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ABSTRACT

Shift variance and poor directional selectivity, two major disad-
vantages of the discrete wavelet transform, have previously been
circumvented either by using highly redundant, non-separable
wavelet transforms or by using restrictive designs to obtain a pair
of wavelet trees with a transform-domain redundancy of 4.0 in 2D.
In this paper, we demonstrate that excellent shift-invariance prop-
erties and directional selectivity may be obtained with a transform-
domain redundancy of only 2.67 in 2D. We achieve this by pro-
jecting the wavelet coefficients from Selesnick’s almost shift-
invariant, double-density wavelet transform so as to separate ap-
proximately the positive and negative frequencies, thereby increas-
ing directionality. Subsequent decimation and a novel inverse pro-
jection maintain the low redundancy while ensuring perfect recon-
struction. Although our transform generates complex-valued co-
efficients allowing processing capabilities that are impossible with
real-valued coefficients, it may be implemented with a fast algo-
rithm that uses only real arithmetic. To demonstrate the efficacy
of our new transform, we show that it achieves state-of-the-art per-
formance in a seismic image-processing application.

1. INTRODUCTION
Although the Discrete Wavelet Transform (DWT) is a powerful
signal-processing tool, it has two serious disadvantages: shift vari-
ance and poor directional selectivity. The DWT is shift variant
because transform coefficients behave unpredictably under shifts
of the input signal, a problem that has been treated by introducing
large amounts of redundancy into the transform to make it shift
invariant. The 2D DWT has poor directional selectivity because it
can only distinguish between three different spatial-feature orien-
tations. Non-separable transforms [1, 2] can provide shift invari-
ance and/or directional selectivity but these involve complicated
design problems, are computationally expensive and may not be
multiscale. Kingsbury’s Dual-Tree Wavelet Transform (DTWT)
[3] is a separable, multiscale transform with impressive shift in-
variance and directional selectivity. Its complex-valued transform
coefficients allow for processing capabilities that are impossible
with real-valued coefficients; however, these complex-valued co-
efficients create a transform-domain redundancy of 4.0 in 2D.

Recently Selesnick et al. [4] proposed the Double-Density
Wavelet Transform (DDWT), an almost shift-invariant, multiscale
transform with a low transform-domain redundancy of 2.67 in
2D. The DDWT produces real-valued coefficients and does not
enjoy the superior directionality of the DTWT. In this paper,
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Fig. 1. The DDWT analysis and synthesis filter bank.

we perform non-redundant post projection [5] on DDWT coeffi-
cients, thereby obtaining a Complex, directional Double-Density
Wavelet Transform (CDDWT). The CDDWT not only retains the
low-redundancy (2.67) and shift-insensitivity of the DDWT, but
also enjoys the superior directional selectivity and complex-valued
transform coefficients of the DTWT. In addition, the CDDWT may
be implemented in a perfect reconstruction framework using fast
real-arithmetic algorithms.

2. THE DOUBLE-DENSITY WAVELET TRANSFORM
Selesnick et al. [4] introduce the DDWT as the tight-frame equiva-
lent of Daubechies orthonormal wavelet transform; the wavelet fil-
ters are of minimal length and satisfy certain important polynomial
properties in an oversampled framework. Because the DDWT, at
each scale, has twice as many wavelets as the DWT, it achieves
lower shift sensitivity than the DWT. The DDWT is implemented
on discrete-time signals using the oversampled analysis and syn-
thesis filter bank shown in Figure 1. The frequency responses for
the analysis-bank filters are as shown in Figure 2, for a set of fil-
ters � ��� � � � � 
 with lengths 7, 7, 5 respectively. The � � filter is a
lowpass filter, while the � � and � 
 filters are highpass filters with
similar frequency magnitude responses. An iterated oversampled
filter bank is created by the usual iteration on the lowpass branches
of the analysis and synthesis banks. Selesnick et al. show that
the above DDWT implementation corresponds to a multiresolution
analysis with a single scaling function � and two wavelets � � � � 

as shown in Figure 2. Observe that the wavelets approximately
satisfy the “half-delay” property � � �"!$#�% � 
 �"!'& �
 # .

