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ABSTRACT

This paperarguesfor using ambiguity planefeatureswithin dy-
namicstatisticalmodelsfor classificationproblems. The relative
contrikution of the two modelcomponentareinvestigatedn the
context of acousticallymonitoring cutter wear during milling of
titanium,anapplicationwhereit is knowvn thatstandardtaticclas-
sificationtechniquesvork poorly. Experimentshav thatexplicit
modelingof long-termcontext via a hiddenMarkov model state
improvesperformancehut mainly by usingthisto augmensparsely
labeledtraining data. An additionalperformanceagainis achiered
by usingthe shorterterm context of ambiguityplanefeatures.

1. INTRODUCTION

Whenusedin classificatioror predictionof acousticsignals time-

frequeng analysids usuallysuitablefor time scalesupto thehun-
dredsof milliseconds.Thatis, assumingypical airborneacoustic
frequencieandshort-timeanalysisframerates,a time-frequeng

representatiowith longerthantendistinctframesin time canpo-

tentially overwhelma classifierdesignedor non-parametri¢ime-

frequeng representationsCompressiomf time-frequeng redun-
dang anddecimationin time canextendthistime scaleto several

secondsHowever, mary applicationssuchasspeechecognition
or, aswe will discusshere,machiningmonitoring, requirea sig-

nificantly longertemporalcontext.

Hidden Markov models(HMMs), which have beenapplied
to a wide rangeof problems,are suitablefor this role of model-
ing over thousandf consecutie framesin time. HMMs thus
have the potentialto modellongertemporalcontext. However,
ashasbeenshavn quite dramaticallyin speeclrecognitionstud-
ies,HMMs do poorly unlesssomeshort-termdynamicalprocess-
ing is usedto enhancenonstationaryevents. For speechrecog-
nition systemsthe short-termdynamicprocessings typically an
approximatederivative actingacrosdive consecutie frames.This
short-termdynamicfeature whichis commonlycalleda“delta; is
centeredatevery time frameandsimply augment@&nunprocessed
frame. This fixed andunoptimizeddoublingof afeaturesizeusu-
ally resultsin a substantialmprovementof recognizemaccurag.

In thispapemwe obsene haw thisdeltafeatureis simply afixed
weightingin anauto-ambiguityplane. This weightingis uniform
in lag andseparabldérom transformedime (doppler).As we will
shav, a more specificchoiceof auto-ambiguityweighting[1, 2],
whencombinedwith a HMM, improves performancen our tests
of tool wearmonitoringfor milling of titanium.

2. BACKGROUND

We usetheterm“dynamicalclassifiers™to includeary modelthat
characterizeshe time-varying behaior of a process. The time-
varying naturemay be associatedvith a changingmode of the
procesge.g. phonemesn speechamountof wearin tool moni-
toring) and/ortemporaldynamicswithin a particularmode. The
bestknown dynamicalclassifieris the HMM, which represents
a processas being generatedy an unobsered discreteMarkov
chain. Typically, theobsenrationsaredescribedy state-dependent
Gaussiammixture distributions, but neuralnetworks arealsoused
in somesystems.Due to the Markov assumptionsthereare effi-
cientalgorithmsfor staterecognitionandparameteestimatiorfor
HMMs [3].

HMMs arequite powerful for representinglurationvariability
of differentmodesand capturinglong-distancecontetual effects
via the statesequence However, the standardHMM framework
is oftencriticizedfor its limited ability to capturelocal featuredy-
namics.To addresshis weaknessseveral new modelshave been
proposedreferredto as“trajectorymodels”or “segmentmodels”,
assuneyedin [4]. Theuseof approximatelerivative featureqor,
deltas),standardn virtually all HMM systemsijs a poor man’s
solutionto incorporatinglocal dynamics,but it hasa big impact
on performancegiventhe low cost. We arguethatfurther perfor
mancegains might be obtainedby more principled selectionof
dynamicfeaturesusingadwancedtime-frequeng methods.Thus,
the themeof this work is combiningdynamicfeatureg(to capture
local time-frequeng characteristicsyvith dynamicclassifiers(to
capturetemporalvariability andmoreglobal context).

