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ABSTRACT

ClassicOceanAcoustic Tomographyby Wienerinversion
needsgood estimatef the noisespower affecting the er-
rors betweenthe in situ measurementsf the travel times
andtheir estimate®btainedby reliablesimulations.We in-
vestigatehemaximumlik elihoodestimatiorof astructured
covariancematrix, whosesubspacesf interestareknown,
butwhoseassociategowersareunknovn. UsingtheOcean
Acoustic Tomographyconstraintswe assumethat the co-
varianceis the sum of a full rank known matrix and an
unknowvn component.We derive the maximumlikelihood
estimategor thesenoisepowersandcomputethe Fisherin-
formationmatrix to getinsightinto thegeometriqroperties
of the estimators.We verify with a realistic classicOcean
Acoustic Tomographysimulationthe good quality of our
noisepower estimates.

1. INTRODUCTION

ClassicOceanAcoustic Tomography(OAT) is an inverse

methodto mapsoundvelocityandcurrentfieldsin theocean.

Twentyyearsof developmentvork provide uswith anocean
acoustigpropagatioratlas([1], p382-401)andwith reliable
oceanicmodels. Single slice OAT givesonly averagein-
formationalongthe ray path structure,andis restrictedto
deepoceanwith no bottom and surfaceinteractions. To
invert shallov water channels,t is importantto combine
OAT, which providesconstraintinformation—prior model—
with oceanmeasurementsdataassimilation-thatarenow
cheaplyavailable with inexpensve oceanographidénstru-
mentation(TemperatureConductvity, Depthsensors).
Dataassimilationrelaxesthe hardconstaintof accurate
trackingthe positionof the sensors.Referencd2], for ex-
ample,assumeshat with large planararray of sensorghe
OAT inverseoperatolis insensitve to sensomotionaslong
asonehasa good estimateof the power of the errors,in-
cluding position errors, clock driffting, or ambientacous-
tic noise. This paperaddressethe estimationof the noise
powers, castingthis problemas a specialcaseof the gen-
eralstructureccovarianceestimationin thelinear statistical
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model[3, 4, 5]. In OAT, it is often possibleto derive from
historical dataand first principlesreasonablesstimatesof
thestructureof theunderlyingsignalsandnoisessubspaces.
The structuredcovarianceestimatereducesto finding the
power parametersf the component®f thesesubspaces.

In section2, weintroducetheclassidomographymodel.
In section3, we derive the Maximum Likelihood (ML) re-
gressionequationgor the constrainecparameteestimates
andthe CranérRaobound. In section4, we apply these
resultsto a realisticsimulationof classicOAT for a single
couplesource/receier setup.

2. TIME-OF-FLIGHT TOMOGRAPHY

ClassicOAT infersfrom measurementsf the pulsestravel
time the stateof the oceantraversedby a soundfield. This
contrastsvith matched-fieldAT thatusegshewholeacous-
tic pressurdield. We presenherethelinearstatisticamodel
correspondingdo theforwardstepin classicalOAT.

The travel time 7;(t) alongray R; from sourceto re-
ceierin thesoundvelocityfield C(z, y, z, t) is:

ds
Ti(t) - v/R, C(a:,y,z,t) +ni(t)’

wheres is the arc length along the ray path R;, assumed
known andfixed,i.e., s depend®nx,y,z but nott, andn; is
ageneralerrorterm. Oceansoundspeedvariationsarelin-
earizedarounda nominal soundvelocity field Co(z,y, 2)
estimatedfrom the historical data. To first order, the ex-



pressiorfor thetravel time perturbatiortermbecomes:

—6C(x,y, 2z, t)ds  cos(B;)Il(t)
0T; (t) = D)
R; C’O(w,y,z) Co(wsaysazs)
whereg; is the anglebetweenthe locally linear wavefront
i and the horizontalasin figure 1 at the sourceposition
Zs,Ys, 2. Theverticalvariationof the sensotis assumedo
be correctedwith a pressureneterthatgivesthe depth.For
acompletemodelse€]6]. All raysmeasure@tthesnapshot
t arebiasedby the samedisplacement(t).

