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ABSTRACT

Channel estimation, particularly delay estimation in asyn-
chronous CDMA channdl, is essential for most receivers.

The correlated time domain data sequence will become asymp-

totically uncorrelated in frequency domain. By taking Dis-
crete Fourier Transform (DFT) of the received signals, we
can take advantage of this asymptotical property to simplify
the estimation algorithm. The proposed scheme can jointly
estimate the path delay and the complex channel response
with lower computational complexity. Furthermore, having
such estimates, it is possible to use adaptive subspace MOE
detector, previously implemented in synchronous channels,
for asynchronous multiuser CDMA. Using simulation, it
was shown that this scheme can provide comparable per-
formance to that obtained with Wiener filter.

1. INTRODUCTION

Multiuser detection technol ogieshave been studied and used
heavily to overcome the near-far problem in CDMA sys-
tems. All of these detection schemes require the knowledge
of user's parameters, such as propagation delay, spreading
code, complex channel impulse response, etc. In particu-
lar, estimating propagation delay and channel impulse re-
sponse has become one of the important area in multiuser
detection technologies. In up-link DS-CDMA channel for
example, signal arrival time is randomly distributed due to
the varying distance between user and base station even if
the transmitting time is synchronized. In [1,2], subspace
based MUSIC algorithm has been used to estimate the path
delay, assuming the number of users and the noise covari-
ance matrix are known. In[3], both delay and channel phase
shift are estimated but require special codedesign, whichin-
creasesimplementation complexity. Inthiswork, an estima-
tion scheme based on signal’s frequency-domain property
is proposed. It uses maximum likelihood (ML) for chan-
nel parameters estimation. By exploiting the asymptotically
uncorrelation property of the received signal in frequency-
domain shown in [4], the proposed estimator can jointly es-
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timate the propagation delay of desired user and its com-
plex channel response (a combination of channel amplitude
and phase shift generally caused by Doppler shift) with rel-
atively reduced complexity.

One important issue in multiuser detection is to reduce
receiver’'s complexity while keeping the performance near
optimal. This initiates the interest to adaptive minimum
output energy (MOE) scheme as in [6], where only desired
user’sinformation is required. In slow variant fading chan-
nel, where signal subspace remains almost unchanged over
alarge time period, rank reduction can result in decreasing
computational complexity of the detector. Aswas shownin
[7], the subspace based MOE outperforms in synchronous
case blind LM Swith faster convergencerate and higher out-
put signal-to-interference-and-noise ratio (SINR). By ap-
plying to asynchronousfrequency non-sel ectivefading chan-
nel, it is shown in this work using simulation that the sub-
space based M OE detector can provide performanceas com-
parable to that with Wiener filter with reduced complexity.

2. SYSTEM MODEL

Thereceived continuousasynchronoussignal in time-variant
Rayleigh fading channel can be expressed as follows,

r(t) =Y > Varye (£)e? Oy (i) s (t — iT — %) + n(t)
k=1 1
@

where K isthe number of the users, a, is symbol’s energy
of user k. by, (i) is kth user’s ith data symbol which can be
BPSK or M-ary quadrature modulated signals. s (t) issig-
nature waveform, which has the form of 3=, ¢4 (j)g(t —
JT.), where{c(j)} iskth user’'s spreading codes sequence,
T, ischiptimeand g(t) isthe chipimpulse shape. v (t) and
¢ (t) are time-variant channel fading and channel phase
shift respectively. The later assumes uniformly distributed
within [0, 27). 7y is the delay of kth user. Without loss
of generality, we assume all delays are limited within one
symbol interval, or 0 < 71, < T'. n(t) is zero mean AWGN
with variance o2.

For simplicity, we assume user 1isthedesired user. The
chip rate matched-filter samples the received signal over



one entire symbol interval [0, 7). Assuming the channel is
quasi-static then the channel fading v, (¢) and phase shift
¢r(t) can be approximated as a constant within channel
training period provided this period is short enough. Rel-
ative to some time reference, let user 1'sdelay 7y = (m; +
01)T., wherem; = L%J denotes the largest integer which
is no more than % and 0 < §; < 1. In estimation part,
we use lower case and upper case charactersto denote time-
domain, and frequency domain variables respectively. De-
fine right cycshift operation of vector z = [z(0), z(1), ...,
(N — 1T asCmz = [z¢(N — m),z(N —m + 1),...,
z(N — 1),2(0),...,2(N — m — 1)]T. The desired user
transmits identical data symbol during the channel training
period. For simplicity, all one's data are assumed. Then the
output vector y(n) is given as follow,

y = Vame?[hCr s+ (1-8)C" s +u
= m[0C s +(1-00)CMs] +u 2

where, hy = /a;y1€/?* is complex channel response cor-
responding to desired user, and signaturevector s; = [s1(0),
e 851(N = DT = [51(0), 51(T,), -0y s1 (N = DT)]T.
is comprised of contribution from noise and multiple access
interference (MAI) from other active users.

