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ABSTRACT

This paper presents a sequential detection scheme for sinusoidal
signals observed in spatially colored noise which controls the prob-
ability of overestimating the number of signals. The scheme is
based on the Sequentially Rejective Bonferroni Test together with
the nonlinear weighted least squares approach for estimation of the
signal parameters under the hypotheses and alternatives respec-
tively. The power of the method is compared via computer simula-
tions to the commonly used minimum description length method,
MDL. The proposed scheme performs well in comparison to the
MDL method and gives at the same time control of the false alarm
probability.

1. INTRODUCTION

The present paper considers detection of the number of sinusoidal
sources in array signal processing. An important application is,
e.g., radar array processing, using a coherent pulsed Doppler radar,
where it is essential to control the probability of false alarms. Se-
quential detection procedures are often suggested in the literature,
where in each step a threshold is selected to give the test a pre-
scribed level of significance, see, e.g., [1, 2, 3]. However, exact
control of the global level, i.e., the probability of rejecting the
“true hypothesis”, of the detection scheme is a complicated prob-
lem. The reason for this is that the probability of rejecting the hy-
pothesis is dependent on the probability of rejecting the preceding
(false) hypotheses. Recognizing this problem, we will use the Se-
quentially Rejective Bonferroni Test, [4], to bound the global level
of significance. For examples of other applications where this pro-
cedure has been used , see, e.g, [5, 6]. As test statistics in the
individual stages of the procedure, we use the Generalized Likeli-
hood Ratio, GLRT. Order statistics is used for deriving the asymp-
totic distribution of the statistic under the hypothesis in each stage.
Instead of using the maximum likelihood method for parameter
estimation, a two step nonlinear weighted least square approach is
employed which gives consistent and efficient estimates.

2. SIGNAL MODEL

Consider an array ofm sensors which receives the sinusoidalwave-
forms generated byp sources. Them-vectory(t) of noise cor-
rupted sensor outputs is modeled by

y(t) = A(�0)B0s(!0; t) + e(t) ; (1)

where
A(�0) =

�
a(�01) : : : a(�0p)

�
; (2)

B is a diagonal matrix with the complex amplitudes
b0 =

�
b01; : : : ; b0p

�T
on the diagonal and

s(!0; t) =
�
ej!01t : : : ej!0pt

�T
: (3)

The vectora(�0i) is the array steering vector of thei:th source.
The amplitudes,b0i, the frequencies,!0i and the directions of ar-
rival (DOA:s), �0i, are considered to be unknown. The zero sub-
scripts denote the true parameter values. The noise is temporally
white, zero-mean, complex Gaussian random variables with sec-
ond order moment (the superscript “*” denotes complex conjugate
and transpose)

E[e(t)e�(t)] = Q : (4)

The spatial covariance matrixQ is Hermitian and positive definite,
but otherwise arbitrary. Now, based onN snapshots of the data,
y(t), the task is to decide on the number of sources and estimate
the unknown parameters. Concerning the detection procedure, a
scheme that limits the probability of overestimating the number of
sources is desired. In the following, we will call this probability for
the “false alarm probability”. We collect the unknown signal pa-
rameters, corresponding to the hypothesis that there arei signals,
in the vector

�i =
�
Re(b1) : : : Re(bi) Im(b1) : : :

Im(bi) �1 : : : �i !1 : : : !i
�T

(5)

3. HYPOTHESES

Assuming that the maximum number of possible signals,pmax is
given, the following mutually exclusive set of hypotheses,Hi, and
alternatives,Ki, describes the detection problem:

H1 : no signal K1 : one signal
H2 : one signal K2 : two signals

...
...

Hpmax : pmax � 1 signals Kpmax : pmax signals

By mutually exclusive, we mean that only one of the hypothe-
ses can be true at a time. Assuming that some arbitrary detection
scheme has rejected all butq of the hypotheses, we shall use the
rule that the hypothesis corresponding to the minimum number of
signals is true.