To describethe oceanperturbationmodel, it is com-
mon to project the perturbationto an eigervector basis—
the Empirical OrthogonalFunctiong EOF). TheseEOFare
the eigervectorsof the velocity field perturbationcovari-
ancematrix that is estimatedfrom historical data. Write
theperturbationsC(z, y, z, t) ontheEOFbasis{U}} as

ng Uk .'17 y Y, % )7 (2)

+n; (t) ) (1)

0C(z,y,2,t) =

wherep, the numberof EOFsto be keptin the inversion,
dependsn the quality of the historicaldata. We groupthe
measuredr;, the unknown 6, andthe noisen; in vectors
o1, 8, andn of dimensionN, p, and N respectiely. The
symbol N is thenumberof rays.Let H andg bethe N x p
matrix and the N-dimensionalvectorthat collect the EOF
andthemooringmotionstructure.Fromeqs.(1) and(2):

o7 (t) = HO(t) + gl(t) + n(t).

Assumingd, [, andn are multivariatenormaldistributions
of zeromeanandcovariancel'y, o7, ando?2 Iy, we getthe
structurectovariancematrix:

R =< 6101" >= HTyH' + 0} gg' + 02In, (3)

where H and g are known. We considera more general
structureccovariancethan(3), namely we extendit to:

m
R=R,+ Y 0;.GiGi, (4)

k=1
whereR, = HT4H! + 021y isaN x N matrix andGy
arefull rank N x r, matrices.In otherwords: we assume
thatwe may have several sourcesof structurederrors—m
sources-that we know the subspacestructureof eachof
theseerror sources-the columnspacesof G, 1 < k <
my— but that the relative strengthof theseerror sources-
the parametersrfk, 1 < k < my—areunknown. In this
paperwe further assumehat R,, is full rank and known,
which s equivalentto assuminghatTy ando? areknown.
This is reasonablén OAT wherean iterative procedureis
used.At thefirst stepof theiteration,we approximatd’y by
theeigervaluesof theocearperturbatiorcorrelationrmatrix.
We approximater2 by theaverageof thelowesteigervalues
of thecovariancematrix R. Theestimatedﬂ(t) areusedto
correctthe oceanmodel—the I'y and the simulatedtravel
time arrivals—beforerunninganotherinversion.

3. ML ESTIMATION

To find themaximumlikelihood (ML) estimatorz;f\ of ofk ,
we root the systenof regressiorequationg[5], p260):

OR

tr {R (R— S)R™* 507

} = 07 k= 17"7mla (5)

wheretr isthetraceandS = L Y| §7;07¢ is thesample
covariance. The elementof the Fisherinformation matrix
(FIM) for thejoint estimationof o7, anday, is:

_m, 1OR __ | OR
Trj = 2 {R 802‘; 907 I aa, (©)

3.1. Inversion matrix lemma

To work furtherwith equationg5) and(6) we needthefol-
lowing technicallemma.

Lemmal Let Ayxxn, Byxks Crxk, and Dy be four
matrices. If A, C,and R = A + BCD are nonsingular
then

D[A+BCD|™ = [CDA'B+1] 'DA™". (7)

Proof. Startwith theinverseof asmall-rankadjustment[ 7],
p19)

R'=A""-AT'B[DA'B+C™']" DA

Premultiplyingby D andfactoringon theright D A1
DR'={I-DA'B[DA'B+C ']} DAL,
Finally, factorontheright [DA~'B + C~1] -
DR =C ' [DAT'B+C™'] "' DA™,
from which thelemmafollows.