The DDWT is extended to 2D by iterating the 1D oversam-
pled filter bank on the rows and then on the columns of an im-
age, as is usually done for separable 2D DWTs. At a given level
in the iterated filter bank, this separable extension produces nine
2D subbands. To indicate the filters used along the row and col-
umn dimensions to create the nine subbands, we label the subbands
��()*�,+ - �/.0�21436587�� 9��$:<;

. The subscript = indicates filtering along
the row dimension, while subscript > indicates filtering along the
column dimension. The superscripts

7�� 9*�?:
indicate the particular

filter � ��� � � � � 
 used to filter along a specified dimension to create
the subband. Next, we introduce an interleaving process that oper-
ates on four disjoint subsets of the nine DDWT subbands produc-



Fig. 2. Left column: basis functions, Right column: frequency
responses.

ing four new DDWT subbands
������� � ������� � ���	��� � �������

with frequency domain supports that are comparable to those of
the

��� � ��� � �
� � �
�
subbands of the 2D DWT. Subsequent pro-

cessing of the interleaved DDWT subbands is then quite similar to
the processing of DWT subbands.

Since � � is a lowpass filter while both � � and � 
 are high-
pass filters, the � 
)*� 
- � � 
) � �- � � �) � 
- � � �) � �- subbands each have a
frequency-domain support comparable to that of the

���
sub-

band in a DWT. Although these subbands all have the same fre-
quency domain support, the half-delay property implies that the
spatial-domain supports of the wavelets corresponding to the co-
efficients in the columns of the � 
) � �- subband lie a half-integer to
the right of those in the columns of the � 
) � 
- subband. There-
fore we may interleave the wavelet-coefficient columns in the
� 
)*� �- subband inbetween and to the right of the wavelet-coefficient
columns in the � 
)*� 
- subband. We may also interleave the wavelet-
coefficient rows in the � �) � 
- subband inbetween and below the
wavelet-coefficient rows in the � 
)*� 
- subband. We complete the
interleaving process by interleaving the wavelet-coefficient rows
in the � �) � �- subband inbetween and below the wavelet-coefficient
rows in the � 
)�� �- subband. We represent this interleaving process
concisely in Matlab-compatible notation by
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is a new subband with four times as many coefficients but
the same frequency-domain support as the

���
subband at the

same level in a DWT. A similar interleaving scheme creates the��� �
�
(
�
� ���

) subband with the same frequency-domain sup-
port as the corresponding

���
(
���

) subband of the DWT, but with
twice as many coefficients. We describe this interleaving scheme
by
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Finally, note that there is only one subband � �) � �- with the same
frequency domain support as the

���
subband in a DWT. To main-

tain consistency, we label this � �)*� �- subband as
��� ���

.

3. ENHANCING DDWT DIRECTIONAL SELECTIVITY
In this section, we demonstrate how separable 2D complex-
coefficient filters can project the DDWT coefficients to obtain the
CDDWT Fourier-plane partitioning with enhanced directional se-
lectivity. As explained in Section 2, the Fourier-plane partitioning
associated with the

������� � ���'��� � �(�)��� � �(�'���
subbands of the

DDWT is comparable to that of the separable real-valued DWT.
Consequently, the Fourier-plane partitioning of the DDWT may
be represented as in Figure 3(a). The

�)�����
subband is associ-

ated with diagonally-oriented spatial features and concentrates its
energy in the four blocks labeled

��� ���
. The

�)� ���
blocks in

the upper-left and lower-right corners indicate features with gra-
dients at

&+*',
degrees, while those in the upper-right and lower-

left corners indicate features with gradients at - *', degrees. Since
all four blocks are associated with one interleaved subband in
the DDWT, we cannot differentiate between these two orienta-
tions. Similarly, features with gradients at - 9 ,�� -�. ,�# degrees
and

& 9 ,�� & . ,�# degrees are indistinguishable from their wavelet
coefficients since they are both associated with energy in the���'��� � ������� #

subband. Therefore, decoupling the positively-
and negatively-oriented blocks associated with each subband of
the DDWT improves directional selectivity. The CDDWT analy-
sis filter bank in Figure 4 shows how this may be done using our
non-redundant post-projection technique [5] to increase the direc-
tionality of the DDWT while preserving its low transform-domain
redundancy of 2.67. The complex-coefficient filters in the block
labeled “projection” have - � & #

superscripts to indicate that they
retain positive (negative) frequencies and suppress negative (posi-
tive) frequencies. These - � & #

filters are 1D projection filters that
project real signals onto subspaces consisting of predominantly
positive (negative) frequencies in / &+0 � 021 . As explained below,
these projection filters enhance the directional selectivity of the
DDWT transform preceding them by decoupling the DDWT sub-
band blocks in Figure 3(a) to obtain the CDDWT subbands in Fig-
ure 3(b).