4. THE SEQUENTIALLY REJECTIVE BONFERRONI
APPROACH

In [4], an approach, called the ”Sequentially Rejective Bonferroni
Test”, is presented which guarantees a multiple level of signifi-



cance. The following definition of multiple level of significance is
also given therein.

Definition 4.1 A multiple test procedure with critical regionsC1,
C2, ...,Cpmax for testing hypothesesH1,H2, ...,Hpmax is said to
have a ”multiple level of significance”� (for free combinations)
if for any non-empty index setI � f1; 2; 3; : : : ; pmaxg the supre-
mum of the probabilityP

�S
i2I Ci

�
whenHi are true for alli 2 I

is smaller than or equal to�.

This procedure sets a limit on the probability of rejecting a set of
true hypothesis. It is clear that this scheme also limits the prob-
ability of overestimating the number of signals, the false alarm
probability.
Here follows a brief description of the Sequentially Rejective Bon-
ferroni Test. In each stagei, a test statistic is used which has a
tendency of assuming larger values under the alternative,Ki. We
denote the ”critical level” for the outcome of the test statistic by
Pi. Thus,Pi is the probability that a random sample of the test
statistic exceeds the observed value whenHi is true. The follow-
ing stepwise procedure is now followed:

1. Calculate thePi-values.

2. Sort thePi-values in ascending order and denote the se-
quence of ordered values byP(1) � P (2) � ::: � P (pmax).
The hypotheses corresponding to the sortedP -value se-
quence are denoted byH(1); H(2); :::; H(pmax).

3. Seti = 1.

4. If P (i) � �=(pmax� i+1), go to step 5, otherwise accept
H(i); H(i+1); : : : ; H(pmax) and stop.

5. RejectH(i). If i < pmax, seti = i + 1, and go to step 4,
otherwise stop.

As is discussed in [4], this test procedure has a multiple level of
significance for any type of restricted combinations of the hypothe-
ses. Herein, the restriction is that only one hypothesis may be true
at the same time. Since we have postulated that among the hy-
potheses that may be passed by the procedure, all but the one cor-
responding to the minimum number of signals shall be rejected,
we can calculate thePi-values consecutively, acceptHi and stop
whenPi > �=(pmax � i + 1). To clarify this, note that if the
P -values ofHk; k = i + 1; : : : ; pmax; also should exceed the
threshold�=(pmax� i+1) in the original scheme, these hypothe-
ses will be rejected sinceHi represents the minimum number of
signals.

5. DESCRIPTION OF THE PROPOSED SCHEME

As a test statistic in each stage of the scheme, we will use the Gen-
eralized Likelihood Ratio Test, GLRT, see, e.g., [7]. The concen-
trated test statistic, with respect to the unknown spatial covariance
matrix, in stagei becomes

�i = 2N ln jC(�̂Hi
)j � 2N ln jC(�̂Ki

)j ; (6)

whereC(�̂Hi
) andC(�̂Ki

) are the sample covariance matrices
under the hypothesis and the alternative, and�̂Hi

= �̂i�1 and
�̂Ki

= �̂i are the Maximum Likelihood Estimates, MLE, of the
signal parameters. The sample covariance matrix underHi is com-
puted as

C(�̂Hi
)=

1

N

N�1X
t=0

�
y(t)�A(�̂Hi

)B̂Hi
s(!̂Hi

; t)
��

: : :
��

; (7)

and equivalently underKi. Instead of the maximum likelihood,
ML, method, we will use a two step variant of the nonlinear weigh-
ted least squares, WLS, method which gives consistent andeffi-
cientestimates, [8]. In the first step, consistent parameter estimates
are obtained which are used for obtaining a consistent estimate of
the spatial covariance matrix. The inverse of the estimated covari-
ance matrix is then used as weighting in a second step which pro-
duces efficient parameter estimates. Note that this approach gives
the same performance as using the ML estimates since the two step
WLS estimates are consistent and efficient. Under the alternative,
Ki, we will fix the parameters of thei � 1 first signals to the es-
timates obtained underHi and only search for the parameters of
the i:th signal. This is done in order to reduce the computational
burden. This approach means that we try to find a best fit of an
additional signal to the “residual” obtained underHi.