3.2. ML estimation of the subspacepower parameter

Forgivenk, 1 < k < my, rewrite eq.(4) asR = R; +
alkaGt SinceRy; is invertibleandfrom thelemma:

—1
GiR ' = [alth LG +I”] GLR-,
from which, sinceGy, is full rank,
-1
GLR™ = [oh I, + (GLEZ'GW)™Y] DY,
whereD, isthe N x r; matrix
Di = (GLR'Ge) 'GLy ! = (R Gu R,

where M# is the pseudoinverseof the N x r matrix M
of rankr: M#* = (M!*M)~1M?, andRE’l/2 is theinverse



of the uppertriangularCholesly factorof Ry, i.e, Ry =
R%/QR%/Z. It follows that (G}, R='G) ™" = D} RyDy and

GLR™' = (DyRDy)"' D}, (8)

sinceD: GG Dy, = I,,.

Regressionequation The derivative termin eq. (5) is
G GY. Usingthetracepropertytr(AB) = tr(BA), eq.(5)
becomesftermanipulation

tr {(DLRDy,)? [DL(R — S)Dg] } =0, k=1,..,m;. (9)
Fisher information matrix A similar derivationleads
to the FIM genericelement

Jup = gtr{(D;RDkr?} kyi=1,.,m; (10)

i = S {(DiRDYDIGGID) .

ReplacingR and D, by theirdefinitionin J; from eq.(10)
m —2
Jo = Ztr { |02 Ly + (GLRZ G } (12)

Letthesingularvaluedecompositiorof A,;l = RE_WG,C =

UA~'Vt. The diagonalmatrix A is of dimensionr;, set
A(j,j) = oa,;- Eq.(11) becomes

The FIM entry Jii, 1 < k < my, is smallif the singular
valueSUATij aresmallfor all j, 1 < j < r. Thesesingular
valuesarethelengthsof the semi-axesof the hyperellipsoid

associateavith G afterits projectionon R~ 172,

Cramér-Raobound Thevarianceof ary unbiasedesti-
matoris lower boundedby the diagonalentry of the CRB,
which itself is lower boundedby the inverseof the corre-
spondingentryin the FIM ([5] p231)

o~

< (0} —0p ) >=00 > J N (k,k) > T k=1,.,m.

The varianceboundof the error of the power estimatesie-
pendsonthe projectionof theassociate@rrorsubspacesn
theothersubspacem the covariancematrix.

Specialcasel: at leastonesubspaces rank one As-
sumethat one of the error subspacessay subspacek, is
rank one,andrepresentd;, and Dy, by g, andd. Then,
from eq.(9),we getthe ML estimateof ofk

op =di(S — Rp)dy, df = (R'*g)*RZ'?. (12)

Thisreducedy onedimensionthe searchalgorithmfor the
otherunknowns. TheFIM is

Jrr = %(dszk)_z, Jri = Jrk di,Gszdk (13)

TheremainingJ;;'saregivenby eq.(10).Let R, = UL U*
betheeigervaluedecompositionDenoteby a%j thediago-
nal entriesof X+, andby u; thevectorU(:, j) then

1
N
_ 2 _
oo > o = m o, + (Z kaz(g/tc“j)z) , (14)
j=1

from which a geometricinterpretatiorfollows. Thelargest
eigervaluesf%_ areassociatewvith theeigervectorsu; cor

respondingo theerrorsubspacesr signalsignaturesn R;.

If g, is orthogonatto thefirst groupof eigervectorsof Ry,

thesumtermin eq.(14) will belargeandthe lower bound
will be small. The varianceboundof the error of the rank
onesubspacg;, power estimatds smallwhengy, is orthog-
onalto thesubspaceefinedby thesignalandtheothererror
sources.

After expandingR in eq.(13), we obtainfrom Jk_k1

2

2 L
o > p— lldi, RY?|1* + o, + Z oi, 1 Gill)?
i=1,i#k

For agenericmatrix M let M = RE_WM. Thetermd.G;

is thenequialentto g, #G;. The norm of this vectoris a
measureof the colinearity of g, andG; weightedby R;.
This lastexpressiorshaws a partial separatiorof theinflu-
enceof the signalin R, from thatof the subspacesf the
errorsourcesubspaces.

