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ABSTRACT

A combined Kalman �lter (KF) and natural gradient
algorithm (NGA) approach is proposed to address the
problem of blind source separation (BSS) in time-varying
environments, in particular for binary distributed sig-
nals. In situations where the mixing channel is non-
stationary, the performance of NGA is often poor. Typ-
ically, in such cases, an adaptive learning rate is used to
help NGA track the changes in the environment. The
Kalman �lter, on the other hand, is the optimal min-
imum mean square error method for tracking certain
non-stationarity. Experimental results are presented,
and suggest that the combined approach performs sig-
ni�cantly better than NGA in the presence of both con-
tinuous and abrupt non-stationarities.

1. INTRODUCTION

Blind source separation has recently received much re-
search attention, due to its wide range of potential ap-
plications, which include wireless communications, geo-
physical exploration, speech and image processing, and
medical signal processing [1, 2, 3]. It is concerned with
recovering the original source signals (sources), given
only the observed signals (sensors), which arise when
the sources are mixed by an unknown medium. When
dealing with signals recorded in a real environment,
BSS is complicated by additive noise, propagation de-
lays, time-varying environments, and non-stationary
sources. To make the problem more tractable, it is
common practice to assume that stationary sources are
instantaneously mixed by a constant environment, and
that the mixtures are not corrupted by noise. In this
paper, the problem of BSS in non-stationary environ-
ments, when the sources have binary distributions, is
addressed. To this end, we propose to combine the
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Kalman �lter with the NG on-line algorithm, proposed
by Amari et al. [4]. The main advantage of NGA is
that it has equivariant property, which implies that its
asymptotic convergence properties are independent of
the condition number of the mixing matrix and scaling
factors of the source signals [1, 4]. Nevertheless, most
of the research e�ort devoted to extending NGA to the
time-varying case has been oriented toward the formu-
lation of adaptive algorithms that update the step-size
parameter, so-called learning of the learning rate. Al-
though an adaptive learning rate does give better per-
formance in non-stationary situations, simulation re-
sults show that the tracking performance of NGA re-
mains limited in such cases. The Kalman �lter, on the
other hand, is the optimal �lter for tracking certain
non-stationarity, provided the dynamics of the envi-
ronment it attempts to track can be modelled by the
state evolution equation [5, 6]. The BSS problem, for
the time-varying channel case, is introduced in section
2. The combined approach is explained in section 3,
together with a brief description of the KF and NGA
techniques. The performance of the proposed approach
is shown by simulation in section 4, while conclusions
are drawn in section 5.

2. PROBLEM STATEMENT

When n real sources are mixed by an instantaneous
non-stationary channel, and no noise is present, the m
observed signals are given by [1]

x(k) = A(k)s(k) (1)

where x(k) = [x1(k); : : : ; xm(k)]
T is the m-dimensional

vector of observed signals, s(k) = [s1(k); : : : ; sn(k)]
T is

the vector of source signals which are assumed to be
zero-mean and mutually independent, and [:]T denotes
vector transpose. A(k) is an unknown, full column
rank, mxn mixing matrix, and typically it is assumed



that there are at least as many sensors as sources, that
ism � n. The sources are recovered using the following
linear separating system

y(k) =W(k)x(k) (2)

where y(k) = [y1(k); : : : ; yn(k)]
T is an estimate of s(k),

and W(k) is the nxm separating matrix. However, it
is only possible to recover the sources up to a mul-
tiplicative constant, and their order cannot be pre-
determined. These ambiguities are inherent to the BSS
problem, and imply that the exact inverse of the mixing
matrix cannot be obtained, so that perfect separation
is achieved when the global mixing-separating matrix,
de�ned as

P(k) =W(k)A(k) (3)

tends toward a matrix with only one non-zero term in
each row and column [1], and is given by

P(k) = JD (4)

where J is an nxn permutation matrix which models
the ambiguity relating to the ordering of the sources,
and D is an nxn diagonal matrix which accounts for
the indeterminacy of scaling.
In addition to the statistical independence of the sources
and the non-singularity of the mixing matrix, BSS also
assumes that at most one source has Gaussian distri-
bution because, for Gaussian random variables, uncor-
relatedness corresponds to independence [7]. In this
paper we also assume that the sources have binary dis-
tribution. This assumption allows us to introduce ad-
ditional a priori information about the source signals,
which will help the tracking of the Kalman �lter.

