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ABSTRACT B is a diagonal matrix with the complex amplitudes

: , _ __bo=]bos, ... ,bop ]" onthe diagonal and
This paper presents a sequential detection scheme for sinusoidal

signals observed in spatially colored noise which controls the prob- s(wo,t) = [ efwort .. efwont ]T . 3)
ability of overestimating the number of signals. The scheme is

based on the Sequentially Rejective Bonferroni Test together with The vectora(6fo;) is the array steering vector of thigh source.

the nonlinear weighted least squares approach for estimation of thelhe amplitudesho;, the frequenciesyo; and the directions of ar-
signal parameters under the hypotheses and alternatives respetival (DOA:s), 6o;, are considered to be unknown. The zero sub-
tively. The power of the method is compared via computer simula- Scripts denote the true parameter values. The noise is temporally
tions to the commonly used minimum description length method, white, zero-mean, complex Gaussian random variables with sec-
MDL. The proposed scheme performs well in comparison to the ond order moment (the superscript “*” denotes complex conjugate
MDL method and gives at the same time control of the false alarm and transpose)
probability. Ele(te" ()] = Q. @)
The spatial covariance matr is Hermitian and positive definite,

but otherwise arbitrary. Now, based @n snapshots of the data,

, the task is to decide on the number of sources and estimate
unknown parameters. Concerning the detection procedure, a
scheme that limits the probability of overestimating the number of

1. INTRODUCTION

. . . . t
The present paper considers detection of the number of smusmdaﬁ](e)
sources in array signal processing. An important application is,

€.g., radararray processing, using a coherent pulsed Doppler radag, \ ces js desired. In the following, we will call this probability for

Where_ itis essa_entlal to control the probability of fals_e alarms. Se- the “false alarm probability”. We collect the unknown signal pa-
guential detection procedures are often suggested in the literature,

where in each step a threshold is selected to give the test a prelfﬁ1 rt?]eet(\e/resétcc)?rrespondmg to the hypothesis that theré signals,
scribed level of significance, see, e.g., [1, 2, 3]. However, exact

control of the global level, i.e., the probability of rejecting the n;, = [ Re(br) ... Re(bi) Im(by)

“true hypothesis”, of the detection scheme is a complicated prob- T

lem. The reason for this is that the probability of rejecting the hy- Im(bi) 61 ... 6w ... wi ] (5)
pothesis is dependent on the probability of rejecting the preceding

(false) hypotheses. Recognizing this problem, we will use the Se- 3. HYPOTHESES

quentially Rejective Bonferroni Test, [4], to bound the global level

of significance. For examples of other applications where this pro- Assuming that the maximum number of possible signals.. is
cedure has been used , see, e.g, [5, 6]. As test statistics in th@iven, the following mutually exclusive set of hypothesHs, and
individual stages of the procedure, we use the Generalized Likeli-alternatives K, describes the detection problem:

hood Ratio, GLRT. Order statistics is used for deriving the asymp-

totic distribution of the statistic under the hypothesis in each stage. 1;111 ) ho S|gnal K, : one slgnal
; . S 2 one signal K,: two signals
Instead of using the maximum likelihood method for parameter
estimation, a two step nonlinear weighted least square approach is :
employed which gives consistent and efficient estimates. Hy,...: Pmaz—1signals K, .. : Pmaz Signals
By mutually exclusive, we mean that only one of the hypothe-
2. SIGNAL MODEL ses can be true at a time. Assuming that some arbitrary detection
scheme has rejected all bybf the hypotheses, we shall use the
Consider an array of sensors which receives the sinusoidale- rule that the hypothesis corresponding to the minimum number of
forms generated by sources. Then-vectory(t) of noise cor- signals is true.

rupted sensor outputs is modeled by

4. THE SEQUENTIALLY REJECTIVE BONFERRONI
y(t) = A(60)Bos(wo, t) +e(t), (1) APPROACH

where In [4], an approach, called the "Sequentially Rejective Bonferroni
A(0o) =[ a(bo1) ... a(bop) |, 2) Test”, is presented which guarantees a multiple level of signifi-



