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ABSTRACT

This paper addresses the problem of blind separation of convo-
lutive mixtures via contrast maximization. New frequency do-
main contrast functions are constructed based on second and
higher-order spectra of the observations. They allow to sepa-
rate mixtures of sources which are spatially independent, and
temporally possibly non i.i.d. linear or non-linear processes.
The proposed criteria provide a framework for extending to
the convolutive case contrasts that have been proposed in the
context of instantaneous mixtures.

1. INTRODUCTION

Blind separation of convolutive mixture is a challenging signal
processing problem with a wide variety of applications, such
as multiuser multiaccess communications, bioengineering and
seismology. Among the possible approaches [3, 4, 5, 8, 9],
frequency-domain methods appear particularly appealing [1].
In the Fourier domain, the original problem is transformed
into a set of instantaneous-like ones (although a frequency-
dependent permutation ambiguity remains to be resolved).

We here propose a set of new contrast functions, which
are designed based on second and fourth-order spectra of the
observations. Extensions to any higher-order spectra can also
be easily derived. The mathematical formulation allows for
the separation of the sources independently of their temporal
dependence structure. For example, the proposed functions
could be helpful in separating convolutive mixtures of non-
i.i.d or non-linear processes. A scenario where such non-linear
sequences could arise, is the output of an error correcting de-
vice in a communication system. The non-linearity there is
due to the redundancy introduced by the correction codes to
the data flow. To the best of our knowledge, few methods ex-
ist in literature [7] allowing to separate convolutive mixtures
of nonlinear processes.

The paper is organized as follows. In Section 2 we state
the problem and introduce the necessary notations. In Sec-
tion 3 we relate our frequency domain approach to a joint
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diagonalization problem for a polyspectrum tensor. Section 4
contains our main results and describes how frequency domain
contrasts can be built. Some particular cases and extensions
are also discussed in this section.

2. PROBLEM STATEMENT

We consider a convolutive mixture of N € N* unknown com-
plex valued source signals (s1(n))nez,--.,(88(n))nez. The
signal output of the mixture is assumed to be an N-dimensional
vector

x(n) = (z1(n), ... ,xN(n))T
2 3" h(n—k)s(k) +b(n) (1)
k=—oc

where s(n) = (s1(n),...,sn(n))”, b(n) denotes some noise
vector and (h(n))nez is the unknown MIMO impulse response
of the mixing system. For all n € Z, h(n) is an N x N matrix
with elements [hi; (n)]1<i<n,1<j<n-

In this work, we will make the following assumptions:

Al. the sources s;(n), ¢ € {1,..., N} are mutually inde-
pendent random sequences which are uncorrelated, and have
unit variance. The trispectrum of source s;(n) (i.e. the Fourier
transform with respect to (71,72,73) € Z® of
Cum([s;(n), sj(n + 71),si(n + 72), s (n + 73)]) is assumed to
be defined and will be denoted by I'f (w1, wa,ws).

A2. For all (i,5) € {1,...,N}?, the filter with impulse
response (h;j(n))ncz is stable, which guarantees the existence
of a bounded frequency response matrix

Hw) = Y h(n)e ™,

n=—oo

w € [—m, ). (2)

A3. For all w € [—7,7), H(w) is invertible.

A4. The noise (b(n))nez is Gaussian, zero-mean and sta-
tionary with known spectrum density matrix Sp(w).

In this context, our objective will be to estimate the
MIMO frequency response, or, more precisely, its inverse so
as to perform source separation, i.e. recover the sources from



the observations. The considered problem possesses some in-
herent indeterminacies as the best one can expect is to find a
solution G(w) = H™!(w) such that

G(w)H(w) = P ¢(®FP) (3)

where P is a permutation matrix, © is a real diagonal matrix
and D is an integer diagonal matrix. When such a property
holds, we will say that a type-I separation is achieved. Some-
times however, we are only able to guarantee that

