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ABSTRACT

Mismatch-shaping DACs have become widely used in
high-performance delta-sigma data converters in recent
years. Nevertheless, no theoretical results have been
published to date that quantify their performance, so
designers have been forced to rely on simulation-based
analyses. This paper presents the first theoretical per-
formance analysis of a mismatch-shaping DAC. Specif-
ically, the PSD of the mismatch noise introduced by a
first-order tree-structured DAC within a second-order
ADC delta-sigma modulator with a midscale constant
input signal is derived. This particular mismatch-shap-
ing DAC and delta-sigma modulator configuration was
chosen for analysis because it has been demonstrated
experimentally to achieve state-of-the-art ADC perfor-
mance. The choice of a constant midscale input was
made because simulation and experimental results sug-
gest that it yields the worst-case performance.

1. INTRODUCTION

Delta-sigma (AY.) modulators used for analog-to-digi-
tal (A/D) conversion tend to be highly sensitive to sig-
nal-band noise introduced by the DACs in their feed-
back paths. In switched-capacitor DACs, which are the
type most commonly used in AY, modulators, the dom-
inant noise component is mismatch noise which arises
from static DAC output level errors caused by fabri-
cated component mismatches. Therefore, mismatch-
shaping DACs, which use spectral shaping to min-
imize the signal-band power of the mismatch noise,
have become widely used in state-of-the-art AY. mod-
ulator based ADCs [1]-[3]. However, the mismatch-
shaping performance of these DACs has been demon-
strated only with simulations and experimental mea-
surements; to the knowledge of the authors, no theoret-
ical results have been published previously that quan-
tify their mismatch-shaping performance. The dearth
of such results has forced designers to rely on computer
simulations to estimate the worst-case performance of
candidate architectures during the design process.

This paper presents the first theoretical perfor-
mance analysis of a mismatch-shaping DAC. The anal-
ysis applies to a tree-structured DAC within the sec-
ond-order AY, modulator shown in Fig. 1, which is a
system that has been shown to yield state-of-the-art
experimental results [3]. In both tests and simulations
of the system, it was observed that the DAC gener-
ated the worst-case signal-band mismatch noise when
the input was a midscale dc signal. This paper ana-
lyzes the performance of the tree-structured DAC in
this setting as a potential bound to its performance.
The analysis provides theoretical power spectral den-
sity (PSD) curves for the DAC mismatch noise.

2. THE TREE-STRUCTURED DAC
A 9-level example of the tree-structured DAC is shown
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Fig. 1: The second-order, analog AY modulator.
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Fig. 2: An example 9-level tree-structured DAC.

in Fig. 2. It consists of a digital encoder and a bank of
1-bit DACs. The digital encoder selects exactly y[n] of
the 1-bit DACs to have high inputs and the remaining
8 — y[n] of the 1-bit DACs to have low inputs. For
most values of y[n], this can be done in many ways,
and this flexibility is exploited by the digital encoder
to realize the desired spectral shaping of the mismatch
noise. The 1-bit DACs are called DAC elements. The
analog output of the i-th DAC element is given by

_ [05+e€n, wyiln]=1;
zin] = { -0.5+e,, yin]=0; (1)

where y;[n] is the input bit, and e, and e, are
the high and low errors of the i-th DAC element, re-
spectively.

The selection of DAC elements is determined by
the operation of the switching blocks that constitute
the digital encoder. Each switching block is labeled
Sk.» in the figure, where & is its horizontal layer number
and r is its vertical depth within the layer. The S;.
switching block outputs are

T 1,001 [n] = 5(Tx,0[0] + 85,0 [n]), (2)
and
Ti-1,2,[n] = 5 (@0 [0] = 810 [1]), 3)

where z; ,[n] is the switching block input, and sy ,[n]
is a switching sequence generated within the switch-
ing block. The switching sequence s ,[n] is =1 when
Zg,-[n] is odd, and 0 otherwise.