3. TIME-FREQUENCY FEATURES

In quadratictime-frequeng researchjt is sometimesdesirable
to utilize the auto-ambiguity(AA) plane when designingtime-
frequeng representation§TFRs). The AA planeis givenby

Aln, 7] = Faosn{z"[nlz[((n + 7)) N1},

whereF isaFouriertransform.Sincenodopplereffectsareappro-
priatefor our applicationsof theambiguityplanehere,we call the
time-transformvariablen “variationalfrequeng” [5]. Similarly,

sincerangedelay effects are not appropriatefor our work here,
the frequeng transformvariabler is simply aninstantaneouss-
timateof autocorrelation.A[n, 7] is the characteristidunction of

thediscreteRihaczektiime-frequeng representatiorgiven by the
two-dimensionaFouriertransform

Rln, k] = Fposn{Fror{Aln, 7]}



A fundamentapropertyof quadratictime-frequeng analysis
is thatary quadraticTFR canbe generatedrom A[n, 7] by appli-
cationof theappropriaté&ernelfunction. Theresultangeneralized
quadraticTFR s given by

Gln, k] = Fysni{Fror{dln, 71An, T},

whereG|n, k] is asmoothedrersionof thediscreteRihaczekime-
frequeng representatiorR[n, k]. A selectionof featuresfrom
the auto-ambiguityplanethusrepresentsn implicit and specific
choiceof asmootheRihaczekTFR.

The useof deltafeatures,asin speechrecognitionsystems,
representsnly afixedhigh-passveightingin variationalffrequeng
n andhasno dependencaponlag 7. Thinking of thedeltafeature
asa dynamicfeature,it is reasonabldéo considerother dynamic
featuresandthe AA planeoffersa convenientframework for do-
ing so. However, much of the AA planewill not be useful, so
somesortof featurereductionor selectionis neededparticularly
for trainingHMM parametergivenlimited data.

4. CASE STUDY: TOOL WEAR MONITORING

Over the pastthreedecadesindustryhasrealizedthe importance
of selectvely automatingroutine tasksof manufcturing opera-
tions. In machiningparts, for example,the commonindustrial
practiceof replacingcuttersaccordingto a fixed schedulebased
on averagecutterlife is problematicand/orinefficient becausef

thewide variationin usablecutterlife. For this reasona substan-
tial amountof researcthasgoneinto thefield of automaticmon-

itoring and control of machiningprocesse$6, 7]. Researcthas
focusendevelopingsensorsfeatureextractionmethodsandau-

tomaticclassificatiortechniquegor predictingwhenatool is dull

and needsto be replaced. Much of the work hasinvolved static
featuresand classifiers,which have beenrelatively effective for

applicationgnvolving machiningsteel,but do nottranslatevell to

problemsassociatedvith machiningtitanium.

In machiningof titanium alloys, afteran endmill hascut for
awhile, the hot elementatitanium lovesto diffusion-bondto the
cuttingedges.This processof titaniumfrom the workpieceweld-
ing to thecutter formsaso-called'built-up edge”(BUE in milling
jargon)thatis carriedby the primary cuttingedgeasit sliceschips
from the workpiece. As the BUE increasesn volumeover time,
the forcesexperienceddy the cutting edgealsoincreaseuntil the
bondingforcesareovercomeandalargefractionof theBUE breaks
away from the cutting edge. Whenthe entire engagedength of
all flutesof anendmill areinvolvedin cyclesof welding/release
(of BUE), thetime-frequeng structureof bothvibrationsandvery
high frequeng transientschangeconsiderablyfrom thoseof the
samecutterin the absenceof BUE. Particlesof the cutting edge
substratecan also be torn away as the welded titanium breaks
away, increasingtool wear Onecycle of build-up andreleaseof
BUE weldedtitanium may be asshortasa secondor aslong as
30 seconds.Intersperse@mongthesecycles of build-up andre-
leasearequiet,BUE-freeperiodscharacterizethy reducectutting
forces,horsepwer andvibrationaswell asreducedrateof cutter
wear Thesequietperiodsmay occurevenwhena cutteris rather
worn, nearthe endof its usefullife.

The behaior describedabore illustratesone substantiakea-
sonthatcorventionalmethoddor tool wearmonitoringfail when
appliedto milling of titanium. Anotherreasoris thatmachinability
of titaniumwork piecescanbe quite variableandheterogeneous,
containingrandomhard spotsthat may damagethe cutter Any

successfubtratgy for tool wear monitoring of titanium milling
mustconsidemoth historyandcontext.

