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ABSTRACT

ClassicOceanAcousticTomographyby Wiener inversion
needsgoodestimatesof the noisespower affecting the er-
rors betweenthe in situ measurementsof the travel times
andtheir estimatesobtainedby reliablesimulations.We in-
vestigatethemaximumlikelihoodestimationof astructured
covariancematrix, whosesubspacesof interestareknown,
butwhoseassociatedpowersareunknown. UsingtheOcean
AcousticTomographyconstraints,we assumethat the co-
varianceis the sum of a full rank known matrix and an
unknown component.We derive the maximumlikelihood
estimatesfor thesenoisepowersandcomputetheFisherin-
formationmatrix to getinsightinto thegeometricproperties
of the estimators.We verify with a realisticclassicOcean
Acoustic Tomographysimulationthe good quality of our
noisepowerestimates.

1. INTRODUCTION

ClassicOceanAcoustic Tomography(OAT) is an inverse
methodtomapsoundvelocityandcurrentfieldsin theocean.
Twentyyearsof developmentwork provideuswith anocean
acousticpropagationatlas([1], p382-401)andwith reliable
oceanicmodels. Singleslice OAT givesonly averagein-
formationalongthe ray pathstructure,andis restrictedto
deepoceanwith no bottom and surface interactions. To
invert shallow water channels,it is important to combine
OAT, which providesconstraintinformation–prior model–
with oceanmeasurements–dataassimilation–thatarenow
cheaplyavailable with inexpensive oceanographicinstru-
mentation(Temperature,Conductivity, Depthsensors).

Dataassimilationrelaxesthehardconstaintof accurate
trackingthe positionof the sensors.Reference[2], for ex-
ample,assumesthat with large planararrayof sensorsthe
OAT inverseoperatoris insensitiveto sensormotionaslong
asonehasa goodestimateof the power of the errors,in-
cluding positionerrors,clock driffting, or ambientacous-
tic noise. This paperaddressesthe estimationof the noise
powers,castingthis problemasa specialcaseof the gen-
eralstructuredcovarianceestimationin thelinearstatistical�
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model[3, 4, 5]. In OAT, it is oftenpossibleto derive from
historical dataand first principlesreasonableestimatesof
thestructureof theunderlyingsignalsandnoisessubspaces.
The structuredcovarianceestimatereducesto finding the
powerparametersof thecomponentsof thesesubspaces.

In section2,weintroducetheclassictomographymodel.
In section3, we derive theMaximumLikelihood(ML) re-
gressionequationsfor the constrainedparameterestimates
and the Craḿer-Raobound. In section4, we apply these
resultsto a realisticsimulationof classicOAT for a single
couplesource/receiversetup.

2. TIME-OF-FLIGHT TOMOGRAPHY

ClassicOAT infersfrom measurementsof thepulsestravel
time thestateof theoceantraversedby a soundfield. This
contrastswith matched-fieldOAT thatusesthewholeacous-
tic pressurefield. Wepresentherethelinearstatisticalmodel
correspondingto theforwardstepin classicalOAT.

The travel time ��� �
	�� along ray 
�� from sourceto re-
ceiver in thesoundvelocityfield � �
������������	�� is:��� �
	����������  �!� �
�"����������	��$#&% � �'	��(�
where ! is the arc lengthalong the ray path 
 � , assumed
known andfixed,i.e., s dependson x,y,z but not t, and % � is
a generalerror term. Oceansoundspeedvariationsarelin-
earizedarounda nominal soundvelocity field �*) �'�������+�,�
estimatedfrom the historical data. To first order, the ex-



pressionfor thetravel timeperturbationtermbecomes:- � � �
	��.� ��� � / - � �
������������	��  �!�10) �
�"��������� # 2�354 �'6 � �87��
	��� ) �
��9:���59;�+�<9(� #=% � �'	��(� (1)

where
6 � is the anglebetweenthe locally linear wavefront>

and the horizontalas in figure 1 at the sourceposition�?9:���59;���<9
. Theverticalvariationof thesensoris assumedto

becorrectedwith a pressuremeterthatgivesthedepth.For
acompletemodelsee[6]. All raysmeasuredat thesnapshot	

arebiasedby thesamedisplacement
7��
	��

.
To describethe oceanperturbationmodel, it is com-

mon to project the perturbationto an eigenvectorbasis–
theEmpiricalOrthogonalFunctions(EOF).TheseEOFare
the eigenvectorsof the velocity field perturbationcovari-
ancematrix that is estimatedfrom historical data. Write
theperturbation