In [4], it is shown that the DAC mismatch noise
is a linear combination of these switching sequences.
Therefore, the mismatch noise is spectrally shaped if
each switching block generates a shaped switching se-
quence. For the first-order DAC, the switching se-
quences are generated using symbols of the form

[10---0=10---0] and [-10---010---0], (4)

where each zero corresponds to an even switching block
input, so the zero runs vary in length. At the end
of each symbol, the next symbol type is selected ran-
domly from the two possible symbol-type choices. The
random selection is made independently from the pre-
vious symbol choices with a probability of 0.5 for each
symbol.

3. THE DAC-NOISE PSD

This section presents expressions for the theoretical
mismatch-noise PSD of the DAC in the described sys-
tem, and presents an example which demonstrates that
the theoretical mismatch-noise PSD precisely matches
the mismatch-noise PSD obtained using computer sim-
ulation. The expressions are the result of an analysis
sketched in the following sections. They express the
mismatch-noise PSD as a function of the DAC-element
errors, which, as noted previously, are consequences
of fabricated component mismatches and are taken to
be constants. Regardless of how these errors are dis-
tributed, the mismatch-noise PSD from the DAC is
spectrally shaped, and the expressions accurately de-
scribe the corresponding PSD.

Fig. 3 shows the simulated and theoretical ver-
sions of DAC mismatch-noise PSD for a representative
example. In this example, as in all those observed by
the authors, the theoretical PSD would lie almost en-
tirely on the simulated PSD if the curves were plotted
on the same axis. The DAC-element errors used in
the example were chosen arbitrarily as a collection of
independent and identically distributed (i.i.d.) Gaus-
sian random variables with zero mean. The standard
deviations of the DAC-element errors were chosen to
be 0.3% of the DAC’s nominal step size which corre-
sponds to reasonable matching precision by the stan-
dards of present-day switched-capacitor CMOS circuit
technology. The resulting DAC-element errors were
used to calculate the theoretical mismatch-noise PSD
and to obtain the simulated mismatch-noise PSD. The
remaining components in the simulated AY. modulator
were modeled as ideal circuits. The input to the AXY
modulator was a sequence of i.i.d. Gaussian random
variables with zero mean and standard deviations of
0.1% of the ADC step size, A. This random process
accurately models the kT /C noise associated with the
i[‘ir]st—stage sampling capacitors in the AY modulator in
3.

The theoretical DAC-noise PSD is given by

b
5ue () = S S, ().
k=1

where b is the number of layers in the DAC (i.e., 5 in
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Fig. 3: The DAC-noise PSD from a) simulation and
b) theory.
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and Sy (/%) is constructed below for the cases of k = 1

and k£ > 1.
For1 <k <b,

e .y [WN
Si (e7%) = 42_:1Pk (n,0) sin (7) , (6)

where P, (n,m) is evaluated using the recursive equa-
tion

ootz ,
Pis (n,m) = (3™ (() +204)) B (),
, (7)
with the convention (‘) = 4 [i]. The initial condition
(at k =b) for (7) is

i=m

0) m > nT—l’
(m+1)* m? 1.
Pb (nam) = n(n+1)(n+2) + n(n—1)(n—2)° n>2,m< Tl,
2
m; otherwise.
(8)
For k =1,
Si (€)= 2[1 - 4p, + 2p,] sin® (g)
L, [wn (
+4) [pp-1 —2p,]sin® (7) ,
n=2
where
()

ym , n odd;

n = 1\b-11% (10)
P (%)bi1 <7n[(2) ] >, n even.

4(n—1)(n+1)



4. THE SWITCHING-SEQUENCE PSD

As previously mentioned, the DAC mismatch noise is
a linear combination of the switching sequences. The
Sk (e7*) function in the previous section is the PSD
of each switching sequence in layer k. The derivation
of these PSDs is described following some additional
definitions.

The symbols shown in (4) are partitioned into two
“halves.” The first half of the symbol—i.e., the first
+1 0 --- 0—is called the head of the symbol, and the
second half is called the tail. Thus, each switching
sequence value is an element of either the head or tail
of some symbol. The only nonzero elements within a
given symbol are the head’s first element and the tail’s
first element.