Specialcase2: at leasttwo subspacesare rank one
Assumethattwo subspacesaysubspaces andq, 1 < k <
g < my, arerankoneandrepresenty;, andG, by g, and
gq- Note R = Ry + 0} grg} + 07 gq9. anduseWoodhury's
identity severaltimeson eq. (133 to getthe FIM principal
sub-matrixcorrespondindo the power estimationof the k&
andq error subspacesThe determinanf this sub-matrix
may be expressedwith a; = gt Ry " gk, a; = gLRy ' gq,
andag, = gt Ry ' g, = (ara,)'/*cosp whereg is theangle
betweerthevectorngng anngt/2gq as:

2
m-
det(Jy,q) = =D ’C [DC +243,],
D= (1 + alzkak + quaq + Jfkalqu) ,

- 2 _ .9
and C = agag — ap, = ara,sin”¢.

If theangle¢ is zero,the FIM is singularandthe CRB on
thepower estimatiorfor errork andq areinfinity. TheCRB
on the power estimationfor thetwo rankonesubspaceare
sensitve to theanglebetweerthemweightedby theinverse
correlationmatrix of the othervariables.



3.3. Noisepowersin classicOAT

The covariancematrix in the OAT setupis in eq.(3). The
estimateof the noisepower o2 cannotfollow the procedure
describereviouslybecauser; = HT g H! + 0} gg* is sin-

gular We replace;,5 by its expressionseeed.(12),in Ry.
The derivative termin eq. (5) for 2 is Iy. Diagonalizing
Ry = UAU?, weget

tr { o2 in + 4] ” [o2In + U (R — S)U] } - 0.

Thisreducegheproblemto anonlinearequationof oneun-
known. A root finding algorithm gives an estimateof ¢2
thatcanbeusedto find o7 givenby eq.(12).

4. OAT SIMULATION

We simulatethe acoustictransmissiorfrom a single cou-
ple/recever with partially known positions, separatedy
74km, to study the tomographicreconstructiorof a range
independenbceansoundvelocity profile. The input data
arethe North-EastAtlantic oceanparameterstemperature
andsalinity corvertedto soundspeedcomputedby a high
resolutiondynamicalmodel, DYNAMO [8] developedat
LEGIY, asintegratedin [9]. The inversionestimateshe
soundspeecpbarameterd, k = 1, .., p, for every daydur
ing the Summerof 1989. The quality of the reconstruction
of theseasonabcearnvariability is judgedby the sumof the
meansquareerrors(MSE) of the 0 (t) estimates.During
the simulation,we vary the standarddeviation ¢; of theer-
ror on the sensorgositionfrom 10 cm (essentiallyprecise
positionningof the sensors}o 1 km (relatively large posi-
tionningerror).

Figure2 compareshesumof the MSE for theestimates

—_—

of all thedy,(t) versuss; for four methodsThe* plot shavs
the resultswith an oblique projectionestimation[10]. The
remainingplotscorrespondo threeWienerinversions.The
o plotdisplaystheresultsusingperfectweightingfunctions,
i.e., usingexact valuesof ¢; ando,,. It is alower bound
for the reconstructionMSE. The x plot shows the results
usinga, asthe averageof thelowestsingularvaluesof the
covarianceR andconstant; of 30 m. Theo curweis close
to the x curve at about30 m, as expected,but blows up
awayfrom this. Finally, the+ plot shonstheresultwhenthe
Wieneffilter usegheestimate®f thenoisepowersprovided
by the methoddescribedn subsectior8.3. The similarity
of theo and+ plotsconfirmsthegoodquality of the Wiener
inversionusingthe ML estimates.
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