The proposed scheme is the following:

1. Seti = 1.

2. Define the hypothesisHi: i � 1 signals present, and the
alternativeKi: i signals present.

3. Estimate the parameters under the hypothesis and the alter-
native respectively:
UnderHi:
If i = 1: H1 corresponds to no signal. Estimate the sample
covariance asCH1

= 1=N
PN�1

t=0 y(t)y�(t).
If i 6= 1:

(a) Estimatê�Hi
usingC�1(�̂Ki�1

) as weighting in the
WLS method.

(b) Update the estimate of the covariance matrix using
the consistent estimates obtained in 3a. This gives
a consistent estimate of the spatial covariance matrix
underHi,C(�̂Hi

).

(c) Update the signal parameter estimates by using
C�1(�̂Hi

) as weighting in the WLS method. This
step produces efficient signal parameter estimates.

UnderKi:

(a) Fix the parameters of thei � 1 first signals to the
estimates obtained underHi.

(b) Using the WLS method withC�1(�̂Hi
) as weight-

ing, computemN estimates of the direction of ar-
rival, �, the angular frequency,!, and the complex
amplitude,b, of thei:th signal over an(!k; �l)-grid,
k = 1; : : : ; N , l = 1; : : : ;m.

4. Compute the maximum of the correspondingmN test statis-
tics:

�̂imax = max
k;l

�
2N ln jC(�̂Hi

)j� 2N ln jC(�̂Ki;(k;l)
)j
�
:

The maximizingk andl define the parameter estimates of
thei : th source underKi, b̂Ki

= b(k;l), �̂Ki
= �(k;l) and

!̂Ki
= !(k;l), see also Equation (14).

5. Compute thePi value, see Equation (22) in Section 6.

6. If Pi � �=(pmax � i + 1), go to Step 7, otherwise accept
Hi and stop.

7. RejectHi. If i < pmax, seti = i + 1 and go to Step 2,
otherwise stop.



6. DISTRIBUTION OF THE TEST STATISTIC

To calculate thePi-value, we need to know the distribution of the
test statistic underHi. This is not an easy task, since underHi,
the amplitude of thei:th signal is zero, which means that the cor-
responding! and� are not observable. A consequence of this is
that the standard asymptotic theory of the GLRT is not applicable.
However, conditioned on an arbitrary! and�, asymptotic GLRT
theory states that the distribution is a�2-distribution with degrees
of freedom equal to the difference in the number of parameters un-
der the hypothesis and the alternative. In this case, this difference
is 2, corresponding to the real and imaginary parts ofb. To obtain
the distribution when maximizing the test statistic over an(!; �)-
grid, we will use the concept of order statistics. First, however, we
will verify the “conditioned” �22-distribution when the detection
scheme and corresponding WLS estimates in Section 5 are used.
Consider

C(�̂Ki
) =

1

N

N�1X
t=0

�
y(t)�A(�̂Ki

)B̂Ki
s(!̂Ki

; t)
�

�
y(t)�A(�̂Ki

)B̂Ki
s(!̂Ki

; t)
��

= : : : = C(�̂Hi
)� ~Y(!)b�a�(�)

�a(�)b ~Y�(!) + jbj2a(�)a�(�) ; (8)

where the parameterb is the complex amplitude of thei:th target
(the “additional target underKi”) and the quantity~Y(!) is defined
by

~Y(!)=
1

N

N�1X
t=0

�
y(t)�A(�̂Hi

)B̂Hi
s(!̂Hi

; t)
�
e�j!t : (9)