G(w)H(w) = Pe®®) (4)

where ®(w) is a real diagonal matrix, and we say that a
type-II solution is obtained. This means that, if g(n) =
[965(n)]1<i<n,1<j<n denotes the impulse response of the sep-
aration system,

yim) 23" N gii(n—K)e;(k), i€{l,...,N} (5

j=1k=—o0

then corresponds to an all-pass filtered sequence of one of the
sources. In order to estimate the sources up to a phase/de-
lay ambiguity, a blind monodimensional deconvolution method
must be applied to each of the signals (y;(n))nez. When the
sources are not i.i.d., some additional assumptions (e.g. prior
knowledge on the source statistics or the structure of the mix-
ing system) are required to realize this operation. In the i.i.d.
case, there exist many blind single-input single-output decon-
volution algorithms that could be used to recover the sources.
For these reasons, in this work we will mainly focus on type-II
solutions.

3. A JOINT DIAGONALIZATION CRITERION
As Sp(w) is assumed to be known, it is possible to prewhiten

the mixed signals. Let V(w) be the frequency response of a
prewhitening filter and let

A
W(w) = V(w)H(w) = (Wi,j(w))i<i<Ni1<i<n (6)
be the remaining paraunitary frequency response to be iden-

tified. The 4th order cross-spectrum of the prewhitened data,
observed at locations i, j, 11,12, equals :

N
Ciitis (Wi, w2,w3) = Th(wi, wa,ws)
p=1
Wip(—w1 — w2 — w3)Wjp(—w1)Wiyp (w2) Wi, (—ws).  (7)

Let C},,, (w1, w2, ws) denote the matrix whose (i, j)-th element

is equal to ijlllZ(wl,w2,w3). We get:

C;1112 (w1, w2, w3) = W(—w1 — w2 — ws3)

Dy, 1, (w1, w2, w3) W(—w1)?  (8)

where Dy, (w1, w2, ws) is a diagonal matrix.

Thus, the source separation problem can be addressed in
the following way: For a fixed pair of frequencies, (w2,ws),
find W(—w; — w2 — ws) and W (—w1) maximizing

A —~
(w1, w2,ws) = Z on(W(—wy — ws —wsz)?
l1,l2

Clty (Wi, w2, ws)W(—w1))  (9)

where on(M) denotes the sum of the squared moduli of the
on-diagonal terms of M. This maximization amounts to a
problem of joint diagonalization (or more exactly, joint singu-
lar value decomposition) of a set of matrices.

This constitutes the basic idea of a separation algorithm
which was shown to be effective in the case of i.i.d. sources
[1].

It is important to note that, Z(w1,ws2,ws) is a function of
W. For notation concision, we will not make this dependence
explicit for Z(wi,w2,ws) or any other criteria which will be
derived from Z(w1,ws, ws3).

We now study more carefully the criterion which is opti-
mized in the approach we mentioned. In particular we have
the following invariance property whose proof is omitted due
to the lack of space:

Lemma 1 Let us consider the global MIMO filters correspond-
ing to the true one cascaded with the inverse of the estimated
mizing system:

W(w) £ W(w)"W(w). (10)
Then,

T(wi,wa,ws) = Y |15 (wr,wa, ws)|?
0

[Wij (—w1 — ws — wa) [*[Wij (—w1)[?
= Z |6?i11l2 (w17w25w3)|2 (11)

il1lg

where (Cfy, 1, (w1, w2, ws))i 1,15 correspond to the cross-trispectra

of the outputs of the global system.

This result shows in a simple way that, in general, we can-
not expect to estimate the phase of the system from the only
maximization of Z(wi,ws,ws) as the value of this criterion
is only depending on the moduli of Wij(—wl — w2 —ws) and
Wij(-b)l). Besides, if the quantities in (11) are not depending
on frequency, which is equivalent to considering instantaneous
mixtures of i.i.d. sources, the considered criterion reduces to
the one used in the JADE source separation algorithm. This
means that our approach extends the work in [2] to the con-
volutive case.

4. CONNECTIONS WITH CONTRASTS

In this section, the following assumption will be made:
A5. For at least N — 1 sources and for almost all (w,v) €
[0,27)2, there exists au,, € [—2m,27) such that

20‘”’”) £0. (12)

4 vtayy V-—
F] (UJ, 9 ,



The assumption we adopt here is fairly weak as it allows
us to consider non i.i.d. sources. For this assumption to be
satisfied, at most one of the sources can be Gaussian. Possible
choices for a,,, are a,,, =V, aw,, = —v and a,,, = 0. For
these choices, only simple 2D slices of the involved trispectra
have to be determined.

