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ABSTRACT
For dynamic systems, sequential Bayesian estimation requires up-
dating of the filtering and predictive densities. For nonlinear and
non-Gaussian models, sequential updating is not as straightfor-
ward as in the linear Gaussian model. In this paper, densities are
approximated as finite mixture models as is done in the Gaussian
sum filter. A novel method is presented, whereby sequential up-
dating of the filtering and posterior densities is performed by par-
ticle based sampling methods. The filtering method has combined
advantages of Gaussian sum and particle based filters and simula-
tions show that the presented filter can outperform both methods.

1. INTRODUCTION

Many problems in statistical signal processing can be written in
the form of the so called Dynamic State Space (DSS) model [1].
The signal of interest fxn;n 2 INg;x 2 IRmx , is an unobserved
(hidden) Markov process of initial distribution p(x0) represented
by the distribution p(xnjxn�1). The states fxn; n 2 INg are not
observed directly, and hence are called the hidden states of the
DSS. We shall use ‘signal’ and ‘state’ interchangeably. The obser-
vations fyn;n 2 INg;y 2 IRmy , are conditionally independent
given the state process fxn;n 2 INg and represented by the distri-
bution p(ynjxn). Alternatively the model can be written as

xn = f(xn�1) + un (process equation)
yn = h(xn) + vn (observation equation)

(1)

where un and vn are random noise vectors of given distributions.
The process equation represents a system evolving with time n,
where the system is represented by the hidden state xn. Observa-
tions of the system are functions of the signal usually distorted by
noise.

We denote by x0:n and y0:n, the signal and observations up
to time n respectively, i.e. y0:n � fy0; : : : ;yng. In a Bayesian
context, our aim is to estimate recursively in time,

� the marginal posterior distribution of the state at time n

given all the observations up to time n referred to as the
filtering distribution p(xnjy0:n) and

� the prediction distribution of xn+1 given all the observa-
tions up to time n, p(xn+1jy0:n).

When the model is linear with Gaussian noise, the filtering
and prediction densities are Gaussian, and the Kalman filter pro-
vides the mean and covariance sequentially, which is the opti-
mal Bayesian solution [2]. For most nonlinear models and non-
Gaussian noise problems, closed form analytic expression for the
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posterior densities do not exist. Numerical solutions often require
high dimensional integrations that are not practical to implement.
The extended Kalman filter can be applied, however in a few lim-
ited cases. An interesting method is the Gaussian sum (GS) filter
[2], whereby the posterior densities are approximated as a finite
Gaussian mixture. Recently, particle based sampling filters have
been used to update the posterior distributions [3],[4],[5]. A den-
sity is represented by a weighted set of samples from the density,
which are propagated through the dynamic system to sequentially
update the posterior densities. These methods will be collectively
called sequential importance sampling (SIS) filters.

In this paper, we present a novel approach to update the pos-
terior densities called Gaussian sum particle (GSP) filtering. As in
the Gaussian sum filters, the filtering and prediction densities are
approximated as finite Gaussian mixtures, but the sequential up-
date is carried out using sampling based methods. For a nonlinear
model, the Gaussian sum filter uses a bank of extended Kalman
filters running in parallel, wherein the filter equations are obtained
by linearizing around the current state. This introduces errors in
the filtering process, which can cause the filter to diverge. An-
other important difficulty presents itself when the process covari-
ance is large, causing the number of mixands to grow exponen-
tially [6]. In the GSP, an update using particle methods improves
upon the above approximation, thereby giving better performance.
The number of mixands can be kept constant using residual ran-
dom resampling. The presented simulations show that the GSP
filter exhibits better performance than the GS and SIS filters.

2. GAUSSIAN MIXTURE APPROXIMATION

Closed form expressions for the filtering and prediction densities
do not exist in general and therefore, approximations in the form of
finite Gaussian mixtures will be developed. Two important theo-
rems are recalled below from [2] for this purpose. LetN (x;�;�)

denote the normal density of a random vector x where the m-
vector � is the mean, and the covariance is the nonsingular ma-
trix �. The following lemma indicates that any given density can
be approximated as a Gaussian mixture. For a proof see [2], page
213.

Lemma 1 Any probability density p(x) can be approximated as
closely as desired by a density of the form

pG(x) =

GX

i=1

wiN (x;�
i
;�i) (2)

for some integer G, positive scalars wi with
P

G

i=1
wi = 1, m-

vectors �
i

and positive definite matrices �i, so that
R

IRm jp(x)�



pG(x)jdx � � for any given �.

Numerical methods can be used to obtain the mixing weights,
means and covariance matrices, which minimize a given norm
such as the one stated in Lemma 1 [7]. However, more practical
approaches take into account the class of densities to be approxi-
mated.