Consider the subband corresponding to the two blocks labeled�(�)���
in Figure 3(a). If we filter this subband in the > direction

(along columns) with a filter �43) as shown in Figure 4, we ob-
tain a new subband containing the two blocks labeled

�(� ���� and�(� 3��� in Figure 3(b). We then obtain a decoupled subband
�(� 3���

by filtering this new subband in the = direction (along rows) with
�43- . The other decoupled subband

�(� ���� is similarly obtained by
row filtering with � �- . The decoupled subband

��� ���� reveals fea-
tures with gradients at -75 degrees, while the other decoupled sub-
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Fig. 3. (a) DDWT Fourier-plane partitioning, (b) CDDWT
Fourier-plane partitioning.
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Fig. 4. CDDWT analysis filter-bank. The > ( = ) subscripts indicate
filtering along the columns (rows) of an image. The - (

&
) super-

scripts indicate projection filters that attenuate negative ( positive)
frequencies.

band
�(� � 3��� reveals features with gradients at +75 degrees. Like-

wise, the subbands labeled
�)� 3��� � �)� ��� & � �)� 3��� � �)� ���� indi-

cate features with gradients at +15, -15, +45, -45 degrees respec-
tively, giving a total of 6 directional subbands at each scale. Al-
though not shown in Figure 4, we can also use the projection filters
to decouple the lowpass subband

�(�����
into

��� ���� and
�(� 3��� sub-

bands that discriminate between low-scale features oriented at -45
and +45 degrees.

Obtaining perfect reconstruction for the CDDWT requires the
design of a synthesis filter bank that inverts the analysis filter bank
in Figure 4. The DDWT is easily inverted by a synthesis filter
bank that performs the inverse DDWT. However, inversion of the
projection block is a non-trivial problem due to the presence of the
decimators ensuring that no additional redundancy is introduced
by the projection block. In [5], we solved this problem using fast
real-arithmetic structures for the implementation of the projection
block and its inverse.

4. RESULTS AND CONCLUSIONS
To compare the directional selectivity of various different trans-
forms, we used the disc image displayed in Figure 5(a). Figure
5(c) shows the nine subbands ��() �,+ - � .0��1 3 587�� 9�� :�;

from the
single-level DDWT of the disc image. Observe that directional in-
formation is not readily available in this transform. Figure 5 (b)
shows the single-level DTWT of the disc image. Due to its large
size, the lowpass subband has been displayed in halves. Figure
5 (d) presents the single-level CDDWT obtained using the filter-
bank structure of Figure 4. Note that the interleaving process cre-
ates rectangular

�(� 3��� � ��� ���� � ��� 3��� � �)� ���� subbands in the CD-
DWT; although the disc appears elliptical in these subbands, the
CDDWT directionality is unaffected. While the DTWT and the
CDDWT each provide six highpass directional subbands at each
scale, the DTWT transform-domain redundancy is 4.0, whereas
that of the CDDWT is only 2.67.

Next, we used the following experiment to compare the shift
sensitivity of the CDDWT with that of other multiscale tranforms.
We retained the lowest scale

�)� � ������� � �)� 3 � �)� 3��� subbands
of the disc image (Figure 5(a)) using 3-level DWT, DDWT, DTWT
and CDDWT transforms respectively, and zeroed out all other
subbands. Figures 6(a) and 6(c) show the reconstruction of the