- � �
������������	�� on theEOFbasis@<A�B5C as- � �
�"����������	���D EFB(G"HJI B �
	�� A�B �'�������+�,��� (2)

where K , the numberof EOFsto be kept in the inversion,
dependson thequality of thehistoricaldata.We groupthe
measured

- ��� , theunknown I B , andthenoise % � in vectors- � , I , and % of dimensionL , K , and L respectively. The
symbol L is thenumberof rays.Let M and N bethe LPOQK
matrix andthe N-dimensionalvector that collect the EOF
andthemooringmotionstructure.Fromeqs.(1) and(2):- � �'	��R� M I �
	�� # N 7��'	�� #S% �'	��(T
AssumingI , 7 , and % aremultivariatenormaldistributions
of zeromeanandcovarianceUWV , X 0Y , and X 0Z\[�] , we getthe
structuredcovariancematrix:
 �=^ - � - �\_a` � MbU V Mc_ # X 0Y N,N,_ # X 0Z\[ ] � (3)

where M and N are known. We considera more general
structuredcovariancethan(3), namely, we extendit to:
 � 
1d #fehgFB�G"H X 0Yji<k B k _ B � (4)

where 
1d � MbU V M _ # X 0Z [ ] is a LlOmL matrix and k B
arefull rank LlObn B matrices.In otherwords: we assume
that we may have several sourcesof structurederrors–o Y
sources–that we know the subspacestructureof eachof
theseerror sources–thecolumn spacesof k B , prqtsuqo Y – but that the relative strengthof theseerror sources–
the parametersX 0Yvi , pwqtsxqPo Y – are unknown. In this
paperwe further assumethat 
 d is full rank and known,
which is equivalentto assumingthat U"V and X 0Z areknown.
This is reasonablein OAT wherean iterative procedureis
used.At thefirst stepof theiteration,weapproximateUWV by
theeigenvaluesof theoceanperturbationcorrelationmatrix.
WeapproximateX 0Z by theaverageof thelowesteigenvalues
of thecovariancematrix 
 . TheestimatedyI B �
	�� areusedto
correctthe oceanmodel –the U"V and the simulatedtravel
timearrivals–beforerunninganotherinversion.

3. ML ESTIMATION

To find themaximumlikelihood(ML) estimator zX 0Yji of X 0Yji ,
we root thesystemof regressionequations([5], p260):{�|*} 
=~ H � 
 /�� � 
=~ H=� 
� X 0Yjia� ���J� s � p ��TjTv� o Y � (5)

where
{�|

is thetraceand � � He�� e� G"H - � � - � _� is thesample
covariance. The elementof the Fisherinformationmatrix
(FIM) for thejoint estimationof X 0Y i and X 0Y�� is:� B+� � o � {+| } 
 ~ H � 
� X 0Yji 
 ~ H � 
� X 0Y��R� T (6)

3.1. Inversionmatrix lemma

To work furtherwith equations(5) and(6) we needthefol-
lowing technicallemma.

Lemma 1 Let � ]��\] , � ]�� B , � B � B , and � B �\] be four
matrices. If A, C, and 
 � � # �=�1� are non singular,
then�u� � # ���1��� ~ H �f� �1����~ H � # [.� ~ H ����~ H T (7)

Proof.Startwith theinverseof asmall-rankadjustment([7],
p19)
=~ H � ��~ H / ��~ H � � ����~ H � # �=~ H � ~ H ����~ H T
Premultiplyingby � andfactoringon theright ��� ~ H��
 ~ H ��� [ / ��� ~ H � � ��� ~ H � # � ~ H � ~ H.� ��� ~ H T
Finally, factoron theright

� ��� ~ H � # � ~ H � ~ H��
Q~ H � �=~ H � ����~ H � # �=~ H � ~ H ����~ H �
from which thelemmafollows.

3.2. ML estimation of the subspacepower parameter

For given s , p�q�s�q o Y , rewrite eq. (4) as 
 � 
 B #X 0Yvi k B k _ B . Since 
 B is invertibleandfrom thelemma:k _ B 
 ~ H �f¡ X 0Yvi<k _ B 
 ~ HB k B # [�¢ i;£ ~ H k _ B 
 ~ HB �
from which,since k B is full rank,k _ B 
=~ H � ¡ X 0Yji [ ¢ i # � k _ B 
 ~ HB k B � ~ H £ ~ H � _B �
where �¤B is the LtO¥n;B matrix� _B �¦� k _ B 
 ~ HB k B � ~ H k _ B 
 ~ HB �§� 
 ~ _'¨ 0B k B ��© 
 ~ _'¨ 0B �
where ª © is the pseudoinverseof the L«O�n matrix ª
of rank n : ª © �¬� ª _ ª � ~ H ª _ , and 
 ~ H ¨ 0B is the inverse



of the uppertriangularCholesky factorof 
 B , i.e., 
 B �
 _'¨ 0B 
 H ¨ 0B . It follows that
� k _ B 
 ~ HB k B � ~ H � � _B 
 B �¤B andk _ B 
=~ H �¦� � _B 
1�¤B � ~ H � _B � (8)

since� _B k B k _ B �¤B � [�¢ i .
Regressionequation The derivative term in eq. (5) isk B k _ B . Usingthetraceproperty

