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ABSTRACT

This paperarguesfor usingambiguityplanefeatureswithin dy-
namicstatisticalmodelsfor classificationproblems.The relative
contribution of the two modelcomponentsareinvestigatedin the
context of acousticallymonitoringcutterwearduring milling of
titanium,anapplicationwhereit is known thatstandardstaticclas-
sificationtechniqueswork poorly. Experimentsshow thatexplicit
modelingof long-termcontext via a hiddenMarkov modelstate
improvesperformance,but mainlybyusingthistoaugmentsparsely
labeledtrainingdata.An additionalperformancegainis achieved
by usingtheshorter-termcontext of ambiguityplanefeatures.

1. INTRODUCTION

Whenusedin classificationor predictionof acousticsignals,time-
frequency analysisis usuallysuitablefor timescalesupto thehun-
dredsof milliseconds.That is, assumingtypical airborneacoustic
frequenciesandshort-timeanalysisframerates,a time-frequency
representationwith longerthantendistinctframesin timecanpo-
tentiallyoverwhelma classifierdesignedfor non-parametrictime-
frequency representations.Compressionof time-frequency redun-
dancy anddecimationin time canextendthis time scaleto several
seconds.However, many applications,suchasspeechrecognition
or, aswe will discusshere,machiningmonitoring,requirea sig-
nificantly longertemporalcontext.

Hidden Markov models(HMMs), which have beenapplied
to a wide rangeof problems,aresuitablefor this role of model-
ing over thousandsof consecutive framesin time. HMMs thus
have the potential to model longer temporalcontext. However,
ashasbeenshown quitedramaticallyin speechrecognitionstud-
ies,HMMs do poorly unlesssomeshort-termdynamicalprocess-
ing is usedto enhancenonstationaryevents. For speechrecog-
nition systems,theshort-termdynamicprocessingis typically an
approximatederivativeactingacrossfiveconsecutive frames.This
short-termdynamicfeature,whichis commonlycalleda“delta,” is
centeredatevery timeframeandsimplyaugmentsanunprocessed
frame.This fixedandunoptimizeddoublingof a featuresizeusu-
ally resultsin a substantialimprovementof recognizeraccuracy.

In thispaperweobservehow thisdeltafeatureissimplyafixed
weightingin anauto-ambiguityplane. This weightingis uniform
in lag andseparablefrom transformedtime (doppler).As we will
show, a morespecificchoiceof auto-ambiguityweighting[1, 2],
whencombinedwith a HMM, improvesperformancein our tests
of tool wearmonitoringfor milling of titanium.

2. BACKGROUND

We usetheterm“dynamicalclassifiers”to includeany modelthat
characterizesthe time-varying behavior of a process.The time-
varying naturemay be associatedwith a changingmodeof the
process(e.g. phonemesin speech,amountof wearin tool moni-
toring) and/ortemporaldynamicswithin a particularmode. The
bestknown dynamicalclassifieris the HMM, which represents
a processasbeinggeneratedby an unobserved discreteMarkov
chain.Typically, theobservationsaredescribedbystate-dependent
Gaussianmixturedistributions,but neuralnetworksarealsoused
in somesystems.Due to theMarkov assumptions,thereareeffi-
cientalgorithmsfor staterecognitionandparameterestimationfor
HMMs [3].

HMMs arequitepowerful for representingdurationvariability
of differentmodesandcapturinglong-distancecontextual effects
via the statesequence.However, the standardHMM framework
is oftencriticizedfor its limited ability to capturelocal featuredy-
namics.To addressthis weakness,severalnew modelshave been
proposed,referredto as“trajectorymodels”or “segmentmodels”,
assurveyedin [4]. Theuseof approximatederivative features(or,
deltas),standardin virtually all HMM systems,is a poor man’s
solutionto incorporatinglocal dynamics,but it hasa big impact
on performancegiven the low cost. We arguethat furtherperfor-
mancegainsmight be obtainedby more principled selectionof
dynamicfeaturesusingadvancedtime-frequency methods.Thus,
the themeof this work is combiningdynamicfeatures(to capture
local time-frequency characteristics)with dynamicclassifiers(to
capturetemporalvariability andmoreglobalcontext).