Until recently only static classifiershave beenusedfor tool
wearapplicationd8, 9, 10]. Featurevectorsrepresentingnentire
milling passor dravn from someportion of a passwerecollected
and classificationwas posedas a binary problemof determining
whetherthesdeaturesveregeneratetby acutterwhichwas“dull”
or “not dull”. In reality, cutterwearis adynamicprocessCutters
move from beingnew to progressiely greatetevels of wear and
the featurevectorsduring eachcutting event changeasthe cutter
movesthroughtheworkpiece.HeckandMcClellan[11] captured
theprogressie natureof drilling bit wearin a5-stateHMM, where
the differentstatescorrespondo differentlevels of wear Fishet
al. [12] extendedthis idea, using statesto modelboth the level
of wearandthe dynamicswithin a milling pass.HMMs canalso
be usedto model dynamicsat a finer time scale,i.e. the time-
frequeng structureof atransien{13, 14, 15]. Thestrat@y in this
work will beto usemoresophisticatedime-frequeng analysisto
model dynamicsat the finer time scale,andto capturelong dis-
tanceeffectswith the HMM.

The pastdecadehasseena growing interestin applying ad-
vancedtime-frequeng analysismethodsto machinemonitoring.
Zheng and Whitehouse[16] obsered that the momentsof the
Wigner distribution of sensomoutputsare usefulfor detectingin-
cipient chatterand characterizingchangesn the workpiece. At-
lasetal. [7] summarizeotherresultsshaving thatmoreadwanced
time-frequeng representationarerequiredfor determiningsalient
featuredor classificationGillespieandAtlas[1] introducetheuse
of theautoambiguity(AA) planecombinedwith featureselection
to the problemof tool-wearmonitoring. This paperwill extend
thatwork to HMM classifiersandwill alsoinvestigatefeaturese-
lectionprocedures.

5. EXPERIMENTS

5.1. Experimental Paradigm

The datausedherewasrecordedrom 1/2” end-millsmilling tita-
nium. At the endof alimited numberof selectednilling passes,
eachcutterwasremoved andits wearlevel microscopicallymea-
suredby a mastermachinistandrecordedbeforeit wasreplaced
andmilling continued. The labelsassignedasedon thesemea-
surementarereferredto as“known” labels. A cutterin the early
stagesof wearwaslabeledas“A”, onewhich had exceedecdthe
acceptablevearthresholdvaslabeled‘C”, andthoseapproaching
thewearthresholdbut notyet readyto bereplacedas“B”.

The cutterswere divided into two independentets,one for
training andthe otherheld out for test. The training set, consist-
ing of six 1/2” cutters,was usedto train model parametersand
evaluatedifferenttopologies.During this developmentphasethe
training setwasusedin a threeway crossvalidationto evaluate
performance.Oncedevelopmentwas complete all six cuttersin
the training setwereusedto train the modelsusedto classifythe
held-outtest setwhich consistedof seven different1/2” cutters.
Using a default label of “not dull” for all datasamplesgivesus
“chance” performancewhich is an accurag of 85% (52/61)on
thecrossvalidationsetand83% (52/63)on the evaluationtestset.

In the experimentsdescribedelow, all classificatiorsystems
implementeduse HMMs with the samestatetopology for each
wearlevel. (Thestaticclassifieris a specialcaseof anHMM with
only onestate.) The bestcaseclassifierwasthenusedin combi-



nationwith a secondstageclassifierfor evaluatingthe utility of
differentfeaturesets. The secondstageclassifier in this casea
generalizedinearmodel[17], is usedto improve the predictionof
the posteriorprobability thatthe tool is dull, asproposedn [12].
The posteriomprobabilityis moreusefulto anoperatorthana hard
decisionandalsoprovidesa morefine-grainedview of the classi-
fier performance.