cance. The following definition of multiple level of significance is and equivalently undek;. Instead of the maximum likelihood,
also given therein. ML, method, we will use a two step variant of the nonlinear weigh-
ted least squares, WLS, method which gives consistentefird
cientestimates, [8]. In the first step, consistent parameter estimates
are obtained which are used for obtaining a consistent estimate of
the spatial covariance matrix. The inverse of the estimated covari-
ance matrix is then used as weighting in a second step which pro-
duces efficient parameter estimates. Note that this approach gives
the same performance as using the ML estimates since the two step
This procedure sets a limit on the probability of rejecting a set of WLS estimates are consistent and efficient. Under the alternative,
true hypothesis. It is clear that this scheme also limits the prob- K, we will fix the parameters of the— 1 first signals to the es-
ability of overestimating the number of signals, the false alarm timates obtained unded; and only search for the parameters of
probability. thei:th signal. This is done in order to reduce the computational
Here follows a brief description of the Sequentially Rejective Bon- burden. This approach means that we try to find a best fit of an
ferroni Test. In each stage a test statistic is used which has a additional signal to the “residual” obtained undéy.

tendency of assuming larger values under the alternaliye\We

denote the "critical level” for the outcome of the test statistic by The proposed scheme is the following:

P;. Thus, P; is the probability that a random sample of the test 1. Seti = 1.

statistic exceeds the observed value wiris true. The follow-
ing stepwise procedure is now followed:

1. Calculate theP;-values.

Definition 4.1 A multiple test procedure with critical regior;,
Cs, ...,Cp,... fortesting hypothese:, Hs, ..., Hp,, .. is said to
have a "multiple level of significance& (for free combinations)
if for any non-empty index sétC {1,2,3,...,Pma=} the supre-
mum of the probability® (|, C:) whenH; are true foralli € I

is smaller than or equal tex.

2. Define the hypothesifl;: ¢« — 1 signals present, and the
alternativeK;: i signals present.

3. Estimate the parameters under the hypothesis and the alter-

2. Sort theP;-values in ascending order and denote the se- native respectively:
quence of ordered values B/ < P < ... < p(Pmaz), UnderH;:
The hypotheses corresponding to the sorfédalue se- If i = 1: H, corresponds to no signal. Estimate the sample
quence are denoted iy, H®) | ... {(Pma=), covariance a€x, = 1/N SN < y(t)y" (t).
3. Seti =1. If i #1:
4. 1f P < a/(pmez —i+1), go to step 5, otherwise accept a) Estimate},. usingC~'(7, .)asweightingin the
HY, g, HPmes) and stop. @ WLS mgh%d. 9 ) o
5. RejectH V. If i < pjas, Seti = i + 1, and go to step 4, (b) Update the estimate of the covariance matrix using
otherwise stop. the consistent estimates obtained in 3a. This gives
As is discussed in [4], this test procedure has a multiple level of a consistent estimate of the spatial covariance matrix
significance for any type of restricted combinations of the hypothe- underH;, C(jg,)-
ses. Herein, the restriction is that only one hypothesis may be true (c) Update the signal parameter estimates by using
at the same time. Since we have postulated that among the hy- C~!(, ) as weighting in the WLS method. This
potheses that may be passed by the procedure, all but the one cor- step proauces efficient signal parameter estimates.
responding to the minimum number of signals shall be rejected,
we can calculate th&;-values consecutively, acceft; and stop UnderK;:
whenP; > a/(pmaz — i + 1). To clarify this, note that if the

(a) Fix the parameters of the— 1 first signals to the

P-values ofHi, k = i + 1,...,pma=, also should exceed the . :
’ oo marns estimates obtained undéf;.
thresholdx/ (pmaez — 3+ 1) in the original scheme, these hypothe-
ses will be rejected sinc; represents the minimum number of (b) Using the WLS method witke™" (171, ) as weight-
signals. ing, computem N estimates of the direction of ar-
rival, 8, the angular frequencyy,, and the complex
mpli f thei:th signal over -gri
5. DESCRIPTION OF THE PROPOSED SCHEME amplitude, of thei:th signal over arfu. f:)-grid
As a test statistic in each stage of the scheme, we will use the Gen- 4. Compute the maximum of the correspondingy test statis-
eralized Likelihood Ratio Test, GLRT, see, e.g., [7]. The concen- tics:
trated test statistic, with respect to the unknown spatial covariance . .
matrix, in stage becomes Xipaw = max (ZNln |C(715,)|— 2N 1n |C(nKi,(k-,l))|) .
Ai = 2N |C ()| = 2N In |C(i, )], ®) The maximizingk and! define the parameter estimates of
whereC(7);,) and C(1j,) are the sample covariance matrices thei : th source undek, br;, = b, 1), Or; = 6,1y and
under the hypothesis and the alternative, gpd = n,_, and WK, = wW(k,), See also Equation (14).
Nk, I_ 7); are the Mzammum IL'ke“hOOd Estimates, MLE, of the 5. Compute the?; value, see Equation (22) in Section 6.
T - .
signal parameters. The sample covariance matrix uHge com 6. If P < o/ (pmas — i + 1), gO 0 Step 7, otherwise accept
puted as
H,; and stop.
N-1 .
1 * 7. RejectH;. If i < pmaz, S€ti = 7 + 1 and go to Step 2,
;) ( A(6n)Br.s(@n,, t)) ( ) » (1) otherwise stop.