3. TIME-FREQUENCY FEATURES

In quadratictime-frequency research,it is sometimesdesirable
to utilize the auto-ambiguity(AA) planewhen designingtime-
frequency representations(TFRs).TheAA planeis givenby��� ���
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isaFouriertransform.Sincenodopplereffectsareappro-

priatefor ourapplicationsof theambiguityplanehere,wecall the
time-transformvariable

�
“variationalfrequency” [5]. Similarly,

sincerangedelay effects are not appropriatefor our work here,
the frequency transformvariable

	
is simply an instantaneouses-

timateof autocorrelation.
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is thecharacteristicfunctionof
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A fundamentalpropertyof quadratictime-frequency analysis
is thatany quadraticTFR canbegeneratedfrom
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cationof theappropriatekernelfunction.Theresultantgeneralized
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. A selectionof featuresfrom
the auto-ambiguityplanethusrepresentsan implicit andspecific
choiceof asmoothedRihaczekTFR.

The useof delta features,as in speechrecognitionsystems,
representsonlyafixedhigh-passweightingin variationalfrequency�

andhasnodependenceuponlag
	
. Thinkingof thedeltafeature

asa dynamicfeature,it is reasonableto considerotherdynamic
features,andtheAA planeoffersa convenientframework for do-
ing so. However, much of the AA planewill not be useful, so
somesortof featurereductionor selectionis needed,particularly
for trainingHMM parametersgivenlimited data.

4. CASE STUDY: TOOL WEAR MONITORING

Over thepastthreedecades,industryhasrealizedthe importance
of selectively automatingroutine tasksof manufacturingopera-
tions. In machiningparts, for example, the commonindustrial
practiceof replacingcuttersaccordingto a fixed schedulebased
on averagecutterlife is problematicand/orinefficient becauseof
thewide variationin usablecutterlife. For this reason,a substan-
tial amountof researchhasgoneinto thefield of automaticmon-
itoring andcontrol of machiningprocesses[6, 7]. Researchhas
focusedondevelopingsensors,featureextractionmethods,andau-
tomaticclassificationtechniquesfor predictingwhena tool is dull
andneedsto be replaced.Much of the work hasinvolved static
featuresand classifiers,which have beenrelatively effective for
applicationsinvolving machiningsteel,but donot translatewell to
problemsassociatedwith machiningtitanium.

In machiningof titaniumalloys, afteranendmill hascut for
a while, thehot elementaltitaniumlovesto diffusion-bondto the
cuttingedges.This process,of titaniumfrom theworkpieceweld-
ing to thecutter, formsaso-called“built-up edge”(BUE in milling
jargon)thatis carriedby theprimarycuttingedgeasit sliceschips
from theworkpiece.As theBUE increasesin volumeover time,
the forcesexperiencedby thecutting edgealsoincreaseuntil the
bondingforcesareovercomeandalargefractionof theBUEbreaks
away from the cutting edge. Whenthe entireengagedlengthof
all flutesof anendmill areinvolved in cyclesof welding/release
(of BUE), thetime-frequency structureof bothvibrationsandvery
high frequency transientschangeconsiderablyfrom thoseof the
samecutter in the absenceof BUE. Particlesof the cutting edge
substratecan also be torn away as the welded titanium breaks
away, increasingtool wear. Onecycle of build-up andreleaseof
BUE weldedtitanium may be asshortasa secondor aslong as
30 seconds.Interspersedamongthesecyclesof build-up andre-
leasearequiet,BUE-freeperiodscharacterizedby reducedcutting
forces,horsepower andvibrationaswell asreducedrateof cutter
wear. Thesequietperiodsmayoccurevenwhena cutteris rather
worn,neartheendof its usefullife.

The behavior describedabove illustratesonesubstantialrea-
sonthatconventionalmethodsfor tool wearmonitoringfail when
appliedto milling of titanium.Anotherreasonis thatmachinability
of titaniumwork piecescanbequitevariableandheterogeneous,
containingrandomhard spotsthat may damagethe cutter. Any

successfulstrategy for tool wear monitoring of titanium milling
mustconsiderbothhistoryandcontext.