4.1. Main results

We will next prove that

27 27
- A VtQuy V—Quy
= /(; /0 I(w, 7 5 ) dw dv (13)

is a type-1I contrast, in the sense that its maximization allows
us to separate the sources up to a scalar all-pass filtering of
each of them.

Proposition 1 Under Assumption A5, we have

( VtQuy V—Quyp
,

7 5 )‘2dwdu (14)

A

and the upper bound is attained iff a type-II separation prop-
erty holds, i.e., for all w, W(w) = Pe®@) yhere P is a
permutation matriz and ®(w) a real diagonal matriz.

Proof. As a result of the paraunitarity of W(w), we have

D IWij (w1 —wa —ws) Wi (—wn)P < 1. (15)

Combining this inequality with (11) yields

I(wi,w2,ws) < Y T (wi,ws,ws)|”. (16)
i

This allows to deduce that

/27r /'27r1_<w,y+aw,,,,V_aw,y)dwdy
o 0 2 2
2w 27
V+auy V— Qup 2
S/ / ‘F4(w, : : )‘ dwdv (17)

and (14) is proved.
It is clear that the upper bound is attained iff, for all j
and almost all (w,v) € [0,27)2,

2

‘I’4(w V+aw,u v _aw,u)
J ) 2 bl 2

(1= Wi (—w = »)P[Wij (~w)") = 0. (18)

Now, let j be an arbitrary index such that (12) is satisfied.
We have then, for almost all (w,v) € [0,27)?,

> Wi (—w — v) Wi (—w)|* = 1. (19)

2

which, by integrating over [0, 27]? and using Parseval’s equal-
ity, leads to

Sl =Y Ol (k))? = 1. (20)
i ik
Furthermore, the unitary assumption implies that

Vi, > llwll* =1 (21)

where, obviously, ||ws;|| < 1. This shows that equality can only
arise in (14) if there exists an index 4; such that ||w; ;|| = 1.
Due to (21), this implies that, for all ¢ # 4;, ||@;;|| = 0, i.e.
Wij (w) =0, for almost all w € [0, 27). Proceeding in the same
way, for all the (at least NV — 1) values of j such that (12) is
satisfied, we establish that, on the corresponding j-th column
of W(w), there is only one nonzero element at row ;. As the
unitary condition also introduces the constraint,

vi, Y gt =1 (22)
i

two of those nonzero elements of W(w) cannot be located on
the same row. In other words, we have proved that
W(w) = P A(w) where P is a permutation and A(w) a di-
agonal matrix. As W (w) is unitary, the diagonal elements of
A(w) are necessarily with unit modulus. O

Under a slightly more restrictive condition, another form
of contrast can be derived:

Proposition 2 Let us assume that
A5'. for at least N — 1 sources and for almost all (w,v) €
[0,27)?, there exists a set £(w,v) C [—2m,2w) such that

/S(w,u)

v+a v—a
2 7 2

I (w, )‘2 da # 0. (23)

Then,

27 27
A v+a v—a
Ze =/ / / I(w, , )da ) dw dv
0 0 ( E(w,v) 2 2 )

s a type-1I contrast.

It is worth noting that, provided some appropriate modifi-
cations of Assumptions A5 and A5’, results similar to Proposi-
tions 1 and 2 can be proved for discretized versions (involving
discrete frequencies) of Criteria Z and Zg.

4.2. Specific cases
4.2.1. Integration over the whole frequency space

A form of criterion which could appear more intuitive is given

by:
/ / / I(w1,w2,w3) dOJ1 dw2 dw:s.



After some calculations, this expression can be seen to be equal
to Zg/2 when £(w,v) = [-2m,27). Furthermore, it can be
observed that

1
WI[fzw,%) =

> D ICumfyi(n), yi (n+71), yiy (n+72), iy (n+73)].

ilyla 71,72,73

where y;(n) denotes the i-th output of the global system. In
the considered case, it is easy to see that Assumption A5’
reduces to the fact that for at least IV — 1 sources, there exists
time-delays (71, 725, 73;) such that

Cuml[s;(n), sj(n + T15), 8j(n + 72;), 85 (n + 73;)] # 0.

