi is the output (transform coefficients) of the
channel i and v is the corresponding component of the mo-
tion (displacement) vector. This idea was exploited by Ma-
gaurey et.al. [2] in a multiresolution coarse-to-fine strat-
egy to increase the range of estimation. Their technique
however suffers from the deficiencies of a coarse-to-fine ME
strategy, viz:-

• Inaccurate ME at the coarsest resolution, due to the
lack of detail and aliasing effects.

• ME performed using coded reference frames involves
quantization noise which affects coarse resolutions the
most.

• Finite extent subband filters introduce aliasing com-
ponents at coarser resolutions preventing resolution
scaling of translational motion.

• Not applicable for a complete uniform Video Codec
as the error frame of the estimation is still in the



spatial domain.

Also, the transform used in [2], is a complex-valued
transform and hence not compatible with standards. These
problems have been addressed in the fine-to-coarse DT CWT-
based ME technique that we describe in this paper.

2. DUAL TREE COMPLEX WAVELET
TRANSFORM (DT CWT)

In order to perform estimation in the transform domain, we
need a “shift-invariant” transform. This eliminates the real
Discrete Wavelet Transform (DWT) which does not exhibit
shift-invariance as it violates the Nyquist sampling rate [3]
and information moves from one subband to another un-
der translation. It has been shown by Simoncelli et.al [3]
that there must be a relaxation of the critical sampling con-
dition to achieve approximate shift-invariance resulting in
abandoning orthogonality. Kingsbury et.al in [4], has de-
signed an approximately shift-invariant implementation of
the wavelet transform, viz:- Dual Tree Complex Wavelet
Transform. It has the added advantage of perfect recon-
struction (PR) and directional selectivity. The PR prop-
erty is very important for the ME technique suggested in
this paper. The transform and its shiftability is briefly dis-
cussed in this section, the details of which can be found in
[4], [3].

Approximate shift invariance is possible with a real DWT
by “doubling” the sampling rate at each level of the tree.
“Doubling” can be achieved by eliminating the downsam-
pling operator after the first level of decomposition provided
the samples are uniformly spaced. This is equivalent to two
fully-decimated trees (two real DWTs) provided the filters
in the two trees meet the delay criterion to maintain uni-
form intervals between samples. The dual tree of real filters
is shown in the Fig. 2.
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Fig. 2. Dual tree of real filters for the DT CWT, filters of
even and odd length alternate at successive levels

The uniform sampling condition alongwith linear phase
requirements impose conditions [4] on the length of the fil-
ters in the two trees. Greater symmetry considerations re-
sult in the alternating even and odd length filters in DT
CWT. The filter responses are Gausssian-shaped resembling
the real and imaginary parts of the complex filters in [2] and
are shown in Fig. 3
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Fig. 3. Impulse responses at level 4 of the DT CWT scaling
and wavelet function.

The transform is complex if the output from tree a is
considered to be the real part and that from tree b, the
imaginary part of the transform coefficient. Alternatively it
could be considered to be a limited redundancy oversampled
real transform.

2.1. Shiftability of CWT

Simoncelli et.al in [3] have shown that a transform is shiftable
if and only if there exists a set of interpolation functions
that interpolate the “non-translated” transform coefficients
to give the translated coefficients for any arbitrary transla-
tion x0 of the spatial domain input signal. This condition is
summarized here for a periodic input signal, f(x). The sig-
nal f(x) when transformed using the projection functions
corresponding to shifted copies (basis functions) of the ker-
nel, h(x) :

{h(n−∆x − x)|n = 0, 1, . . . , N − 1}

over a period [0, 2π] and sampling interval, ∆x = 2π
N

gives
transform coefficients, C(n). Thus,

C(n) =

∫ 2π

0

dxh(n∆x − x)f(x), n ∈ 0, 1, . . . , N − 1 (2)

Simoncelli et.al in [3], have shown that the above trans-
formation is shiftable if

h(x0 − x) = ΣN−1
n=0 bn(x0)h(n∆x − x) (3)

where x0 is the arbitrary shift, bn(x0) is the interpolant.
That is, the arbitrary shifted kernel h(x0 − x) can be

expressed as a linear combination of the basis functions
h(x− n∆x). This implies that the sampled basis set spans
the entire subspace of all translations of the kernel. Equiv-
alently, the linear subspace spanned by the sample basis is
invariant to translation.

Using equation (2) in equation (3), we get

C(n0 − n) = ΣN−1
k=0 bk(n0 ∗

2π

N
)C(k − n) (4)

where n0 = x0 ∗ N
2π

is the corresponding shift in the
transform domain.



If a solution to the above equation exists, then the trans-
form is shiftable. In an aliased transform (real DWT), the
response power depends on the signal position: translation
of the input signal generally results in a re-distribution of
the power content amongst the various frequency subbands.
The shiftability constraint is equal to the fact that power of
the transform coefficients in the subband is preserved when
the input signal is shifted in position [3]. This is demon-
strated by the DT CWT while the real DWT exhibits a
periodic variation in the power content of the transform co-
efficients with translations of the input signal and is shown
in the Fig. 4(a) and (b). This constraint is used in the ap-
proximation of the spatial motion to a linear phase change,
giving a closed form expression for the motion vector esti-
mate.
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Thus, the DT CWT gives us a “real-valued” transform
that is approximately shift-invariant !