Until recently, only staticclassifiershave beenusedfor tool
wearapplications[8, 9, 10]. Featurevectorsrepresentinganentire
milling passor drawn from someportionof a passwerecollected
andclassificationwasposedasa binary problemof determining
whetherthesefeaturesweregeneratedby acutterwhichwas“dull”
or “not dull”. In reality, cutterwearis a dynamicprocess.Cutters
move from beingnew to progressively greaterlevelsof wear, and
the featurevectorsduringeachcutting eventchangeasthecutter
movesthroughtheworkpiece.HeckandMcClellan[11] captured
theprogressivenatureof drilling bit wearin a5-stateHMM, where
thedifferentstatescorrespondto differentlevels of wear. Fishet
al. [12] extendedthis idea,usingstatesto model both the level
of wearandthedynamicswithin a milling pass.HMMs canalso
be usedto model dynamicsat a finer time scale,i.e. the time-
frequency structureof a transient[13, 14, 15]. Thestrategy in this
work will beto usemoresophisticatedtime-frequency analysisto
modeldynamicsat the finer time scale,and to capturelong dis-
tanceeffectswith theHMM.

The pastdecadehasseena growing interestin applyingad-
vancedtime-frequency analysismethodsto machinemonitoring.
Zheng and Whitehouse[16] observed that the momentsof the
Wigner distribution of sensoroutputsareuseful for detectingin-
cipient chatterandcharacterizingchangesin the workpiece. At-
laset al. [7] summarizeotherresultsshowing thatmoreadvanced
time-frequency representationsarerequiredfor determiningsalient
featuresfor classification.GillespieandAtlas[1] introducetheuse
of theautoambiguity(AA) planecombinedwith featureselection
to the problemof tool-wearmonitoring. This paperwill extend
thatwork to HMM classifiersandwill alsoinvestigatefeaturese-
lectionprocedures.

5. EXPERIMENTS

5.1. Experimental Paradigm

Thedatausedherewasrecordedfrom 1/2” end-millsmilling tita-
nium. At theendof a limited numberof selectedmilling passes,
eachcutterwasremovedandits wearlevel microscopicallymea-
suredby a mastermachinistandrecordedbeforeit wasreplaced
andmilling continued.The labelsassignedbasedon thesemea-
surementsarereferredto as“known” labels.A cutterin theearly
stagesof wear was labeledas “A”, onewhich hadexceededthe
acceptablewearthresholdwaslabeled“C”, andthoseapproaching
thewearthresholdbut not yet readyto bereplacedas“B”.

The cuttersweredivided into two independentsets,one for
training andthe otherheld out for test. The trainingset,consist-
ing of six 1/2” cutters,was usedto train model parametersand
evaluatedifferenttopologies.During this developmentphase,the
training setwasusedin a threeway crossvalidation to evaluate
performance.Oncedevelopmentwascomplete,all six cuttersin
the trainingsetwereusedto train themodelsusedto classifythe
held-outtest setwhich consistedof seven different1/2” cutters.
Using a default label of “not dull” for all datasamplesgivesus
“chance”performance,which is an accuracy of 85% (52/61)on
thecrossvalidationsetand83%(52/63)on theevaluationtestset.

In theexperimentsdescribedbelow, all classificationsystems
implementeduseHMMs with the samestatetopology for each
wearlevel. (Thestaticclassifieris a specialcaseof anHMM with
only onestate.)The bestcaseclassifierwasthenusedin combi-



nationwith a secondstageclassifierfor evaluatingthe utility of
different featuresets. The secondstageclassifier, in this casea
generalizedlinearmodel[17], is usedto improve thepredictionof
theposteriorprobability that the tool is dull, asproposedin [12].
Theposteriorprobabilityis moreusefulto anoperatorthana hard
decisionandalsoprovidesa morefine-grainedview of theclassi-
fier performance.

Theposteriorprobabilityestimateis evaluatedusingnormal-
izedcrossentropy (NCE),
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where
K

is thebinaryvariableindicatingwhetheror not the tool
is dull,

O
is theobservationsequence,and I is theentropy com-

putedusingtheempiricaltestdatadistribution in theexpectation.
(The empirical distribution makes this a “cross” entropy.) The
NCE measureindicateshow muchinformationis provided in the
predictedposteriorprobability thatthetool is dull relative to sim-
ply usingtheprior probabilityalone.TheNCE providesanaddi-
tional metric for predictingperformancedifferencesbetweenfea-
turesetchoices,which is particularlyusefulheredueto thesmall
testsetsizes.