{�| � ��� �R� {�| � �=� � , eq.(5)
becomesaftermanipulation{�|®­ � � _B 
¯�¤B � ~ 0 � � _B � 
 /&� � �¤B �5° ���±� s � p ��TvTj� o Y T (9)

Fisher information matrix A similar derivation leads
to theFIM genericelement� B�B � o � {�|®­ � � _B 
1��B � ~ 0�° s � > � p ��TvTj� o Y (10)� B � � o � {�| ­ � � _B 
1� B � ~ 0 � _B k � k _ � � B ° T
Replacing
 and �¤B by theirdefinitionin

� B�B from eq.(10)� B�B � o � {+|�² ¡ X 0Yji [ ¢ i # � k _ B 
 ~ HB k B � ~ H £ ~ 0J³ T (11)

Let thesingularvaluedecompositionof � ~ HB � 
 ~ _'¨ 0B k B �A1´ ~ H�µ _ . The diagonalmatrix ´ is of dimensionn B , set´ �v¶5�·¶���� X�¸ i � . Eq. (11)becomes� B�B � o � ¢ iF��G"H � X 0Y i # X 0¸ i � � ~ 0 s � p ��TvTv� o Y T
The FIM entry

� B�B , pmq s¹qºo Y , is small if the singular
valuesX ~ H¸ i � aresmallfor all

¶
, p�q ¶ qrn B . Thesesingular

valuesarethelengthsof thesemi-axesof thehyperellipsoid
associatedwith k B afterits projectionon 
 ~ H ¨ 0B .

Cramér-Raobound Thevarianceof any unbiasedesti-
matoris lower boundedby the diagonalentryof the CRB,
which itself is lower boundedby the inverseof the corre-
spondingentryin theFIM ([5] p231)^�� zX 0Y i / X 0Yji � 0 ` � X 0» B�¼ � ~ H � s � s � ¼ � ~ HB�B s � p ��TvTj� o Y T
Thevarianceboundof theerrorof thepower estimatesde-
pendsontheprojectionof theassociatederrorsubspaceson
theothersubspacesin thecovariancematrix.

Specialcase1: at leastonesubspaceis rank oneAs-
sumethat one of the error subspaces,say subspaces , is
rank one,andrepresentk B and � B by N B and  B . Then,
from eq.(9),wegettheML estimateof X 0YjizX 0Yji �  _ B � �½/ 
 B �  B �  _ B �§� 
 ~ _'¨ 0B N B � © 
 ~ _'¨ 0B T

(12)

This reducesby onedimensionthesearchalgorithmfor the
otherunknowns.TheFIM is� B�B � o � �  _ B 
  B � ~ 0 � � B � � � B�B  _ B k � k _ �  B T (13)

Theremaining
� �v� ’saregivenby eq.(10).Let 
 B � A�¾ B A _

betheeigenvaluedecomposition.Denoteby X 0B+� thediago-

nal entriesof ¾ B , andby ¿ � thevector A �8Àv�·¶�� then

X 0» B ¼ � ~ HB�B � �oÂÁÃÄ X 0Y i #tÅÆ ]F��G"H X ~ 0B+� � N _B ¿ � � 0�ÇÈ ~ H+ÉËÊÌ 0 � (14)

from which a geometricinterpretationfollows. The largest
eigenvaluesX 0BÍ� areassociatedwith theeigenvectors¿±� cor-
respondingto theerrorsubspacesor signalsignaturesin 
 B .
If N5B is orthogonalto thefirst groupof eigenvectorsof 
 B ,
thesumtermin eq.(14) will be largeandthe lower bound
will be small. The varianceboundof the error of the rank
onesubspaceN B powerestimateis smallwhen N B is orthog-
onalto thesubspacedefinedby thesignalandtheothererror
sources.
After expanding
 in eq.(13),we obtainfrom

� ~ HB�B
X 0» B ¼ �o ÁÄ�Î  _ B 
 _'¨ 0d Î 0 # X 0Yji # ehgF� G"H(Ï �ÑÐG�B X 0Y � Î  _ B k � Î 0 ÉÌ 0 T

For a genericmatrix M let Òª � 
 ~ _'¨ 0B ª . Theterm  _ B k �
is thenequivalentto ÒN B © Òk � . The norm of this vector is a
measureof the colinearityof N B and k � weightedby 
 B .
This lastexpressionshows a partialseparationof the influ-
enceof the signal in 
 d from that of the subspacesof the
errorsourcessubspaces.