3. FINE-TO-COARSE MOTION ESTIMATION

The solution to equation (4) is the key to the problem of ME
in transform domain and more importantly, it is necessary
that we look for a computationally inexpensive interpolant,
bn(x0). The zero-order interpolation technique discussed by
Magaurey et.al [2] describes a simple single subpel interpo-
lation technique which is good only for small range motion
vectors, n0. Here, we describe a higher order interpolation
technique that is more robust and it averages out the noise
effects in the transform coefficients. The error measure is
the subband squared difference (SD), similar to that in [2]

SD(n,m)(n,n0) = |C(n,m)
1 (n + n0)− C(n,m)

2 (n0)|2 (5)

where C
(n,m)
1 is the subpel of the reference frame (un-

shifted) at a level of decomposition m and subband n cen-

tered around the position n = (n1, n2) and C
(n,m)
2 is the

subpel of the current frame (shifted) with similar attributes.
Here, n0 is the translation in the transform domain corre-
sponding to a motion in the spatial domain.

From equations (3) and (2)

C(n,m)(n + n0) = ΣkB
(n,m)
n0

(k)C(n,m)(n + k) (6)

where B
(n,m)
f is the interpolant at subband n and reso-

lution m Because of the Gaussian-shaped impulse response

of the CWT filters, Magaurey et.al showed that the inter-
polant can be expressed as

B(n,m)
n0

(k) = Kn0(k)ej2
m[Ω(n,m)]T (n0−k) (7)

Kn0(k) is the interpolating kernel and Ω(n,m) is the
center frequency [2], along which the phase is a constant and
equal to the orientation of the subband. If we weight the
surrounding subpels by their phase contribution (measured
by the inner product of the center frequency and position
in the subband), we get a simple higher order and robust
interpolation technique, i.e.,

K(n,m)
n0

(k) = ej2
m[Ω(n,m)]T (k)

Now,

B(n,m)
n0

(k) = ej2
m(Ω(n,m))T k(k)ej2

m[Ω(n,m)]T (n0−k) (8)

Equation (6) now becomes

C(n,m)(n + n0) ≈ ej2
m(Ω(n,m))T (n0)ΣkC

(n,m)(n + k) (9)

The above interpolation formula and the constant subband
power (section 2.1) is used in locating the minimum of

the SSD surface (equation 5), SD(m)(n,n0). Expanding
equation(5) it can be shown that minimizing the SSD is
equivalent to maximizing the phase correlation of the com-
plex coefficients. Using the model for the interpolated phase
(equation(9)), the motion estimate, n0 is expressed as a lin-

ear relation to the interpolated phase, θ(n,m)(n)

2m(Ω(n,m))Tn0 = θ(n,m)(n) (10)

where, θ(n,m)(n) = 6
C

(n,m)
2 (n)

ΣkC
(n,m)
1 (n+k)

(11)

In 2-D, since we have six subbands from the DT CWT
decomposition, the motion estimate n0 corresponding to
the subpel n at any resolution is obtained by averaging
over all the six subbands and is given by

v = arg min
n

Σ6
n=1SD

(n,m)(n,n0) (12)

Using the linear phase model, a closed-form expression
for the minimizer of SD(n,m) is obtained [5], [2]. The ad-
vantage of the phase model in equation (10) is that is not
limited by the range of the motion vector n0. Hence we
need not perform any further refinement to obtain a true
minimum.

3.1. Algorithm Structure

The block diagram of the transform domain ME is shown in
Fig. 5 which is self-explanatory in itself. The motion com-
pensation is done using a wavelet based lowpass/bandpass
interpolation [6] technique. As shown in Fig. 5, the mo-
tion compensation is performed using the motion vectors
and the reference frame transform coefficients to generate
the predicted frame transform coefficients. The transform
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domain error frames thus generated are coded using the
Wavelet Difference Reduction [7] algorithm. Thus, we have
transform domain error frames and motion vectors (MV) of
transform coefficients!

4. RESULTS

The result of the proposed ME algorithm applied to the test
sequence of ’Miss America’ is shown in Fig. 6 as a motion
field representation. The comparison of the proposed ME
technique with standard BKM techniques and coarse-to-
fine complex multiresolution ME (CDWT2) in [2] is shown
in Fig. 7(a) and Fig. 7(b) show the PSNR of the recon-
structed frames for various bit allocations of coding the er-
ror frame. The significant improvement in the SNRs of the
reconstructed frames is attributed to the improved phase
model (averaged contribution of the spatial neighbouring
coefficients), the fine-to-coarse ME strategy and the higher
order wavelet-based interpolation technique. Also, the fine-
to-coarse ME strategy engenders a better estimation accu-
racy. The grouping of coefficients in the estimation of the
motion vectors into blocks gives higher computational speed
in addition to averaging out the noise effects in estimation.
The wavelet-based bandpass interpolation technique gives
a high subpixel accuracy in the order of dyadic fractions
which is very useful in estimating fractional displacements
of motion. Additionally, since TD-ME results in a true rep-
resentation of the underlying motion which is independent
of the intensity, light effects and the acquisition methods of
capture of the video sequence. Thus, we conclude that we
have an efficient uniform transform domain Video Codec
with higher accuracy in reduction of temporal redundancy.
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Fig. 6. Motion field of the ”Miss America” sequence
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