Thedifferent featuresexploredinclude: baselineenergy fea-
tures,a subsetof pointsin theautoambiguityplaneautomatically
selectedwith andwithouttherestrictionto consideronlystationary
featuresandchosento discriminatethedifferentwearlevels,and
a setof autoambiguitypointsselectedto be usedmoregenerally
in bothsteelandtitaniummilling applications[1]. Exceptwhere
noted,featureswereestimatedat a rateof oneper flute strike, or
four timesperrevolution.

5.2. Topology Evaluation

In an earlierapplicationof our systemto themilling of steel,we
foundthatthefeaturevectorsrecordedwhenthecutterfirst entered
theworkpiece(entry), weredifferentthanthoserecordedwhenthe
tool leaves the workpiece(exit), which wereboth different from
thosecollectedduring thebulk of themilling pass,(bulk). These
differentstagesof a pass,entry/bulk/exit, werebestmodeledasa
left-to-rightHMM.

Inspectionof the featurevectorsfor titanium suggestedthat
milling of titanium might not have this sameleft-to-right behav-
ior. To test this hypothesis,we evaluatedthreedifferent HMM
topologies.Thefirst wasthesameashadbeenusedfor steel.This
consistedof threeleft-to-right singlemixturestatesfollowedby a
singlestatewith threemixtures,followedby anotherthreeleft-to-
right singlemixturestates.Thesecondusedthesamenumberof
freeparametersbut wasa singlestatewith ninemixtures.Finally,
we alsoinvestigateda singlestate,four mixturemodel.In eachof
thethreemodelstested,thefeaturevectorsusedwerethe“general”
AA features.Topologieswith a singlestateandmultiple mixtures
outperformedthe topologyintendedto modela milling passwith
recognizableleft to right progression,so only this topologywas
usedin subsequentexperiments.

5.3. Using Context in Training and Test

Sincetool wear is (for the mostpart) a gradualprocess,knowl-
edgeof the level of wear in a previous passcan reasonablybe
expectedto improve theaccuracy of classificationof featuresfrom
thepresentpass.In fact,viewing eachmilling passin its context

in thelife of acutterallowsusto: i) addtraininglabelsbecauseof
our assumptionof increasingcutterwear;ii) useunlabeleddatato
train our modelsusing the Expectation-Maximizationalgorithm;
andiii) allow theclassificationof previousmilling passesto influ-
encetheclassificationof thepresentpass.

To investigatethe impact of the use of context, we trained
modelsusingonly thosepassesexplicitly labeledby anexpertma-
chinistandclassifiedeachmilling passindependentlyof all other
passesof the samecutter. We also repeatedclassificationusing
modelstrainedwith theadditionaldatamadepossibleby thecon-
text assumptionsbut without imposingcontext on classification.
Theresultsin table1 show thatusingcontext in trainingis critical–
without it theperformanceis worsethanchance.Usingcontext in
classificationgave a consistentbut statisticallyinsignificantgain.
However, it maybethatdifferentmodelingassumptionscouldlead
to a classifierthatis betterableto take advantageof context.

Table 1. Performance(% correct)of threeHMMs usinga single
state/ninemixturetopologyfor eachwearlevel, comparingdiffer-
entusesof context.

Useof Context 1/2” CV 1/2” Test

Training& Classifier 95 94
TrainingOnly 93 92
No Context 77 75

5.4. Comparisons of Feature Sets

Oncethetopologywasselectedandtheuseof long-termcontext in
bothtrainingandtesthadbeenestablished,weinvestigatedvarious
featuresets.Eachfeaturesetusedthelog of thetotalenergy in the
vibration signalasits first dimension.Our first featuresetadded
only the deltacoefficient to the log total energy. The remaining
featuresetsaddedfeaturesdrawn from theauto-ambiguityplane.