Samples in different symbols are uncorrelated be-
cause the type of each symbol in the switching sequence
is chosen randomly . However, the resulting switching-
sequence PSD is still a function of the input’s statis-
tics because the magnitude of the switching sequence
is a function of the switching block input. For now,
consider the switching block input to be a determin-
istic sequence. Additionally, enumerate the symbols
in increasing order with the first symbol beginning at
sample n = 0. Because inter-symbol samples of s ,[n]
are uncorrelated, it is convenient to view s .[n] as a
sum of windowed sequences:

Sk, [n] = Zs’“‘ Jw;[n], (11)

where w;[n] is 1 if sk,r[n] is an element of the 4-th sym-
bol and 0 otherwise. The random symbol-type choices
cause the windowed sequences to be uncorrelated: for
all n, m, and i # j,

E[sk,r [n] w; [n] sk.,» [Mm] w; [m]] =0; (12)
where F is the ensemble-average expectation operator.

To exploit the orthogonality between these win-
dowed sequences, the PSD of s;.[n] is computed by
obtaining its periodogram. Let N, be the number of
samples of si,[n] that compose its first N symbols,
and let Py (e’*) be the periodogram of s ,[n] across
these samples:

2

, 1R .
Py () = N, g@ Sk, [n] € 7" (13)
Substituting (11) into (13) gives
1 Ns—1 N 2
Pu (%) = 37 | 2 2 swe Inlwclrde™r) (1)

For a given collection of N symbols, the types
of these symbols can be assigned in several different
ways, all of which are equally probable. By averag-
ing over these symbol-type selections, the orthogonal-
ity given by (12) can be exploited to simplify (14). Let
Sy (e7“) be the expected value—averaged over the ran-
dom symbol-type choices—of the periodogram in (14):
Sy (e7%) = E[Py (e*™)]. Upon rearranging the order

of summation, this averaged periodogram is

af8 (s )
(15)

From the orthogonality of the cross-products, as given
by (12), and the linearity of the expectation operator,
it follows that

2]

e’“’ Z E l
(16)

Therefore, Sy (e/*) is the sum of averaged peri-
odograms of the windowed sequences sy, .[n]w;[n]. In
these sequences, there are exactly two nonzero sam-
ples, and these samples alternate in sign. The type of
the i-th symbol determines the sign of the first nonzero
sample in the sequence sy .[n]w;[n], but it has no affect
on its periodogram. Thus, the periodogram of the se-
quence s .[n]w;[n] is not a function of the symbol-type
choices, and (16) can be simplified to

eJ“’ Z N

The periodogram of each windowed sequence is
a function of the number of zeros between its two
nonzero samples. Specifically, it can be verified that

2
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Z Sk,r [TL w; [n] eien (17)

Sy () = i Nis sin” (“’f) (18)

where H; is the head length (i.e., number of samples in
the head) of the i-th symbol. To further simplify (18),
note that the sample variance of s ,[n] in this interval
is

1 & 2N
=2 _ 2 —
O =N ; Si..[n) = N (19)
because in each of the N symbols in this interval, there

are exactly 2 nonzero samples—the head and tail’s first
elements—with s;  [n] = 1, and the remaining samples

in the symbol are 0. Substituting (19) into (18) gives

Sw (') —20Nl Zsm ( )] (20)

With Ey defined as the sample—average expectation
operator, and H as the head-length sequence, (20) can
be written as

Sy (e/*) =263 En [sin2 (%)] . (21)

If the switching block’s input is now assumed to be
an ergodic random process such that the above sample
averages converge to ensemble averages as N — oo,
then the PSD of the switching sequence is

S(e%) = lim Sy (¢) = 20°F [sin2 (%)] ,
22)




where FE is the ensemble-average expected-value opera-
tor,0? = E [s}, [n]], and H is the head-length process.

