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ABSTRACT ——‘Transmitter ’ik)ﬂ Channel =; X9 Y

In this paper, we formulate the blind equalizatiorGafnstant Mod- w

ulus (CM) signals as a convex optimization problem. This is done v(K)

by performing an algebraic transformation on the direct formu-

lation of the equalization problem and then restricting the set of Fig. 1. The block diagram of the system

design variables to a subset of the original feasible set. In particu-

lar, we express the blind equalization problem as a linear objective

function subject to some linear and semidefiniteness constraints.The output of the equalizeXk) can be expressed as
SuchSemidefinite ProgramSDPs) can be efficiently solved us-

ing interior point methods. Simulations indicate that our method y(k) = wHxy, Q)
performs better than the standard methods, whilst requiring signif-
icantly fewer data samples. where
Xk = [x(k),x(k=1),...,x(ken+ 1)), 2)
1. INTRODUCTION w € C" is a weight vector and is the length of the equalizer. If

] o ) ) perfect equalization is achieved, the sequey(g® is also of the
Conventional equallza“on and carrier recovery algonthms gener-CM type With that in mindl a natural Optimization problem for
ally require an initial training period during which a known data se- the receiver to solve is [1]

guence is transmitted and synchronized at the receiver. In the case

of highly non-stationary communications environments (e.g., dig- minimize Zk(|Y(k)|2 @1)2 k=1,...,N, (3)
ital mobile communications), it may be preferable to equalize the

communication channel in an unsupervised manner. The resultingwhereN is the length of the sequenggk), and we have assumed

operation is referred to dslind equalization Many digital com- that the magnitude of the CM signal is equal to one. Using (1) and
munications schemes involve the transmissioi€ohstant Mod- (3), the objective function can be written as:

ulus (CM) signals, hence several schemes for blind equalization

of CM signals have been developed. Typically, they are based on minimize ¥ (|wHxy|? ©1)2 k=1,...,N, 4

gradient descent minimization of a specially designed cost func-

tion [1-3]. However, these algorithms can experience undesirablewhere the weight vectaw is the design variable. Since

local convergence problems which may result in insufficient re- Ho o H Ho\H Ho W

moval of channel distortion [4, 5]. Here we formulate the problem WXk | = = WX (W XK)T = W XX W, (5)
of blind equalization of CM signals as a convex optimization prob- ) o

lem which has a unique global minimum. We compare our method We have the following optimization problem:

with the standard blind adaptive equalization methods in [1-3].
(These standard methods are not globally convergent for arbitrary
initialization [4, 5]). Simulation results indicate that our method H ) ) .
performs better than the standard methods even when we use som&nereXy = xix’. In this paper we show that if we restrict the

a priori knowledge of the channel impulse response to aid initial- design variablav to a subset of the original feasible set, the blind
ization of the standard methods. In addition, our method requires €dualization of CM signals can be expressed as a convex optimiza-
significantly fewer samples, which might be useful in applications tion problem. In particular, the problem can be formulated as a lin-

where convergence times requiring thousands of input samples aréar objective function, subject to linear and semidefiniteness con-
undesirable. straints; that is, as a semidefinite program (SDP). Such SDPs can

be efficiently solved using interior point methods [6].

minimize y(W'Xwe1)?2  k=1,...,N, (6)

2. PROBLEM STATEMENT
3. SDP FORMULATION
The receiver structure we study is shown in Fig.1, wiske rep-

resents the CM signal andk) is additive white Gaussian noise. In this section we outline the framework of our SDP method for
blind equalization of CM signals for the special case of a BPSK
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extends directly to complex-valued CM constellations and chan-

nels.) From (6) we see that our optimization problem can be writ-
ten as,
7

where f(w) = S (W' Xgw <1)? is a 4-th order polynomial iv.
This optimization problem can be re-cast as:

minimize  f(w),

maximize T

(8)

subjectto f(w)e1>0 for all w.

We can think oft as a horizontal hyperplane that lies benei{iv)

for every value ofv. Instead of minimizing (w), we lift-up (max-
imize) the hyperplane while requiring it to always lie beldwv).