3. COMBINED KF AND NGA APPROACH

The proposed approach uses NGA as the basic BSS
block. This updates adaptively the separating matrix,
thus estimating the source signals. Algorithm tracking
ability is provided by the KF technique, which uses the
recovered sources and the observed signals, to estimate
the mixing matrix.

3.1. Kalman Filter

Using a similar method as in [5], the following cost
function is minimised

JKF = Efjjh(k)� ĥK(k)jj
2

2
jx(k)g (5)

where ĥK(k) represents the estimate of the vector h(k),
x(k) is the observation vector, and jj:jj2 denotes the 2-
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Figure 1: Structure of combined KF and NGA ap-
proach.

norm. This leads to the following expressions, describ-
ing KF [6]

h
p
K(k) = ThcK(k � 1) (6)

M(k) = TM(k � 1)TT +Q (7)

K(k) = M(k)HT (k)(C(k) +H(k)M(k)ĤT (k))�1(8)

hcK(k) = h
p
K(k) +K(k)(x(k) �H(k)hpK) (9)

M(k) = (I �K(k)H(k))M(k) (10)

where hpK(k) and hcK(k) denote respectively the pre-
dicted and corrected estimate of the vector h(k). H(k)
and T are, respectively, the known observation matrix
and state transition matrix, Q and C(k) are respec-
tively the covariance matrices of the process noise, and
of the measurement noise. The Kalman gain is the
matrixK(k), M(k) represents the parameter error co-
variance matrix, and I is the identity matrix.

3.2. Natural Gradient Algorithm

The natural gradient algorithmupdate equation is given
by the following expression [4, 1]

W(k+1) =W(k)+�(k)[I�f (y(k))yT (k)]W(k) (11)

where In is the identity matrix, f (y(k)) is an odd non-
linear function of the output y(k), called the activa-
tion function, and �(k) is a positive learning param-
eter. Usually the learning rate is assumed to be a
very small positive constant which is either �xed or
decreases exponentially to zero [8, 1]. However, when
the algorithm is required to track a time-varying envi-
ronment, neither approaches are suitable. In [8], the
learning rate is self-adaptive, and changes according to
a non-linear function of the mean values of the gradient
components:

ĝ(k) = (1� �2)ĝ(k � 1) + �2~g(k) (12)

�(k) = (1� �1)�(k � 1) + �1��(kĝ(k)k) (13)



where 0 < �1 < 1, 0 < �2 < 1, and � > 0 are �xed
coe�cients, ~g(k) = �(In � f (y(k))yT (k))W(k), is the
gradient at time k, and �(jjĝ(k)jj) is a non-linear func-
tion de�ned in [8] as �(jjĝ(k)jj) = (1=m)

Pm

i=1 jĝi(k)j
or �(jjĝ(k)jj) = tanh((1=n)

Pn

i=1 ĝ
2

i (k)), which is in-
troduced to limit the maximum value of the gradient.

3.3. The Combined Approach

The Kalman �lter, used to estimate the mixing matrix
coe�cients, requires the knowledge of a vector repre-
senting the desired response, and an observation ma-
trix. Thus, the vector of sensor measurements x(k) is
taken as the desired response of the �lter and, in the
absence of a known observation matrix, the source es-
timates generated by NGA, are quantised to �1, and
fed to KF, as shown in Fig. 1. The use of a quantiser
implies that we take advantage of a priori knowledge
about the sources, which is found to improve signi�-
cantly the performance of the Kalman �lter. For our
implementation, we re-arrange the mixing matrix into
an mn-dimensional column vector, de�ned as

h(k) = vec(AT (k)) (14)

Hence, the combined approach can be formulated as

y(k) = W(k)x(k) (15)

W(k + 1) = W(k) + �(k)(I� f (k)yT (k))W(k)

(16)

whereW(k) represents the separating matrix estimated
with NGA, and �(k) is the self-adaptive learning rate
de�ned in (12)-(13). The mixing coe�cients vector is
then estimated by KF, which takes the form in (6)-(10),
with the observation matrix H(k) in (8)-(10) replaced
by the mxmn matrix Ŝ(k), de�ned as