The posteriorprobability estimateis evaluatedusing normal-
izedcrossentrofy (NCE),

_ H(D) - H(D|X)

NCE = H(D) ,

whereD is the binary variableindicatingwhetheror not the tool
is dull, X is the obserationsequenceand H is the entrofy com-
putedusingthe empiricaltestdatadistribution in the expectation.
(The empirical distribution males this a “cross” entropy.) The
NCE measurendicateshow muchinformationis providedin the
predictedposteriorprobability thatthetool is dull relative to sim-
ply usingthe prior probability alone. The NCE providesan addi-
tional metric for predictingperformancelifferencedbetweerfea-
ture setchoiceswhich s particularlyusefulheredueto the small
testsetsizes.

The differentfeaturesexploredinclude: baselineenegy fea-
tures,a subsebf pointsin the autoambiguityplaneautomatically
selectedvith andwithouttherestrictionto consideronly stationary
featuresandchosento discriminatethe differentwearlevels, and
a setof autoambiguitypoints selectedo be usedmore generally
in both steelandtitanium milling applicationq1]. Exceptwhere
noted,featureswere estimatecat a rate of one per flute strike, or
four timesperrevolution.

5.2. Topology Evaluation

In an earlierapplicationof our systemto the milling of steel,we
foundthatthefeaturevectorsrecordedvhenthecutterfirst entered
theworkpiece(entry), weredifferentthanthoserecordedvhenthe
tool leavesthe workpiece(exit), which were both differentfrom
thosecollectedduring the bulk of the milling pass,(bulk). These
differentstagesof a pass.entrybulk/exit, werebestmodeledasa
left-to-right HMM.

Inspectionof the featurevectorsfor titanium suggestedhat
milling of titanium might not have this sameleft-to-right beha-
ior. To testthis hypothesiswe evaluatedthree different HMM
topologies.Thefirst wasthe sameashadbeenusedfor steel. This
consistedf threeleft-to-right singlemixture statesfollowed by a
singlestatewith threemixtures,followed by anotherthreeleft-to-
right single mixture states.The secondusedthe samenumberof
free parametersut wasa singlestatewith nine mixtures.Finally,
we alsoinvestigateda singlestate four mixture model. In eachof
thethreemodelstestedthefeaturevectorsusedwerethe“general”
AA features.Topologieswith a singlestateandmultiple mixtures
outperformedhe topologyintendedto modela milling passwith
recognizabldeft to right progressionso only this topology was
usedin subsequengxperiments.

5.3. Using Context in Training and Test

Sincetool wearis (for the most part) a gradualprocess knowl-
edgeof the level of wearin a previous passcan reasonablybe
expectedo improve theaccurayg of classificatiorof featurefrom
the presentpass.In fact, viewing eachmilling passin its context

in thelife of acutterallows usto: i) addtraininglabelsbecausef
our assumptiorof increasingcutterwear;ii) useunlabeleddatato
train our modelsusing the Expectation-Maximizatioralgorithm;
andiii) allow theclassificatiorof previousmilling passeso influ-
encethe classificatiorof the presenpass.

To investigatethe impact of the use of contet, we trained
modelsusingonly thosepassegxplicitly labeledby anexpertma-
chinistandclassifiedeachmilling passindependentlyf all other
passeof the samecutter We alsorepeatecclassificationusing
modelstrainedwith the additionaldatamadepossibleby the con-
text assumptiondut without imposingcontect on classification.
Theresultsn tablel shav thatusingcontext in trainingis critical —
withoutit the performances worsethanchance Using context in
classificationgave a consistentut statisticallyinsignificantgain.
However, it maybethatdifferentmodelingassumptionsouldlead
to aclassifierthatis betterableto take adwantageof context.

Table 1. Performanc&% correct)of threeHMMs usinga single
state/ninemixturetopologyfor eachwearlevel, comparingdiffer-
entusesof context.

[ Useof Context | 1/2"CV | 1/2" Test ||

Training & Classifier 95 94
TrainingOnly 93 92
No Context 77 75

5.4. Comparisonsof Feature Sets

Oncethetopologywasselectecndtheuseof long-termcontext in
bothtrainingandtesthadbeenestablishedyeinvestigatedrarious
featuresets.Eachfeaturesetusedthelog of thetotalenegy in the
vibration signalasits first dimension. Our first featuresetadded
only the deltacoeficient to the log total enegy. The remaining
featuresetsaddedfeaturesdravn from the auto-ambiguityplane.