Specialcase2: at least two subspacesare rank one
Assumethattwo subspaces,saysubspacess and Ó , p�q¹s ^Óbq¦o Y , arerankoneandrepresentk B and k�Ô by N B andN Ô . Note 
 � 
 ) # X 0Yji N B N _B # X 0YvÕ N Ô N _Ô anduseWoodbury’s
identity several timeson eq. (13) to get the FIM principal
sub-matrixcorrespondingto the power estimationof the s
and Ó error subspaces.The determinantof this sub-matrix
may be expressedwith Ö�B � N _B 
 ~ H) N5B , Ö Ô � N _Ô 
 ~ H) N Ô ,
and Ö\B Ô � N _B 
 ~ H) N Ô �¦� Ö\B<Ö Ô � H ¨ 0�×�Ø !;Ù whereÙ is theangle

betweenthevectors
 ~ _'¨ 0) N B and 
 ~ _'¨ 0) N Ô as:ÚJÛ { � � B;Ï Ô �R� o 0Ü�� ~�Ý � � ��� # � Ö 0 B Ô � �� ��Þ p # X 0Y i Ö�B # X 0Y Õ Ö Ô # X 0Y i X 0Y Õ �1ß �à.á Ú � � Ö B Ö Ô / Ö 0 B Ô � Ö B Ö Ô ! > % 0 Ù T
If theangle Ù is zero,theFIM is singularandthe CRB on
thepowerestimationfor error s and Ó areinfinity. TheCRB
on thepowerestimationfor thetwo rankonesubspacesare
sensitive to theanglebetweenthemweightedby theinverse
correlationmatrixof theothervariables.



3.3. Noisepowers in classicOAT

The covariancematrix in the OAT setupis in eq. (3). The
estimateof thenoisepower X 0Z cannotfollow theprocedure
describedpreviouslybecause
 Z � MbUWV�M _ # X 0Y N,N _ is sin-

gular. We replacez X 0Y by its expression,seeeq.(12), in 
 Z .
The derivative term in eq. (5) for X 0Z is [�] . Diagonalizing
 Z � A�â¤A _ , we get{�|ã² ¡ zX 0Z [�] # â £ ~ 0 ¡ zX 0Z [�] # A _ � 
 Z /�� � A £ ³ ���JT
This reducestheproblemto anonlinearequationof oneun-
known. A root finding algorithmgivesan estimateof zX 0Z
thatcanbeusedto find z X 0Y givenby eq.(12).

4. OAT SIMULA TION

We simulatethe acoustictransmissionfrom a single cou-
ple/receiver with partially known positions,separatedby
74km, to studythe tomographicreconstructionof a range
independentoceansoundvelocity profile. The input data
arethe North-EastAtlantic oceanparameters,temperature
andsalinity convertedto soundspeed,computedby a high
resolutiondynamicalmodel, DYNAMO [8] developedat
LEGI1, as integratedin [9]. The inversionestimatesthe
soundspeedparametersI B , s � p ��TvTj� K , for every daydur-
ing theSummerof 1989. Thequality of thereconstruction
of theseasonaloceanvariability is judgedby thesumof the
meansquareerrors(MSE) of the I B �
	�� estimates.During
thesimulation,we vary thestandarddeviation X Y of theer-
ror on thesensorspositionfrom 10 cm (essentiallyprecise
positionningof the sensors)to 1 km (relatively largeposi-
tionningerror).

Figure2 comparesthesumof theMSEfor theestimates
of all the äI B �
	�� versusX Y for four methods.The* plot shows
theresultswith anobliqueprojectionestimation[10]. The
remainingplotscorrespondto threeWienerinversions.The
o plot displaystheresultsusingperfectweightingfunctions,
i.e., usingexact valuesof X Y and X Z . It is a lower bound
for the reconstructionMSE. The x plot shows the results
using zX Z astheaverageof thelowestsingularvaluesof the
covariance
 andconstantX Y of 30 m. Theo curve is close
to the x curve at about30 m, as expected,but blows up
awayfrom this. Finally, the+ plot showstheresultwhenthe
Wienerfilter usestheestimatesof thenoisepowersprovided
by the methoddescribedin subsection3.3. The similarity
of theo and+ plotsconfirmsthegoodqualityof theWiener
inversionusingtheML estimates.
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Fig. 2. MSE of OAT reconstructionby four inversions
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