Ŝ(k) = Im 
 ŝT (k) (17)

where Im is the m-dimensional identity matrix, and 

denotes the Kronecker product. ŝ(k) is given by

ŝ(k) = g(y(k)) (18)

where y(k) is the nx1 source signal vector estimated by
NGA, and quantised by function g(:). The estimated
mixing coe�cient vector is subsequently re-arranged
into the mxn matrix AK(k), and its pseudo inverse,
de�ned as

A
y
K (k) = AT

K(k)(AK (k)A
T
K(k))

�1 (19)

generates an additional separating matrix,WK(k), that
updates periodically, every Tp samples, the NGA esti-
mate, i.e. if k mod Tp = 0, W(k + 1) = WK(k); else
W(k + 1) is updated by (16).

0 500 1000 1500 2000 2500 3000
-1

0

1

2

3

4

5

Sample number

S
ec

on
d 

co
lu

m
n 

of
 m

ix
in

g 
m

at
rix

0 500 1000 1500 2000 2500 3000
-1

0

1

2

3

4

5

Sample number

F
irs

t c
ol

um
n 

of
 m

ix
in

g 
m

at
rix

Figure 2: Tracking of the two columns of the mix-
ing matrix, when the channel is non-stationary: actual
coe�cients (solid lines), estimated with NGA alone
(dashed lines), and estimated with the combined ap-
proach (dotted lines, coincident with the solid lines).

4. SIMULATIONS

In this section we present computer simulations which
demonstrate the performance of the combined approach.
We consider two independent Bernoulli sources, mixed
by a time-varyingmixing channel, whose elements change
according to independent �rst order Gauss-Markovmod-
els. We assume that the number of sensors equals the
number of sources (n=m=2), and that no additive noise
is present; the activation function in (11) is chosen as
f (y(k)) = [y3

1
(k); : : : ; y3n(k)]

T , and the �xed parame-
ters in (12)-(13), the learning rate update equations,
are �1 = �2 = 0:01, and � = 0:005. The separat-
ing matrix generated by NGA, W(k), is initialised to
WK(k) every 10 samples, i.e. Tp = 10. Figs. 2 and
3 show, respectively, the tracking of the two columns
of the mixing matrix, by NGA only and by the com-
bined approach, in the case of continuous and abrupt
non-stationarity. The results are illustrative of the in-
determinacy of scaling, as both techniques track the
negative of the second column of the mixing matrix,
whose actual values have not been plotted in either �g-
ures for the sake of clarity. It should be noted that it
is not possible to discriminate between the true mixing
coe�cients, and the estimates produced by the com-
bined approach, as these are coincident on these plots.
Thus, the combined approach is fast enough to track
the changes in the channel that cannot be followed by
NGA alone. The performance of a BSS method can
also be assessed by plotting the following performance
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Figure 3: Tracking of the two columns of the mix-
ing matrix, when the channel is non-stationary and
changes abruptly: actual coe�cients (solid lines), es-
timated with NGA alone (dashed lines), and estimated
with the combined approach (dotted lines, coincident
with the solid lines).
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Figure 4: Evolution of the average performance index
for NGA (solid line) and for the combined approach
(dotted line).

index (PI)

PI(k) =
1

m

mX
i=1

8<
:

mX
j=1

jpijj2

maxqjpiqj2 � 1

9=
;

+
1

m

mX
j=1

(
mX
i=1

jpijj2

maxq jpqjj2 � 1

)
(20)

where P(k) = [pij] =W(k)A(k), and m is the number
of source signals. Generally, a low PI indicates better
performance. Thus, we separate the sources with NGA
and the combined approach in 30 independent trials.
The average performance indices for the two methods
are compared in Fig. 4. It illustrates that the combined
approach has a much faster initial convergence speed

than NGA, and its good tracking capability results in
a lower PI following initial convergence.

5. CONCLUSIONS

A combined KF and NGA approach for blind source
separation of binary distributed signals, mixed by a
non-stationary channel has been presented. Simula-
tion results have shown that the KF tracks the mixing
coe�cients quite accurately when the mixing channel
is non-stationary, with and without abrupt changes.
Thus, the combined approach can quickly follow the
changes in the environment, resulting in fast conver-
gence speed, and good tracking capabilities. On-going
work is considering extension to arbitrary sources.
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