(a) Disc (b) DTWT

(c) DDWT (d) CDDWT

Fig. 5. (a) Disc Image (d) CDDWT Clockwise from upper-
rightmost block: -15, -45, -75, +75, +45, +15 degree high-
pass subband, upper half of lowpass subband, lower half of
lowpass subband. (c) DDWT: From top to bottom, left to
right: � �)�� �- � � �)*� �- � � 
)*� �- � � �)�� �- � � �)�� �- � � �)�� 
- � � �)*� 
- � � 
)*� �- � � 
)�� 
-
(d) CDDWT: Clockwise from upper-rightmost block: -15, -45, -75,
+75, +45, +15 degree highpass subbands, -45, +45 degree low-
pass subbands.

disc image from the lowest scale
�)� 3��� and

���
subbands of

the 3-level CDDWT and DWT respectively. The input disc im-
age was then shifted one pixel rightwards and downwards and
the same reconstruction was performed using each of the above
transforms. Figures 6(b) and 6(d) show the reconstruction of the
shifted-disc image from the level-3 CDDWT

��� 3��� subband and
the level-3 DWT

���
subband respectively. Observe that the pre-

shift and post-shift DWT reconstructions appear significantly dif-
ferent, whereas there are very minor differences in the CDDWT
reconstructions. This indicates that the

��� 3��� CDDWT subband
is much less shift sensitive than the

���
DWT subband. For each

transform, we then spatially translated the post-shifted reconstruc-
tion so that its center coincided with that of the pre-shifted recon-
struction. Next we computed the root mean square error between
the translated post-shifted reconstruction and the pre-shifted re-
construction. This was repeated for shifts ranging from one to
eight pixels. The bar graph in Figure 7 summarizes the results. The
DWT

���
subband is the most shift-sensitive, while the DDWT�������

and DTWT
��� 3 subbands are the least shift-sensitive.

The CDDWT
��� 3��� subband is much less shift-sensitive than

the DWT
���

subband and also enjoys both the low-redundancy
(2.67) of the DDWT as well as the enhanced directionality of the
DTWT.

Finally we compared the performance of the CDDWT to that
of other directional transforms in a seismic image-processing ap-
plication. Seismic imagery of the earth’s subsurface plays a crit-
ical role in all aspects of oil exploration. Local signal attributes
aid the interpretation of seismic data, elucidating its salient char-
acteristics. A particularly useful attribute is the local angle (dip)
of the reflecting surface. Angle representations enable 3D inter-
pretation of structures by indicating steep uphill-dipping reflec-
tions with high intensity and steep downward-dipping reflections
with low intensity. To compare angle representations generated
for a seismic cross-section with substantial angle variations (Fig-
ure 8(a)), we used a two-stage method [5] that exploits a direc-



tional multiscale transform. Although, the Complex-Steerable-
Pyramid (CSP) [1] angle representation in Figure 8(b) provides an
accurate and smooth representation of the local angles in the seis-
mic section, it has a transform-domain redundancy of 14.0. On
the other hand, besides appearing equally informative as the CSP
result (Figure 8(b)), the CDDWT angle-representation in Figure
8(d) has a higher spatial resolution and a transform-domain re-
dundancy of only 2.67. For comparison, in Figure 8(c) we present
the somewhat noisier angle-representation generated from the non-
redundant post-projection transform [5] with no transform-domain
redundancy.

In conclusion, we emphasize that the CDDWT retains the
shift-insensitivity and low transform-domain redundancy (2.67) of
the DDWT while offering directionality comparable to that of the
dual-tree wavelet transform which has higher transform-domain
redundancy (4.0). In addition, the complex-valued CDDWT trans-
form coefficients allow for interesting processing capabilities that
are impossible with the real-valued coefficients of the DWT or
DDWT. All these properties together with its fast, real-arithmetic
implementation ensure that the CDDWT will be a powerful tool
for seismic- and image-processing applications.
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(a) Pre-shift CDDWT (b) Post-shift CDDWT

(c) Pre-shift DWT (d) Post-shift DWT
Fig. 6. Single-subband disc reconstructions comparing shift-
sensitivity

Fig. 7. Bar graph comparing RMSE vs. Shift for various trans-
forms.

(a) (b)

(c) (d)

Fig. 8. (a) Seismic cross-section, (b) CSP angle-analysis results,
(c) Angle-analysis results using the non-redundant post-projection
transform, (d) CDDWT angle-analysis results. In (b),(c) and (d)
intensity represents angle, black (-90 degrees) through white (+90
degrees).