Let w;, = [1,e/%%, .. edwiN-UT , = 2T gndj =
0,..., N — 1. We definethe DFT transform matrix asW =
[wg, Wy, ..., wp_q]- Withimposing circular time shift prop-
erties, it is easy to show that N points DFT of equation (2)
can be expressed as

Y = m[oidiag(w,,, +,) + (1 = 01)diag(w,, )]|Ws, +U
:hlﬁl(Tl)-FQ (3)

where, diag(z) isadiagonal matrix with diagona elements
equal to vector z. Following [4,5], the additive noise U
in the frequency domain has frequency components which
are asymptotically uncorrelated with distribution approxi-
mately Gaussian ~ N (0, C) and variance o7 (1), 1=0,...,N-
1, equal to o, (1) = U(U*(1) =[] u"w, 1>

3. SSMPLIFIED MAXIMUM LIKELIHOOD
CHANNEL ESTIMATE

To apply ML agorithm for estimating the unknown channel
parameters, we note that the pdf of Y is given by

PY) = S - - mS) O ¥ - S} @)

Then the estimate of the unknown channel response h; is
found by equating the derivative of the log-likelihood func-
tion to zero with respect to A, which resulting
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To estimate the path delay =, of desired user, we propose a
cost function F',

F = ||Y =S, (n)|?
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Minimizing F, we get
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However the noise covariance matrix C isunknown. A sim-
ple approach to estimate the mean of Y, or riy-, and vari-
ance matrix C' by using M-symbol length sample vectors
as

1 M
iy = =) Y, & hSi(n) ®
=1
L
C =7 > (Y, —iiy) (X, — i) (9)
p=1

By replacing C' in equation 7 with equation 9, we can find
71 by solving the minimizing problem.

In general, the covariance matrix of noise u is not a di-
agonal matrix, which means that due to MAI presence the
noise samplesare correlated. However, as mentioned above,
the frequency-domain noise samples U is asymptotically
uncorrelated Gaussian distributed, which implies that C' is
(asymptotically) diagona with C = diag(c3(0),0% (1),
., 05 (N — 1)). With this property, the computation com-
plexity of estimating of C' with equation 9 is reduced by or-
der of N. Hencethe estimation in equation 7 can berewritten
as

S, (r1)S{ (r)C
A= OIEROIE

where, S1(1),1 =0, ..., N—1, areelementsof vector S, (71 ).
Using a single sample of Y in equation 7 and equation 10
will result in poor estimation performance. Instead, we use
the mean of Y over M samples to replace Y. To solve
(20) with higher accuracy and lower computation complex-
ity, two stages processed is suggested. The first stage isto
roughly all ocate the global minimum areawith larger search
step size, while at the second, afine search with small search
step size is conducted within the global minimium area to
find more accurate path delay. R
After finding path 71, the channel impulse response h;
can be obtained from (5) by replacing S, (71 ) with S, (71).
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4. SUBSPACE BASED BLIND DETECTION

Using eigen-decomposition(EV D) to received signa’s co-
variance matrix,
R = Elyy"] = E;AEF + E,AEY = R, + 021, (12)

where the signa subspace is spaned by column vector of
E, € RN*? and the noise subspace spaned by column of
E,, € RN>*(N-p),

In [7], a subspace based MOE algorithm was derived,
where it has shown the MOE detector liesin the signal sub-
space only. In other words, the detector’s coefficient v can
be represented as

v=Egw (13)
S

with v, has adimension of K x 1. It was aso shown this
algorithm provides better performance than blind LMS in
synchronous case.

In asynchronous situation, however, the direct extension
of the subspace MOE algorithm will result in poor perfor-
mance. Consider the asynchronous model in (1), the signal
subspace E; is no long with a rank of K, the number of
users, asit isin synchronous case. We assume therank of p.
pisvariant with the different delay distributions. Therefore,
rank tracking becomes an important issue in asynchronous
signal detection.

