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ABSTRACT

This paper describes a robust feature extraction method for
continuous speech recognition. Central to the method is
the Minimum Variance Distortionless Response (MVDR)
method of spectrum estimation and a feature trajectory smooth-
ing technique for reducing the variance in the feature vec-
tors. The above method, when evaluated on continuous
speech recognition tasks in a stationary and moving car,
gave an average relative improvement in WER of greater
than 30%.

1. INTRODUCTION

Estimating the time-varying spectrum is a key first step in
most feature extraction methods for speech recognition. Cep-
stral coefficients derived from a modified short-time spec-
trum is the most popular feature set and has been empiri-
cally observed to be the most effective for speech recogni-
tion. The modification of the spectrum is often based on per-
ceptual considerations. Mel-Filtered Cepstral Coefficients
(MFCC) is one such popular feature set.

Both parametric and nonparametric methods of spec-
trum estimation have been studied for speech modeling. Of
the parametric methods the LPC based all-pole spectrum is
most widely used. However, it has been noted, in the speech
modeling literature, that for medium pitch voiced speech
and high pitch voiced speech, LP based all-pole models do
not provide good models of the spectral envelope, [1]. Fur-
thermore, LP based cepstra are known to be very sensitive
to noise. Nonparametic spectrum estimation methods such
as the FFT-based Periodogram or Modified Periodogram on
the other hand are attractive since these methods are entirely
data-independent and hence do not suffer from problems
arising due to modeling deficiencies. However, these meth-
ods often are not robust and therefore perform poorly in
noisy and adverse conditions. In general, parametric meth-
ods with accurate models suited for the given application
should be able to provide more accurate and robust esti-
mates of the short-term power spectrum.

In this paper, we examine the use of the recently pro-
posed Minimum Variance Distortionless Response (MVDR)
spectrum-based modeling of speech, [2], for speech recog-

nition. In [2], it was shown that high order MVDR mod-
els provide elegant envelope representations of the short-
term spectrum of voiced speech. This is particularly suited
for speech recognition where model order is not a concern.
Furthermore, it was shown that the MVDR spectrum is ca-
pable of modeling unvoiced speech, and mixed speech spec-
tra. From a computational perspective, the MVDR model-
ing approach is also attractive because the MVDR spectrum
can be simply obtained from a non-iterative computation in-
volving the LP Coefficients, and can be based upon conven-
tional time-domain correlation estimates.

In speech recognition, in addition to faithful represen-
tation of the spectral envelope, statistical properties such as
the bias and variance of the spectral estimate are of great in-
terest too. Variance in the feature vectors has a direct bear-
ing to the variance of the Gaussians modeling the speech
classes. In general, reduction in feature vector variance in-
creases class separability. Improved class separability can
potentially increase recognition accuracy and decrease search
speed. We present a simple smoothing technique that effec-
tively reduces variance of the feature vectors and therefore
the Gaussians modeling of the speech classes.

2. MVDR BASED FRONTEND

In nonparametric spectrum estimation methods like the FFT-
based Periodogram method, the power is measured using a
single sample at the output of a bandpass filter centered at
the frequency of interest [3, 4]. The nature of the bandpass
filter is frequency and data independent, and determined
only by the nature and length of the window used. The win-
dow length is usually equal to the data segment length. For
speech recognition we are more interested in the statistical
stability of the estimate than the spectral resolution limit.
Two statistical properties of the spectrum estimate are of
interest, viz., the bias and variance. A large bias or vari-
ance in estimates will ultimately lead poor acoustic models.
Bias is mainly caused by the leakage of power from sur-
rounding frequencies through the sidelobes or the mainlobe
of the bandpass filter. Since a single sample is used to es-
timate the power, Periodogram estimates have a large vari-
ance. Furthermore, since the bandpass filter is data indepen-



dent there is no flexibility to modify the sidelobe properties
to suppress dominant neighboring peaks. An approach to
lower the variance is to use the Modified Periodogram or the
Welch method. Such an approach leads to lower variance at
the expense of larger bias. The larger bias is a consequence
of the smaller window length resulting in a bandpass filter
with larger bandwidth. Also the bandpass filter is data inde-
pendent. Both these shortcomings will be addressed by the
MVDR and variance reduction methods described next.