At the optimal solution,Tmax equals to the optimal (minimum)
value of f(w). In order to express (6) as a convex problem we
define two sets¢” and 2:

€ ={f | f(w) is a 4-th order polynomial of and f (w) > 0 Yw};
2 ={t|f(w) = gi(w)? gi(w)is a quadratic polyn ofi}.
]

Obviously,Z C €. In terms of¢ and 2 we can express our opti-
mization problem as follows:

maximize T ©
subjectto f(w)oTe?.
However, we consider the following optimization problem:
maximize Tt
. (10)
subjectto f(w)ete€ 2.

It is important to note that the optimization problem (10) is not

equivalent to the one in (9), since we restrict the design variable
w to a subset of the original feasible set. Eq. (10) is said to be

a convex restriction of (9), and it provides a lower bound on the
optimal value oft in (9). However, in the noise free case, the op-
timal equalizer in (9) does lie i. This motivates us to consider
(10). Moreover, the formulation in (10) is a convex optimization
problem. To see this, we first show that:

fegof=w'Gw, forsome

G=0, (11

where

W= W2, ..., W2, W3, wi,...,wn, 1" (12)

andw; contains all productsiwj, 1 <i < j <nin a specified
order. The se® contains all 4-th order polynomial functions that

can be written as: )
f(w) = ¥ g?(w).
1

Sinceg; (w) is a quadratic polynomial function im, it can be writ-
ten as

(13)

Gi (W) = Gi g W2 + ... + G W2
+ Oi,n+1aWiW2 + ... + i zZWn—1Wn

+ Qi z+1W1 + ... + 0i,z+nWn + Ui z+n+1, (14)

wherez=n+ (3). If we define a vector of coefficients;
[Gi,1,---,0izrn+1]" then it follows that

g(w)=w'g, and gi(w)=w

and hence

f(w)=w" Y (qig] )W = W' Gw. (15)

Moreover, the reverse argument from (15) to (13) is trivial. Hence,
we have proved (11). Using this fact and substitutingy) =
f(w) <t we can rewrite (10) as:

maximize T
, —— (16)
subjectto f (w)=w'Gw for someG > 0.

Sincef'(w) = 3 (W' Xgw<1)? <1 it can be written in the general
form of an arbitrary 4-th order polynomial:

=3 B0+ 3 3 alfuw + 3 3 <]
! A >

4
tiEj)VViZWjWk
I JAEKS |

(N
+ U - WiWi WKW,
Z;;k;w; i T

+3 W+ S ér{?wﬁwj
T T A

+

DIPE

I >1k>j

LELED? J;ri‘?,-’wiw;

+3 o+ pO. (17)
I

Hence, the constrairt (W) = w' Gw in (16) is equivalent to the
set of linear constraints o8 implicitly specified in (17). For ex-
ample, we have that:

p?

p?

=Gj;
= Gmji +Gim+ Gzt zti

wheremis equal to the number of elements in (12) anein+ (3).
The semidefinite constrait® > 0 ensures thaf (w) is within
the set2. Finally, the SDP formulation of the problem of blind
equalization of CM signals can be written as:

maximize T

subjectto Avec(G) =c (18)

G >0,

wherec contains all the coefficients from (174 is a selection
matrix andved G) is the column-stacking operator. The SDP can
be efficiently solved for the optim& using interior point meth-
ods [6]. (We have used the SeDuMi implementation [8].) We next
show how to find an equalizev corresponding to the optimé&.

3.1. Post-processing

The solution of (18) provides the optimal value Gf denoted
Gopt. However, we want to implement an equalizer How do
we findwopt once we havé&,p:? First note thatv = (wy, ..., Wn)



is contained inv (12), so once we haw it is quite straightfor-
ward to obtainv. Second, if perfect equalization is achieved, there
is an optimalw, such that

f(;)pt(WOpt) = ngteoptvvopt = O (19)
From (19) we can see thakyt lies in the null-space 0Bopt and
from (12) we can see that it has a specific structure. With this in
mind, we devised the following alternating projections algorithm
to determinenopt: Given an initial vector, alternatingly project it
onto Null(Gopt) and then back onto the subspagewhich con-
tains all the vectors with structure given in (12). These projections
are described as 1 and 2 below:

1. To project a vector ontidull(Gopt) we premultiply it by the
projection matrixP = V¢V{, whereV; contains the eigen-
vectors corresponding to the (almost) zero-valued eigenval-
ues ofGopt. Then we re-scale the resulting vector, such that

the last component becomes equal to one. We need to do

this in order to perform the next step.
2. In order to project a vector onto subspagéwe use the

fact that there is a one-to-one correspondence between the

vectorw given by (12) and the matrixv = aa', where
a=[wg,Wo,...,Wn,1]; that is

W Wi WiWh Wy

_ Wowp W3 WoWn  Wo

W= } : } : (20)
Wy Wo e W 1

Each element iW is equal to a corresponding element in
w. We see that a vectgre . if the corresponding matrix
Y is a rank-one matrix. So, given arbitrary vectomwe
create the corresponding mathixand then perform a rank-
one approximation of it. The resulting rank-one matix
corresponds to a vect§re . which is the projection of
onto.”.

4. IMPLEMENTATION AND SIMULATION

We demonstrate the effectiveness of our algorithm through sev-
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Fig. 3. Probability of error for Section 4.1

ande is a vector with 1 in the position argmait]i| and zeros
elsewhere. We can see from Figs. 2 and 3 that the performance
of blind adaptive methods in [1, 2] depends on the initialization
of the equalizer parameters. The curve denoted as CMA corre-
sponds to the case when we use partial knowledge of the chan-
nel impulse response for initialization; i.e., we initialize the equal-
izer with a single ‘spike’ time-aligned with the channel response’s
center of mass. However, if such a knowledge is not available
and the spike doesn't coincide with the channel response’s center
of mass, the adaptive algorithms may degrade in performance, as
is shown with the curve CMAL. In both cases, simulation results

eral simulation examples. In all our examples, we considered thejgicate that our method achieves better average intersymbol in-
transmission of BPSK input signals. The SDPs were solved usingerference suppression and a lower bit-error rate. This improved

SeDuMi [8].

4.1. Good telephone channel

In the first example, we consider the following chanhe]0.04;-
0.05;0.07;-0.21;-0.5;0.72;0.36;0.21;0.03;0.07], which is a typical

response of a good quality telephone channel [7]. We compare our

method, which is block based, with the algorithms given in [1, 2],
which are blind adaptive algorithms. From [2] we used an adaptive
algorithm that minimizes the cost functiod:= E{||y(k)| <1/}

In our test scenarios, the length of equalizers was 11 and the step

size parameter for the adaptive algorithms was chosen toxbe 5
103, which has proven to give the best results. We allowed 2,000
samples for the adaptation of weight coefficients for the methods
in [1, 2], while processed and decoded blocks of 500 samples at
a time for our method. We define the intersymbol interference as
follows: ISI = Hm c>e“§, wheret = hxw is a combined

response of the channel and the equalizatenotes convolution

performance is achieved whilst requiring fewer samples than the
algorithms in [1, 2].

Channel with severe intersymbol interference
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Nonminimum phase channel
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Fig. 5. Intersymbol interference for Section 4.3
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Fig. 6. Probability of error for Section 4.3

4.2. Channel with severe interference

Here we consider the chanrte [0.407 0.815 0.407] given in [7].

5. CONCLUSION

In this paper we have shown that blind equalization of constant
modulus signals can be expressed as a convex optimization prob-
lem. A semidefinite programming formulation was made possible
by performing an algebraic transformation on the direct formula-
tion of the equalization problem and then restricting the design
variables to a subset of the original feasible set. Simulation re-
sults indicate that our method has a better average performance
than the methods proposed in [1-3], even in the case when we
useda priori knowledge of the channel impulse response enve-
lope to aid initialization for those standard methods. Furthermore,
our method requires fewer samples, which might be useful for ap-
plications where convergence times requiring thousands of input
samples are undesirable.

Our method incurs a higher computational cost than those in [1—
3], but its improved performance in the preliminary simulations
presented here motivates our current work on the development
of specialized solvers which exploit the structure of the SDP in
(18), analysis and refinements of the post-processing technique
in Section 3.1, and the extension of the principles of this work
to the complex-valued case. It also motivates generalizations to
fractionally-spaced and multiple-sensor receivers, and comparisons
with CM algorithms for those receivers, such as that in [9].
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