t=0



6. DISTRIBUTION OF THE TEST STATISTIC is given by (using as weighting the matﬂ;,i)
To calculate theP;-value, we need to know the distribution of the . :
test statistic undeH;. This is not an easy task, since undér, b= Wflaw) . (14)
the amplitude of the:th signal is zero, which means that the cor- i

responding. andf are not observable. A consequence of this is |nserting this into Equation (13) gives with a little algebra
that the standard asymptotic theory of the GLRT is not applicable.
However, conditioned on an arbitraryandf, asymptotic GLRT
theory states that the distribution ig&-distribution with degrees

of freedom equal to the difference in the number of parameters un-
der the hypothesis and the alternative. In this case, this differenc

a’()Cp Y (w)

Y (w)Cx

a9
Ai(w,0) = —2NIn (1 — W) . (15)

is 2, corresponding to the real and imaginary parté.ofo obtain
the distribution when maximizing the test statistic over@nd)-

grid, we will use the concept of order statistics. First, however, we

will verify the “conditioned” x3-distribution when the detection

scheme and corresponding WLS estimates in Section 5 are used.

Consider

Z_ ( i)BKiS(GJKi,t)>

y(t) = ABx,)Brs(@x, 1))
= ... =C(fy ) Y (w)b*a* (6)

—a(0)bY" (w) + [b]*a(8)a” (6) , ®)
where the parametéris the complex amplitude of theth target

(the “additional target undek;”) and the quantity¥ (w) is defined
by

N-1
1 PO . vy
=" (yO-ABn)Bus@n,, 1) e (9)
t=0
This quantity is the Fourier transform of the residual unégr
evaluated alv. We have also used the fact that we, undégr fix

the parameter estimates of the first 1 targets to those obtained
underH;. Completing the square in Equation (8) gives

Clik,) = Clig,) — Y (@)Y @)+ (¥Y(w)-a@)p)
(Y - a(e)b)*

Defining the matrixW = C(#);,) — Y (w)Y"(w), using the de-
terminant ruldI + AB| = |T + BA| for compatible dimensions,

we get (dropping the dependencewandd for notational conve-
nience)

(10)

In |C (7, )|=In [W+in (1+ (Y —ab) W' (Y-ab) ) . (12)

Using this expression in Equation (6) gives after some algebra

N==2Nn ([1- Y CH Y] [1+ (Y —ab)'W (¥ —ab)]).

_ _ (12)
The quantitiesy’ andY — ab areO,(1/v/N) underH; and since
the matrixW is equal toCx; + O,(1/N) the expression above
tends to

A = —2Nn (1+(Y—ab) Cyl(Y-ab) =¥"C,1¥), (13)

where we have neglected terms of ordgy(1/N?). Now, the
WLS estimate undeK’; of the complex amplitude of thieth signal

eUnderHi, Y is 0,(1/v/N), and we may perform a Taylor series
p y p y

expansion giving the final asymptotic expression as

Y (w)Cq a®)’

’\i(w79) -1
a*(0)Cy, a(h)
= Y, (@)Pa,(0)Yu(w), (16)
where Y, (w) = vV2NQ Y?2Y(w) anda, (§) = Q~*/2a()

(note thatC g, tends toQ w.p.1 underH;). The matrixPa,, (6)

is the orthogonal projector onto the range spaca,df). Condi-
tioned on a particular grid poin{ws, 6;), the test statistic i$<2-
distributed (undei;) with two degrees of freedom since, asymp-
totically,

A (e 01) = Y (k)P (00) ¥ () = %
17

)

is the squared absolute value of a complex normal variable with
variance equal t@. We remind that asymptotically, undéf;,

Y (w) € N.(0, +Q), which implies thatY,, € N.(0,2I) (here,
Ne(+y) denotes the multivariate complex normal distribution).
Since the real and imaginary parts of the linear combination are in-
dependent with unit variance respectively, §ffedistribution fol-
lows.