This quantity is the Fourier transform of the residual underHi

evaluated at!. We have also used the fact that we, underKi, fix
the parameter estimates of the firsti � 1 targets to those obtained
underHi. Completing the square in Equation (8) gives

C(�̂Ki
) = C(�̂Hi

)� ~Y(!) ~Y�(!) +
�
~Y(!)� a(�)b

�
�
~Y(!)� a(�)b

�
�

(10)

Defining the matrixW = C(�̂Hi
)� ~Y(!) ~Y�(!), using the de-

terminant rulejI+ABj = jI+BAj for compatible dimensions,
we get (dropping the dependence on! and� for notational conve-
nience)

ln jC(�̂Ki
)j=ln jWj+ln

�
1+
�
~Y�ab

�
�

W
�1
�
~Y�ab

��
: (11)

Using this expression in Equation (6) gives after some algebra

�i=�2N ln
��

1� ~Y�
C
�1
Hi

~Y
��
1+( ~Y�ab)�W�1( ~Y�ab)��:

(12)
The quantities~Y and ~Y� ab areOp(1=

p
N) underHi and since

the matrixW is equal toCHi
+ Op(1=N) the expression above

tends to

�i = �2N ln
�
1+
�
~Y�ab

��
C
�1
Hi

�
~Y�ab

�
�~Y�

C
�1
Hi

~Y
�
; (13)

where we have neglected terms of orderOp(1=N
2). Now, the

WLS estimate underKi of the complex amplitude of thei:th signal

is given by (using as weighting the matrixC�1Hi
)

b̂ =
a�(�)C�1

Hi

~Y(!)

a�(�)C�1
Hi
a(�)

: (14)

Inserting this into Equation (13) gives with a little algebra

�i(!; �) = �2N ln

 
1� j ~Y(!)C�1

Hi
a(�)j2

a�(�)C�1
Hi
a(�)

!
: (15)

UnderHi, ~Y isOp(1=
p
N), and we may perform a Taylor series

expansion giving the final asymptotic expression as

�i(!; �) = 2N
j ~Y(!)C�1

Hi
a(�)j2

a�(�)C�1
Hi
a(�)

= ~Y�

w(!)Paw(�) ~Yw(!) ; (16)

where ~Yw(!) =
p
2NQ�1=2Y(!) andaw(�) = Q�1=2a(�)

(note thatCHi
tends toQ w.p.1 underHi). The matrixPaw(�)

is the orthogonal projector onto the range space ofaw(�). Condi-
tioned on a particular grid point,(!k; �l), the test statistic is�2-
distributed (underHi) with two degrees of freedom since, asymp-
totically,

�i(!k; �l) = ~Y�

w(!k)Paw(�l) ~Yw(!k) =

����� aw(�l)
� ~Yw(!k)p

aw(�l)�aw(�l)

�����
2

;

(17)
is the squared absolute value of a complex normal variable with
variance equal to2. We remind that asymptotically, underHi,
Y(!) 2 Nc(0;

1
N
Q), which implies that~Yw 2 Nc(0; 2I) (here,

Nc(�; �) denotes the multivariate complex normal distribution).
Since the real and imaginary parts of the linear combination are in-
dependent with unit variance respectively, the�2-distribution fol-
lows.
We will now maximize�i(!; �) over a grid and use the concept
of order statistics to derive a useful asymptotic distribution under
Hi. In the!-direction we will use an FFT-grid over which the test
statistic will be maximized. Due to the orthogonal properties of
the Discrete Fourier transform, the test statistics will be indepen-
dent for different frequency bins. In the�-direction, anm-point
uniformly spaced grid will be used. We note that, for a particular
FFT bin, different test statistic values are not independent since,
in general, the whitened steering vectors corresponding to direc-
tions�k and�l are not orthogonal. However, to be able to proceed
we will assume that independence applies. We may then use order
statistics for deriving the asymptotic distribution underHi. An im-
portant remark in this context is that it can be shown that, using the
Pi-values derived subsequently, the multiple level of significance
is retained if the test statistics are dependent. We proceed by not-
ing that the�22-distribution is equal to the exponential distribution
with parameter
 = 0:5. Thus, denoting�i(!k; �l) by �ik;l , the
probability density function and the cumulative distribution func-
tion are given by

f�ik;l (�) =
1

2
e�

1

2
� ; � > 0 ; (18)