The secondandthird AA featuresetsselecteda singlecoef-
ficient (soasto keepthenumberof parameterscomparableto the
deltaenergy case)usinga linear transformationof featuresfrom
the AA plane. The transformationwas estimatedautomatically
usingsupervisedlinear discriminantanalysis(LDA) andtraining
only with titaniumdata. In orderto capturephenomenaat longer
time scales,as is the casefor the delta coefficient, the AA fea-
tureswerecomputedover a larger window, specifically40 times
thatof theenergy features.In thetable,“21 AA Stationary”refers
to the 21 AA featureswhich areconstrainedto lie on the
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axis andarethusstationary. “65 AA Full” refersto 65 AA fea-
tureswhichconsistof bothstationaryandnon-stationaryfeatures.
To reducedimensionalityfor LDA design,we useda subsetthat
correspondedto a trianglein theAA planethatincludedthelower
half of thestationaryfeaturesandthelow-

�
values.

The fourth featureset (also in Table 1), referredto as “AA
General”,includesAA featurescomputedat theoriginal datarate
andselectedbasedon inspectionof clustereddataon both steel
andtitaniumdatasets,which includebothstationary(
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) and

non-stationary(
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) elements.Featureselectionusesautomatic
clusteringcombinedwith visual inspectionof codewords to se-
lect salientpointsfrom thetime-frequency plane[1]. First, vector
quantizerdesignis usedfor unsupervisedclusteringof the ambi-
guity planerepresentationsof 1/4 revolution windows into sev-



eral codewords, and the quantizeris usedto label all datasam-
ples.Thentherelative frequency of occurrenceof eachcodeword
is computedasa function of time (or milling pass)for different
sizesof cuttersandfor bothtitaniumandsteelmaterials.Observ-
ing theactualAA codewordsshowedthat,astool wearincreased,
the frequency of 1/4 revolutionswith significantextent in varia-
tional frequency andlag increasedfrom nothingto approximately
15%. Theexciting finding wasthatthis trait heldfor all materials
andtool sizesanalyzed.Basedon this finding,six pointsfrom the
AA plane(includingenergy) werechosenby handfor generaluse
acrossmilling applications.

The performanceof thesevariousfeaturesetsare shown in
table2, includingbothaccuracy andNCE performancestatistics.
As expected,we find thatremoving constraintsonfeatureschosen
from theAA planeimprovesperformance(rows 2 vs.3), although
theLDA weightvectordoesputmuchmoreweightonthesubsetof
stationaryfeatures.In addition,AA dynamicfeaturesoutperform
the deltafeature(rows 1 vs. 3) when the numberof featuresare
constrainedto bethesame.

Table 2. Performanceof four different featuresetson the test
setusinga singlestate/fourmixtureclassifierfor eachwearlevel.
‘LogE’ = log energy, ‘Delta’ = a derivative estimate,‘LDA’ = lin-
eardiscriminantanalysis,and‘AA’ = auto-ambiguityfeatures.

Features % NCE

logE + 1 DeltalogE 90 0.12
logE + 1 LDA(21 AA Stationary) 87 0.09
logE + 1 LDA(65 AA Full) 94 0.10
logE + 5 AA General 94 0.21

In thelast row, wherethefeaturedimensionalityis increased,
thegainis not measurablein termsof accuracy, but thereis a real
improvementin performanceasindicatedby theNCEof theconfi-
dencescores.Sincethe“AA general”featuresarecomputedwith
adifferenttimewindow, it maybepossibleto furtherimproveper-
formanceby combiningthedifferenttimescales.

6. CONCLUSIONS

In summary, this paperarguesfor useof dynamictime-frequency
featureswithin dynamicstatisticalmodelsfor classificationprob-
lems.Thestandarduseof deltafeatureswithin HMMs is a simple
examplethatcanbe improved uponby lessconstrainedselection
of featuresfrom theautoambiguityplane.Experimentson acous-
tically monitoringcutterwearduringmilling of titaniumshow that
both theuseof dynamicfeaturesanddynamicclassifierscanim-
prove performance,thoughtheusein trainingis critical. In partic-
ular, the representationof dynamicsin the classifieris important
for usingunlabeledtrainingdata,andthebestresultsfor dynamic
time-frequency featureswereobtainedby choosingfeaturesthat
generalizeover differenttrainingconditions.
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