The secondandthird AA featuresetsselecteda single coef-
ficient (soasto keepthe numberof parametersomparabléo the
deltaenegy case)usinga linear transformatiorof featuresfrom
the AA plane. The transformationwas estimatedautomatically
using supervisedinear discriminantanalysis(LDA) andtraining
only with titaniumdata. In orderto capturephenomenat longer
time scales,asis the casefor the delta coeficient, the AA fea-
tureswere computedover a larger window, specifically40 times
thatof theenepgy featuresln thetable,“21 AA Stationary"refers
to the 21 AA featureswhich areconstrainedo lie onthen = 0
axis and arethusstationary “65 AA Full” refersto 65 AA fea-
tureswhich consistof both stationaryandnon-stationaryeatures.
To reducedimensionalityfor LDA design,we useda subsetthat
correspondetb atrianglein the AA planethatincludedthelower
half of the stationaryfeaturesandthe low-n values.

The fourth featureset (alsoin Table 1), referredto as“AA
General”,includesAA featurescomputedat the original datarate
and selectedbasedon inspectionof clustereddataon both steel
andtitaniumdatasets,which includeboth stationary(n = 0) and
non-stationaryn > 0) elementsFeatureselectionusesautomatic
clusteringcombinedwith visual inspectionof codevordsto se-
lect salientpointsfrom the time-frequeng plane[1]. First, vector
quantizerdesignis usedfor unsupervisealusteringof the ambi-
guity planerepresentationsf 1/4 revolution windows into sev-



eral codevords, and the quantizeris usedto label all datasam-
ples. Thentherelative frequeny of occurrenceof eachcodevord

is computedas a function of time (or milling pass)for different
sizesof cuttersandfor bothtitaniumandsteelmaterials.Observ-
ing theactualAA codevordsshavedthat,astool wearincreased,
the frequeny of 1/4 revolutionswith significantextentin varia-

tional frequenyg andlagincreasedrom nothingto approximately
15%. The exciting finding wasthatthis trait heldfor all materials
andtool sizesanalyzed Basedon this finding, six pointsfrom the

AA plane(includingenepgy) werechoserby handfor generaluse
acrosamilling applications.

The performanceof thesevariousfeaturesetsare shavn in
table2, including both accurag andNCE performancestatistics.
As expectedwe find thatremaoving constrainton featureschosen
fromthe AA planeimprovesperformancdrows 2 vs. 3), although
theLDA weightvectordoegputmuchmoreweightonthesubsebf
stationaryfeatures.In addition,AA dynamicfeaturesoutperform
the deltafeature(rows 1 vs. 3) whenthe numberof featuresare
constrainedo bethesame.

Table 2. Performanceof four different featuresetson the test
setusinga singlestate/fourmixture classifierfor eachwearlevel.
‘LogE’ = log eneny, ‘Delta’ = aderiative estimate,LDA’ =lin-
eardiscriminantanalysisand‘AA’ = auto-ambiguityfeatures.

[ Features | % [ NCE |
logE + 1 DeltalogE 90 | 0.12
log+ 1 LDA(21 AA Stationary)| 87 | 0.09
logE + 1 LDA(65 AA Full) 94| 0.10
logE + 5 AA General 94 | 0.21

In the lastrow, wherethe featuredimensionalityis increased,
the gainis not measurablén termsof accuray, but thereis areal
improvementin performancesindicatedby the NCE of the confi-
dencescores.Sincethe“AA general”featuresarecomputedwith
adifferenttime window, it maybe possibleto furtherimprove per
formanceby combiningthe differenttime scales.

6. CONCLUSIONS

In summarythis paperarguesfor useof dynamictime-frequeng

featureswithin dynamicstatisticalmodelsfor classificationprob-
lems. The standarduseof deltafeatureswithin HMMs is a simple
examplethat canbe improved uponby lessconstrainedselection
of featuresfrom the autoambiguityplane. Experimenton acous-
tically monitoringcutterwearduringmilling of titaniumshaow that
boththe useof dynamicfeaturesanddynamicclassifierscanim-

prove performancethoughthe usein trainingis critical. In partic-
ular, the representatiof dynamicsin the classifieris important
for usingunlabeledraining data,andthe bestresultsfor dynamic
time-frequeny featureswere obtainedby choosingfeaturesthat
generalizeover differenttraining conditions.
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