F�ik;l (�) =
�
1� e�

1

2
�
�
; � > 0 : (19)

The concept of order statistics for independent variables, see e.g.
[9], gives the probability density function of the maximum value



of �ik;l over the grid as

f�imax
(�) = mNFmN�1

�ik;l
(�)f�ik;l (�)

=
mN

2

�
1� e�

1

2
�
�mN�1

e�
1

2
�; � > 0 : (20)

Recognizing the inner derivative in (20) produces the cumulative
distribution function,F�imax

(�) of �imax as

F�imax
(�) =

�
1� e�

1

2
�
�mN

; (21)

so that thePi-value is given by, denoting the observed value of
�imax by �̂imax ,

Pi = 1� F�imax
(�̂imax) = 1�

�
1� e�

1

2
�̂imax

�mN

: (22)

7. COMPUTER SIMULATIONS

In the simulations, we use a uniform linear array with 10 elements
placed at a distance of�=2 apart. The number of snapshots is
256 and the number of independent Monte Carlo runs is 100. In
the detection scheme, the multiple level of significance is set to
� = 0:1 and the maximum number of sources is set topmax = 4.
Two jammers, each one having a jammer-to-noise-ratio, JNR, of
20 dB, are present at -10 and -20 degrees relative the broadside of
the array. The sources are located at0Æ and20Æ with frequencies
!01 = 0:793 and!02 = 1:578 (chosen such that they do not cor-
respond to a grid point in the FFT). The source at 20Æ is 10 dB
weaker in SNR than the one at0Æ. In Figure 1, the probability of
detecting the correct number of sources and the false alarm prob-
ability are plotted as a function of the SNR for the sources. The
SNR is varied by varying the SNR of the source at0Æ from -30 to
20 dB in steps of 5 dB (the source at20Æ, having 10 dB lower SNR,
is thus swept from -40 dB to 10 dB). As a comparison, the perfor-
mance of the MDL, [10], scheme is plotted in the same figure. We
see that the MDL scheme has a larger probability of overestimating
the number of signals while the same probability of the proposed
scheme is below0:1. A second simulation was run (not shown
here due to limited space), using the same parameters except that
�02 was set to5:7Æ, which corresponds to half the beamwidth of
the array. Also in this case the method worked well in comparison
to the MDL method with about the same threshold as in Figure 1
and a limited false alarm probability (below 0.1). However, due to
the fact that the inverse of the estimated covariance matrix assum-
ing Hi is used when we search for thei:th signal, there is a risk
that thei:th signal cancels for high SNR:s. This phenomenon was
observed for an SNR of 20 dB in this second simulation. This is
the price paid for fixing the parameter estimates of thei � 1 first
signals to those obtained underHi. If all the parameters assuming
Ki are estimated “from scratch”, a consistent estimate of the co-
variance matrix underKi can be computed, and the cancellation
problem can be avoided.

8. CONCLUSIONS

A detection scheme for determining the number of sinusoidal sig-
nals impinging on a sensor array in spatially colored noise environ-
ments was presented. The scheme limits the probability of overes-
timating the number of sources, or more precisely, exhibits a con-
trollable multiple level of significance. In connection to this proce-
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Fig. 1. Solid: probability of correct decision, dashed: false alarm
probability. *: proposed method, o: MDL.

dure, a two step weighted lest squares procedure which yields con-
sistent and efficient parameter estimates was presented and used
in place of the maximum likelihood estimates in the generalized
likelihood ratio tests. Computer simulations showed good perfor-
mance of the test procedure in comparison to the MDL method.
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