Furthermore, since the rank p can be larger than num-
ber of users K, in some extreme case it may be close to the
whole signal space N even with relatively small number of
users. In such situation, subspace based algorithm does not
benefit sufficiently from computational simplexity and per-
formance improvement due to removing of noise subspace.

Another problem is that using received signal vector y
with one symbol length as in synchronous case is not ade-
quate for removing multiple access interference (MAI) be-
cause of the destruction of orthogonality properties among
different users. To overcome MAI, we proposethereceiver's
coefficient v with alength of 2L + 1 symbols, and the de-
siredsignal §, ass; = 1; ®s,, where® is Kronecker prod-
uct, and vector 1, hasdimensionof (2L + 1) x 1 with Lth
element being 1 and others being zeros. Consider the eign-
valuesin signal subspace A (i) = A(Rs) +02,i = 1,...,p,
which is always larger than the eignval ues corresponding to
noise subspace which is almost constant. So, the rank p and
signal subspace E can be found with QL) > ¢, where
constant ¢ > 1.

Based on [7], the interference subspaceis found by

g(n) = yn)-<yn),s5 >3 (14)
1 M
Ao L C N~ H
R = Mﬂ; g(n)g" (n)
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where covariance matrix R isrank of N — 1 matrix. The
interference subspace is spaned by p — 1 column vectors of
E, corresponding to p — 1 largest eigenvalues. Hence, the
coefficientv = E,u, = §, + F.a, whereo € RP~! sothat
< u,5, >= 1isaways satisfied.

With this signal subspace, the original MOE constrained
optimal problem is modified to the following unconstrained
problem,

MOE = mo'}n E[(QHQ)2] = (s + EsQ)HR(& + Esg) (16)

Taking derivative of equation 16 with respect to q, it is easy
to find the optimal solution of o* is

o = —(EFRE,)EFRs, = —A;'EFRs,  (17)

Substituting for o, the coefficient of subspace MOE detector
vis

v=(I - EA7'EfR)s, (18)

Once received signal’s statistics is available, the coefficient
v is obtained according to equation 18 for signal detection.

Using gradient descent algorithm, it can be shown that
the subspace based M OE detector can also be implemented
recursively

v(n +1) = (n) — pz(n) B, B y(n) (19

where the MOE detector output z(n) = v (n)y(n).

5. NUMERICAL RESULTS AND CONCLUSION

Defining root mean square (RMS) estimation error o . as

oc = VE[{#(i) — 1(0)}2[71(6) — 71(1) < €maz] (20)

where, €4, 1S the maximum allowed delay estimation er-
ror. Here we set €., = 0.2T,, otherwise the synchro-
nization is assumed failed. A total of 500 MonteCarlo runs
were performed for each simulation. Length N = 15 gold
codeswere used astheusers' signature codes. All users suf-
fer from time-variant channel which result in uniform dis-
tributed channel phase shift but assumed to be quasi-static
within channel training period. The desired user’s signal-to-
noise ratio has been set to 8dB. With a normalized spread-
ing codes, the actual SNR per bit is about 11.8dB lower for
code length of 15. All other multiple access interference
users transmit at the same energy.

50 bits and 200 bits (length of M) acquisition time are
used for interference-to-desired signal ratio (ISR) of 0dB
and 10dB respectively. Origina and simplified scheme re-
fer to the estimation algorithm based on (7) and (10) respec-
tively. Figure 1 shows that the delay RMS error stayed al-
most unchanged with the increasing of the number of users.




However stronger | SR requireslonger acquisitiontime. The
comparison of performancewith Cramer-Rao bound (where
only delay is assumed unknown) is given in figure 2, where
ISR = 0dB and acquisition time of 50bits. If channel
response h, and noise statistics are unknown, Cramer-Rao
bound will become higher.

Figure 3 shows detection performance of the subspace
MOE detector in asynchronous situation with 5 users. Re-
sults were averaged over different delay patterns. As shown
in figure, the subspace based detector presents the compa-
rable performance as that of Wiener filter with only knowl-
edge of desired user’ssignature, and less computational com-
plexity. With L = 1, the detector can provide amost flat
near-far resistance property.
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2. Comparison with Cramer-Rao Bound for |SR=0dB.
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