2.1. Bias and Variance Reduction

In the MVDR spectrum estimation method, the signal power
at a frequency ��� is determined by filtering the signal by a
specially designed FIR filter

�����	�
and measuring the power

at its output. The FIR filter
�����	�

is designed to minimize
its output power subject to the constraint that its response at
the frequency of interest, � � , has unity gain, namely
 ����
���������������� ����� �!�#"$
��%� � �'&)(
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This constraint, known as the distortionless constraint, can
be written as *,+ � � � ��-.�/&

, where
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the distortionless filter
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is obtained by solving the fol-

lowing constrained optimization problem,BDC>EF - +HG �JI 3K- subject to * + � � � �!-L�M&#(
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where N �JI 3 is the
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Toeplitz autocor-
relation matrix of the data. The solution to this constrained
optimization problem is [6, 5]-,V4� G " 3�WI 3 * � ��� �* + � � � � G " 3�WI 3 * � � � �

(
(3)

The distortionless constraint ensures that the MVDR dis-
tortionless filter

� � ���	� will let the input signal components
with frequency � � pass through undistorted, and the min-
imization of the output power ensures that the remaining
frequency components in the signal are suppressed in an op-
timal manner. This synergistic constrained optimization is a
key aspect of the MVDR method that allows it to provide a
lower bias with a smaller filter length than the Periodogram
method. Also, unlike the Periodogram method, the power
is computed using all the output samples of the bandpass
filter, which gives a reduction in variance too (c.f. Section
2.2). Futhermore, smaller filter lengths, for the same bias
and variance, enables usage of a second temporal averag-
ing technique for further variance reduction in the feature
vectors, as will be explained in the Section 2.4.

2.2. MVDR Spectrum Computation

Fortunately, as in the FFT based methods, in the MVDR
method there is no explicit need to design a separate fil-
ter

� � ���	� for each frequency �,� . In fact, the MVDR spec-
trum for all frequencies can be conveniently represented in

a parametric form. It can be shown that the output power of
the optimum constrained filter, and hence the MVDR spec-
trum for all frequencies can be simply computed as [6]X �ZY � � ��� &

* + � � � G " 3�WI 3 * � � �
(
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Note that this represents the power obtained by averaging
several samples at the output of the optimum constrained
filter. This averaging results in reduced variance [4]. For
computational purpose, the

O
th order MVDR spectrum can

be parametrically written asX �ZY � � �[� &\ ���� " �^] ���$��� "$
�� �
� &_ ` ��� 
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The parameters ] ��� � , can be obtained from a modest non-
iterative computation using the LP coefficients a � and pre-
diction error variance

X�b
[6, 5]
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coefficients ] ���$� completely determine the
MVDR spectrum

X �ZY � � � . From (5), the MVDR power
spectrum can also be viewed as an all-pole model based
power spectrum. The minimum-phase MVDR all-pole filter&{z ` ��|��

, if needed, can be obtained by a spectral factoriza-
tion. The MVDR all-pole filter

&{z ` ��|��
is stable and causal,

and can be used in a manner similar to the way in which LP
filters are used in speech processing systems.

2.3. Mel-Cepstra Computation

There are two possible approaches to computing the cep-
strum from the MVDR spectrum. One alternative is to com-
pute the all-pole model and derive the cepstra directly from
the coefficients of the all-pole filter

` ��|%�
. The other alter-

native is to compute the spectrum from the MVDR poly-
nomial using the FFT and then compute the cepstral coeffi-
cients from the spectrum in the standard way. In this paper,
we choose the second alternative because of the ease with
which perceptual considerations can be incorporated.