To obtain insight in the nature of the approximations involved,
we recall the following theorem (for a proof see [2], page 197).

Theorem 1 In model 1, let the noise vectors vn and un be white,
Gaussian noises with zero mean and covariance matrices Rn and
Qn, respectively. If p(xnjy0:n�1) = N (xn;�njn�1;�njn�1),
then for fixed hn(�), �njn�1 and Rn

p(xnjy0:n) = cnp(xnjy0:n�1)p(ynjxn)
�! N (xn;�njn;�njn)

(3)

uniformly in xn and yn as �njn�1 �! 0, where cn is a normal-
izing constant. Also if, p(xnjy0:n) = N (xn;�njn;�njn), then
for fixed f(�), �

njn
and y0:n,

p(xn+1jy0:n) =
R
p(xn+1jxn)p(xnjy0:n)dxn

�! N (xn+1;�n+1jn;�n+1jn)
(4)

as �kjk �! 0. In the above expressions, the mean and covari-
ances are obtained using the extended Kalman filter equations,
where the subscript njn � 1 indicates the parameter estimate at
time n given data y0:n�1.

The theorem indicates that approximations can be obtained for
the filtering and prediction densities if the covariance matrices
�njn�1 and �njn are small. Taking this into account, if the den-
sities are modeled as a finite Gaussian mixture with small covari-
ance matrices, then parallel updates as shown in the above theorem
will yield good approximations to the updated densities. Hence,
the Gaussian sum (GS) filter results in a bank of parallel extended
Kalman filters, under the assumption that the covariance matrices
are small. The GS filter assumes that the noise processes involved
are Gaussian, and the extended Kalman filter equations are formed
by linearizing the process and observation equations. In practical
applications, where the number of mixands in the approximation
of the prediction and filtering densities is not large, divergence may
still occur as a result of the linearizations. Another problem occurs
when the covariance of the mixands grows, which causes all the
mixands to collapse, resulting in only one distinct trajectory. The
covariance of the mixands grows especially when the process noise
is large compared to the covariance of the mixands. To combat this
problem, in [6] it has been suggested to approximate the Gaussian
noise process as a finite Gaussian mixture itself. However, this
results in an exponentially growing number of mixands.

3. GAUSSIAN SUM PARTICLE (GSP) FILTERING

The GS filter assumes that the noise processes are Gaussian, how-
ever for the GSP filter this assumption can be relaxed. Update
of the filtering and prediction densities is done using particles,
which allows for the observation noise to be non-Gaussian. Non-
Gaussian process noise densities are approximated as finite Gaus-
sian mixtures following theorem 1. In the following, the GSP fil-
ter time and measurement update algorithms are presented with
the assumption that the density of the non-Gaussian process noise

un is approximated as a finite Gaussian mixture. The observa-
tion noise vn is assumed Gaussian, however the extension to non
Gaussian noise is straightforwardly deduced by approximating the
noise as a finite Gaussian mixture. Thus we have

p(un) =

KX

k=1

�kN (un; ~�nk;
~�nk): (5)

The linearizations involved in the extended Kalman filter are not
invoked, and a more accurate approximation to the updated densi-
ties can be achieved using particles [8].

For the DSS model 1, suppose that the density p(x0) is ex-
pressed as a Gaussian mixture. Given that, we would like to obtain
the filtering and prediction densities recursively and approximate
them as Gaussian mixtures.

3.1. Time update

Assume that at time n, we have

p(xnjy0:n) =

GX

g=1

wngN (xn;�ng;�ng): (6)

With p(xnjy0:n) expressed as a Gaussian mixture, we would like
to obtain the predictive density p(xn+1jy0:n) and approximate it
as a Gaussian mixture. We have

p(xn+1jy0:n) =
R
p(xn+1jxn)p(xnjy0:n)dxn

=
R P

K

k=1
�kN (xn+1; f(xn) + ~�(n+1)k;

~�(n+1)k)P
G

g=1
wngN (xn;�ng;�ng)dxn

=
P

G

g=1

P
K

k=1
�kwngR

N (xn+1; f(xn) + ~�(n+1)k;
~�(n+1)k)N (xn;�ng ;�ng)dxn

(7)
where equations (6) and (5) have been used to obtain the expres-
sion. Upon inspection of the expression in the integral, we see that
the nonlinearity of the process equation makes the integration quite
intractable. The integral can be approximated as a Gaussian fol-
lowing theorem 1 as is done in the GS filter. Then the time update
algorithm is presented below.

For clarity of notation define g0 = g + (k � 1)K and G0 =

GK. Thus in the above equation we have G0 mixands and refer-
ences to g0 implies references to the respective g and k, since they
are uniquely mapped.

1. For g = 1; : : : ; G, obtain samples from N (xn;�ng;�ng)

and denote them as fx(j)ng gMj=1.