4.2.2. i..d. sources

When the sources are i.i.d., Assumption A5 reduces to the
more common assumption: at most one of the fourth-order
cumulants of the sources is zero. Furthermore, according to
(11), Z(w1, w2, ws) becomes a function of the two variables w;
and w> + w3 in this case. Consequently, the contrasts Z are
no more depending on the choice of ay,,,, which can be made
arbitrary. Moreover, we have 7 = %I{,zﬂ-,zr) which is the
criterion studied in the previous section.

4.2.3. Other contrasts

Using the same approach as in [6] other contrasts can be de-
rived from the previous ones. Unlike [6], the i.i.d. assumption
is not necessary for these criteria to be valid. In particular,
extensions to the convolutive case of contrasts introduced by
L. Delathauwer and E. Moreau for instantaneous mixtures can
be obtained in this way.

5. SIMULATION RESULTS

We consider two non i.i.d. source signals of length 8192 ob-
tained by linear filtering and subsampling of i.i.d. sequences
with Laplacian distributions. These sources are mixed by a
paraunitary MIMO system of order 2. The filters have been
parametrized using a lossless lattice representation. The max-
imization of a discretized version of Contrast Z with a,,,, =0
has been carried out by a Jacobi-like algorithm. The trispec-
trum of the mixed data has been empirically estimated for each
realization using an averaged 4th order periodogram method.
A Monte Carlo study of the proposed method has been real-
ized with SNR=30dB. The 3 rotation angles characterizing the
lattice representation of the mixing system have been drawn
following a uniform distribution and, for each run, the source
signals have been generated randomly. Since W (w) is a 2x2
FIR paraunitary system, it holds that |Wii(w)| = |[Waz(w)|
and |Wiz2(w)| = |Wa1(w)|. Figure 1 illustrates the estimation
result for |Wi1(w)| and |[Wiz(w)| for 0 < w < 7 (mean+ stan-
dard deviation from 20 Monte Carlo simulations, on top of
true magnitudes).

[1]

2]

6. REFERENCES

B. Chen and A.P. Petropulu, “Multiple-Input-Multiple-
Output Blind System Identification Based on Cross-
Polyspectra,” ICASSP’2000, pp. 584-587.

J.F. Cardoso and A. Souloumiac, “Blind beamforming
for non gaussian signals”, IEE Proceedings-F, Vol. 40,
pp. 362-370, 1993.

P. Comon, “Contrasts for multichannel blind deconvo-
lution”, IEEE Signal Processing Letters, Vol. 3, No. 7,
pp- 209-211, July 1996.

Y. Inouye and K. Hirano, “Cumulant-Based Blind Iden-
tification of Linear MIMO Systems Driven by Colored
Inputs”, IEEE Trans. on SP, pp. 1543, 1997.

E. Moreau and J.-C. Pesquet, “Generalized contrasts
for multichannel blind deconvolution of linear systems,”
IEEFE Signal Processing Letters, June 1997.

N. Thirion-Moreau and E. Moreau,” New Criteria for
Blind Signal Separation”, SSAP’2000, Pennsylvania,
USA, pp 344-348, August 2000.

C. Simon, Ph. Loubaton, C. Vignat, C. Jutten, G.
d’Urso, “Separation of a class of convolutive mixtures:
a contrast function approach”, ICASSP’2000.

A. Swami, G.B. Giannakis and S. Shamsunder, “Multi-
channel ARMA Processes,” IEEE Trans. on Signal Pro-
cessing, vol. 42, No. 4, pp. 898-913, 1994.

J.K. Tugnait, “Identification and Deconvolution of Mul-
tichannel Linear Non-Gaussian Processes Using Higher
Order Statistics and Inverse Filter Criteria,” IEEE

Trans. on Signal Processing, vol. 45, no. 3, pp. 6568672,
March. 1997.

02r-

Figure 1: Estimation of |Wi; (w)| and |Way (w)].