We will now maximize\;(w, ) over a grid and use the concept
of order statistics to derive a useful asymptotic distribution under
H;. In thew-direction we will use an FFT-grid over which the test
statistic will be maximized. Due to the orthogonal properties of
the Discrete Fourier transform, the test statistics will be indepen-
dent for different frequency bins. In th&edirection, amm-point
uniformly spaced grid will be used. We note that, for a particular
FFT bin, different test statistic values are not independent since,
in general, the whitened steering vectors corresponding to direc-
tions#,, andé; are not orthogonal. However, to be able to proceed
we will assume that independence applies. We may then use order
statistics for deriving the asymptotic distribution und&r Anim-
portant remark in this context is that it can be shown that, using the
P;-values derived subsequently, the multiple level of significance
is retained if the test statistics are dependent. We proceed by not-
ing that they3-distribution is equal to the exponential distribution
with parametery = 0.5. Thus, denoting\;(ws, 6:) by A;, ;, the
probability density function and the cumulative distribution func-
tion are given by

P () = %e*%%xw, (18)

_1
By, = (1-e#)az0. 9
The concept of order statistics for independent variables, see e.g.

[9], gives the probability density function of the maximum value



of A;, , over the grid as
Priaw W) = mNFZY ) f, (V)
= _mN (1 — eféx)

2
Recognizing the inner derivative in (20) produces the cumulative
distribution functionFy; ~ (A)of A, as

_ L1y
e INA0. (20)

Frpa ) = (1= )" (21)

so that theP;-value is given by, denoting the observed value of
Aimas bY A

tmaz

P, =1-—F, - (22)

tmaz

N < N
R = 1= (1= ¢ Honer )"

7. COMPUTER SIMULATIONS

Solid: probability correct number of signals. Dashed: probability of
overestimation. *: The proposed method, o: MDL.
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In the simulations, we use a uniform linear array with 10 elements Fig. 1. Solid: probability of correct decision, dashed: false alarm
placed at a distance 0f/2 apart. The number of snapshots is probability. *: proposed method, o: MDL.

256 and the number of independent Monte Carlo runs is 100. In
the detection scheme, the multiple level of significance is set to
a = 0.1 and the maximum number of sources is seitQ. = 4.

dure, a two step weighted lest squares procedure which yields con-

Two jammers, each one having a jammer-to-noise-ratio, JNR, of sistent and efficient parameter estimates was presented and used
20 dB, are present at -10 and -20 degrees relative the broadside dh place of the maximum likelihood estimates in the generalized

the array. The sources are locatedaand20° with frequencies
wo1 = 0.793 andwop> = 1.578 (chosen such that they do not cor-
respond to a grid point in the FFT). The source &t 2010 dB
weaker in SNR than the one @ft. In Figure 1, the probability of
detecting the correct number of sources and the false alarm prob-
ability are plotted as a function of the SNR for the sources. The
SNR is varied by varying the SNR of the sourcé&afrom -30 to

20 dB in steps of 5 dB (the source24, having 10 dB lower SNR,

is thus swept from -40 dB to 10 dB). As a comparison, the perfor-
mance of the MDL, [10], scheme is plotted in the same figure. We
see that the MDL scheme has a larger probability of overestimating
the number of signals while the same probability of the proposed
scheme is belovd.1. A second simulation was run (not shown

here due to limited space), using the same parameters except that

fo2 Was set t5.7°, which corresponds to half the beamwidth of
the array. Also in this case the method worked well in comparison
to the MDL method with about the same threshold as in Figure 1
and a limited false alarm probability (below 0.1). However, due to
the fact that the inverse of the estimated covariance matrix assum-
ing H; is used when we search for tlig¢h signal, there is a risk
that thei:th signal cancels for high SNR:s. This phenomenon was
observed for an SNR of 20 dB in this second simulation. This is
the price paid for fixing the parameter estimates ofithe1 first
signals to those obtained undgf. If all the parameters assuming
K; are estimated “from scratch”, a consistent estimate of the co-
variance matrix undek; can be computed, and the cancellation
problem can be avoided.

8. CONCLUSIONS

A detection scheme for determining the number of sinusoidal sig-
nals impinging on a sensor array in spatially colored noise environ-

ments was presented. The scheme limits the probability of overes-[lo]

timating the number of sources, or more precisely, exhibits a con-
trollable multiple level of significance. In connection to this proce-

likelihood ratio tests. Computer simulations showed good perfor-
mance of the test procedure in comparison to the MDL method.
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