2. For g0 = 1; : : : ; G0, j = 1; : : : ;M obtain samples from
N (xn+1; f(xn = x

(j)
ng ) + ~�(n+1)k;

~�(n+1)k) and denote

them as fx(j)
(n+1)g0

gMj=1.

3. For g0 = 1; : : : ; G0, the weights for each mixand are up-
dated as

�w(n+1)g0 =
wng�kP

K

k=1

P
G

g=1
wng�k

:

4. For g0 = 1; : : : ; G, fx(j)
(n+1)g0

gMj=1 are distributed as Gaus-

sian samples, obtain mean ��(n+1)g0 and covariance ��(n+1)g0

by taking sample means and covariances.



The time updated (prediction) density can now be approximated as

p(xn+1jy0:n) =

G
0X

g0=1

�w(n+1)g0N (xn+1; ��(n+1)g0 ;
��(n+1)g0):

(8)
Inspection of equation (7) shows that, the number of mixands at
each time update step have increased from G to G

0. As in the
GS filter this can result in an exponentially growing number of
mixands [6]. In order to keep the number of mixands constant,
we introduce the use of residual random resampling, which throws
away trajectories that have insignificant weights. Resampling is
performed after the measurement step explained below.

3.2. Measurement update

With p(xn+1jy0:n+1) expressed as a Gaussian mixture, we would
like to obtain the filtering density p(xn+1jy0:n+1) and approxi-
mate it as a Gaussian mixture. After receiving the n+ 1-th obser-
vation yn+1, we update the filtering density as follows:

p(xn+1jyn+1) = Cn+1p(yn+1jxn+1)p(xn+1jy0:n)

= Cn+1

P
G
0

g0=1
�w(n+1)g0N (xn+1; ��(n+1)g0 ;

��(n+1)g0)

�p(yn+1jxn+1)

(9)

where Cn+1 is a normalizing constant and equation (8) has been
used. Using theorem 1, each term on the right hand side given
by N (xn+1; ��(n+1)g0 ;

��(n+1)g0)p(yn+1jxn+1) can be approxi-
mated as a Gaussian. This allows for the following update algo-
rithm :

1. For g0 = 1; : : : ; G0, obtain samples from the distribution
N (xn+1; ��(n+1)g0 ;

��(n+1)g0); and denote them as

fx
(j)

(n+1)g0
gMj=1.

2. As in importance sampling, obtain the respective weights
by Æ(j)

(n+1)g0
= p(yn+1jxn+1 = x

(j)

(n+1)g0
), j = 1; : : : ;M .

3. Since N (xn+1; ��(n+1)g0 ;
��(n+1)g0)p(yn+1jxn+1) is ap-

proximated by a Gaussian, the weighted samples obtained
and denoted as fx(j)

(n+1)g0
; Æ

(j)

(n+1)g0
gMj=1 approximately rep-

resent a Gaussian. The mean and covariance are estimated
by

�(n+1)g0 =

P
M

j=1
Æ
(j)

(n+1)g0
x

(j)

(n+1)g0P
M

j=1
Æ
(j)

(n+1))g0

�(n+1)g0 =P
M

j=1

Æ
(j)

(n+1)g0
(x
(j)

(n+1)g0
��

(n+1)g0
)(x

(j)

(n+1)g0
��

(n+1)g0
)T

P
M

j=1
Æ
(j)

(n+1)g0

:

(10)

4. Update the weights as

~w(n+1)g0 = �wng0

P
M

j=1

Æ
(j)

(n+1)g0P
G

g0=1

P
M

j=1
Æ
(j)

(n+1)g0

; g
0 = 1; : : : ; G0

:

(11)

5. Normalize the weights as

w(n+1)g0 =
~w(n+1)g0P

G0

g0=1
~w(n+1)g0

: (12)
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Fig. 1. Error plot of the estimate along with 3� confidence inter-
vals for the GSP with resampling filter.

The updated filtering density can now be represented as

p(xn+1jy0:n+1) =P
G
0

g0=1
w(n+1)g0N (xn+1;�(n+1)g0 ;�(n+1)g0):

(13)

6. Resampling is performed to reduce the number of mixands
from G

0 to G, as explained in the following section.

3.3. Gaussian resampling for the GSP filter

In many cases it may happen that the weights of all but one mixand
may become insignificant. In such a case, the GS becomes essen-
tially the extended Kalman filter and the filtering density needs
to be reexpressed as a Gaussian mixture with more meaningful
weights. Typically, it is advantageous practically, to keep the num-
ber of mixands constant. For the GSP, we suggest using a method
called residual random sampling [5] which applies a correction
mechanism, so that all the mixands have significant weights, see
[8] for details. The correction mechanism discards the trajecto-
ries with insignificant weights. To keep the number of mixands
constant, mixands with significant weights are duplicated. When
the trajectories are duplicated, the weights are also proportionally
redistributed.