The derivation above gives insight into the proper-
ties of the resulting PSD and the information required
to compute it. The first-order shape of the switching
sequence PSD is confirmed by (22). Additionally, it
can be shown that the PSD is bounded in magnitude
by 2 and has a continuous derivative that is likewise
bounded in magnitude by 2. This result quantifies the
smoothness of the PSD curve and implies that it is void
of tones. It also follows from (22) that the curvature
(i.e., bandwidth) and signal-band area of the PSD are
dictated by the statistics of the switching block input.

The previous analysis pertains to any switching
block in the tree-structured DAC. To develop the DAC
mismatch-noise PSD, this analysis is applied to each
switching block in the tree-structured DAC. As previ-
ously noted, the Sy (e/*) function in Section 3 is the
PSD for each switching sequence in layer k. There-
fore, (6) and (9) are equations of the form in (22).
The functions P, (n,m) and p, are used to obtain the
head-length probabilities for the switching sequences
in layers k (k > 1) and 1, respectively.

5. SECOND-ORDER AY MODEL

In Section 3, the expressions that are used to gener-
ate the DAC-noise PSD are functions of the statistics
of the random symbol-type choices in the switching
sequences and the behavior of the AY modulator out-
put. For the analysis of the AY modulator output,
it is assumed that the AY modulator has been op-
erating for all time, or equivalently, has been started
with random states in its integrators. In the second-
order, analog AY. modulator with a midscale input,
the AY modulator output is a function of several noise
sources including circuit noise, DAC mismatch noise,
and quantization noise (the difference between the out-
put and input of the quantizer). Therefore, obtaining
the precise statistics of this output based on all of these
noise sources is not practical, and a simplified model
is required.

The simplified model is based on the assumption
that the quantization noise determines the head-length
probabilities and variances of the switching sequences,
and the other noise sources have a negligible affect on
these statistics. Because a midscale input corresponds
to z[n] = 0, this assumption implies that the A¥ mod-
ulator output, y[n] is the quantization error:

y[n] = e[n] — 2e[n — 1] + e[n — 2], (23)
where e[n] is the quantization noise. This is a plausible
assumption because the total power of the quantization
error, across the entire spectrum, is much greater than
the power contributed by the other noise sources in
most AY modulator implementations.

For the analysis of y[n] for n > 0, it follows from
(23) that it is sufficient to determine e[n] for n > —2.
By the assumption described above, e[n] can be ex-
pressed as

e[n]z%—<%—2e[n—1]+e[n—2]>, (24)

where (-) is the fractional-part function. To solve this

nonlinear difference equation, the samples e[—2] and
e[—1] are required. It is shown in [5] that the quant-
ization-noise samples in this AY modulator are uni-
formly distributed and pairwise independent. From
this result, it follows that e[—2] = £, and e[—1] = &,,
where €; and €, are independent random variables that
are uniformly distributed over the interval (—1/2,1/2).
Given these initial random variables and (24), it can
be shown by induction that

eln] = % - <(n+ 1) (er— ) + (% —52>>. (25)

Thus, the AY modulator output is a nonlinear func-
tion of two independent, uniformly distributed random
variables.

Let g[n] be the difference between y[n] and the
DAC’s midscale value: g[n] = y[n] — 2!, where b is
the number of layers in the DAC. It can be shown with
(25) that g[n] has the following properties:
hd Zj[n] € {_1,07 1}

e Alternating Property:
If g[n] = %1, and the next nonzero value in this
sequence occurs at the [-th sample, then §[l] = F1.
e Symmetry Property #1:

P(gm]=ym:0<m<n)=
P(g[m] = —ym : 0 <m < n),

where P is the probability function and each y,, is
an integer.
e Symmetry Property #2:

P(jlm] = g : 0 <m < n) =
PGIm] = yo 1m0 <m <n).

Let &y ,[n] = x4 »[n] — 2%, which is the difference
between zj, .[n] and its midscale value. It can be shown
that each Zj, ,[n] sequence also possesses the properties
listed above. This is a consequence of the operation
of the switching blocks. With these properties, the
functions P, (n,m) and p, in Section 3 can be shown
to produce the desired switching sequence statistics.
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