3.4. Inference

The Gaussian sum approximation lends an advantage in that esti-
mation of the hidden state and the error covariance becomes straight-
forward. From equation(13), the estimate ofxn, x̂n = E(xnjy0:n)

and the error covariance �̂n = E(xn � x̂n)(xn � x̂n)
T can be

approximated as

x̂n =
P

G

i=1
wni�ni

�̂n =
P

G

i=1
wni(�ni + (xn � �ni)(xn ��ni)

T ):
(14)

4. SIMULATION RESULTS

One important choice to be made is that of the number of mixands
G. Although theoretical results suggest that a large G is required,



the choice will in general depend on the particular problem. Simu-
lation results of the GS filter on some examples in [6], [2] suggest
that the GS filter works satisfactorily even when G is surprisingly
small (say G = 6). In simulations of the GSP presented here sim-
ilar observations have been made. The GSP filter is applied to the
univariate non-stationary growth model. The DSS equations for
this model can be written as:

xn = �xn�1 + �
xn�1

1+x2
n�1

+ 
 cos(1:2(n� 1)) + un;

yn = x
2
n=20 + vn; n = 1; : : : ; N

(15)

where data were generated using x0 = 0:1 and un � N (1; 0)

8n and � = 0:5; � = 25 and 
 = 8. This is highly nonlinear in
both the process and observation equations. Notice the term in the
process equation which is independent of xn but varies with time
n, which can be interpreted as time varying noise. The likelihood
p(ynjxn) has bimodal nature when yn > 0, but when yn < 0,
it is unimodal. The bimodality makes the problem more difficult
to address using conventional methods. In this example we would
like to illustrate the application of these filters in an interesting
scenario of heavy tailed non-Gaussian noise in a highly nonlin-
ear model. The GSP filter is well suited to tackle these problems,
because heavy tailed densities can be modeled as a Gaussian mix-
ture [9]. For the UNGM model, the noise is now distributed as a
Gaussian mixture given by

p(un) = �N (u; 0; �
2
u1) + (1� �)N (u; 0; �

2
u2):

By varying � and the variances, heavy tailed densities can be mod-
eled quite well. We show results where � = 0:8, �2u1 = 0:1 and
�
2
u2 = 1.

Comparisions are made between the GS filter and the GSP fil-
ter. A large number of simulations were performed where both
filters were used for state estimation. For the present example we
haveG = 16. The number of particles chosen for each mixand up-
date wasM = 100. Resampling was performed with the threshold
chosen as wthresh = 0:001. All the mixands in the prior density
p(x0) are distributed as N (0; 1). Figure 1 shows the prediction er-
ror along with 3� confidence intervals for the GSP filter. Clearly,
the filter shows good performance for this simulation run and sim-
ilar observations were made in other simulations. In Table 1, we
show the mean square error (MSE) for 10 random simulations,
where MSE is defined by

MSE =
1

N

NX

n=1

(xn � x̂n)
2
; (16)

where x̂n is an estimate of xn. In the table, we also show the
sample average

V =
1

N

NX

n=1

(yn � x̂n)
2 (17)

for each simulation run for the two filters. The parameter V can be
interpreted as an estimate of �2v and it indicates how well the filter
has been able to deal with the nonlinearities of the problem. The
closer V

�
2
v

is to 1, the better the performance of the filter for that
simulation run.

Note that the GSP filter outperforms the GS filter significantly
according to the two metrics for this example. The non-Gaussian
noise is easily accomodated in this problem and increasing number
of mixands are reduced by resampling. This example illustrates
the potential of the proposed filter to address a large number of
nonlinear problems with non-Gaussian noise.

Simulation MSE V
Number GS GSP GS GSP

1 94.60 6.72 491.60 1.18
2 75.11 5.30 131.55 1.34
3 39.77 4.44 13.87 1.50
4 105.49 6.80 1163.63 1.46
5 85.66 7.46 137.91 1.34
6 81.32 2.72 459.54 1.19
7 89.27 1.00 138.06 1.71
8 137.50 9.06 1595.93 1.92
9 61.31 4.46 152.63 1.12

10 187.01 9.71 6138.90 1.49

Table 1. MSE and V parameters defined in equations (16) and (17)
for 10 simulation runs for the GS and GSP filters.

5. CONCLUSION

Updating the filtering and prediction densities as finite Gaussian
mixtures using particle based approach has the advantages of easy
implementation and better performance. The GSP filter combines
the principles of the conventional Gaussian sum filtering and parti-
cle based filtering methods to obtain better approximations for the
finite Gaussian mixture. Simulations show that some of the lim-
itations of the GS filter are overcome by the GSP, which lead to
better performance.
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