2.4. A Second Variance Reduction Step

The basic idea behind the second variance reduction step
is smoothing. To understand this, consider the following
example. Let } 3 2 } ? 265�5�5�2 } h be

X
uncorrelated random

variables with zero mean and variance ~ ? . Consider, � �3h \ hj � 3 } j . Clearly, � has zero mean and variance ���h . Thus
an estimate obtained by averaging

X
uncorrelated estimates

provides a factor of
X

reduction in variance.
In the context of the speech recognition frontend, smooth-

ing can be performed either to the power spectral samples



or to the MFCC. We chose to smooth the MFCC in our ex-
periments. Averaging the MFCC is equivalent to taking a
geometric mean of the spectral samples. In order to obtain
several uncorrelated estimates of the MFCC one needs data
segments that are uncorrelated with each other. For a WSS
process with a sharply decaying correlation function, data
segments that are sufficiently separated temporally will be
uncorrelated. Thus, by splitting the data segment into sev-
eral overlapping segments and computing power spectral
estimates from each segments we can obtain power spec-
tral estimates that are reasonably uncorrelated. The MVDR
estimation method facilitates this further because it requires
shorter filter lengths for the same bias and variance. This
effectively lets us create more uncorrelated data segments
from a given frame of speech samples.

Therefore, instead of generating a single MFCC vec-
tor from a frame of speech, samples from the start of the
current frame to the start of the next frame are split into
several overlapping segments and an MFCC vector is com-
puted from each segment. These vectors are then averaged
to get the smoothed MFCC vector for that frame. This is
equivalent to generating feature vectors at a high frame-
rate and downsampling the resulting trajectories after low
pass filtering in the time domain. The filtering operation is
performed by simple averaging. This approach of filtering,
motivated purely from statistical stability considerations, is
very different from RASTA processing, [7], which is moti-
vated from human auditory perception considerations. Fur-
thermore, the filtering, here, is done within each frame and
not across frames like in RASTA. Figure 1 shows a schematic
diagram of the MVDR based front-end processor.
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Figure 1: Schematic diagram of the MVDR-based front-end processor

3. EXPERIMENTAL RESULTS

We experimented with this new feature extraction technique
in a speech recognition system for a voice-activated car nav-
igation system. The training data consists of a combination
of cellular, speaker-phone and car data collected using an
appropriately placed microphone in a car. Car noise at var-
ious speeds was collected using a microphone over a cellu-
lar channel. Both clean speech and noise-added speech was
used to train the systems.

3.1. System Description

All experiments were conducted on the IBM rank-based
LVCSR system. The IBM LVCSR system uses context-
dependent sub-phone classes which are identified by grow-
ing a decision tree using the training data and specifying
the terminal nodes of the tree as the relevant instances of
these classes [8]. The training feature vectors are poured
down this tree and the vectors that collect at each leaf are
modeled by a mixture of Gaussian pdf’s, with diagonal co-
variance matrices. Each leaf of the decision tree is modeled
by a 1-state Hidden Markov Model with a self loop and a
forward transition. Output distributions on the state transi-
tions are expressed in terms of the rank of the leaf instead
of in terms of the feature vector and the mixture of Gaus-
sian pdf’s modeling the training data at the leaf. The rank
of a leaf is obtained by computing the log-likelihood of the
acoustic vector using the model at each leaf, and then rank-
ing the leaves on the basis of their log-likelihoods.

3.2. Experimental Set-up

The baseline system was trained using standard FFT-based
MFCC vectors. Speech was coded into 25 ms frames, with
a frame-shift of 10 ms. Each frame was represented by a 39
component vector consisting of 13 MFCCs and their first
and second time derivatives. Overall, the decision tree had
2615 leaves. Each leaf had 15 Gaussian mixture compo-
nents for the output distribution.

Next, 13 dimensional MFCC features were generated
at a high rate of 500 frames/s (frame-shift of 2ms) using the
MVDR spectrum estimate. A model order of 60 was chosen
for the LPC analysis. Since we are dealing with car noise,
the 24 traingular Mel-filters were chosen in the frequency
range [200Hz — 3800Hz]. A smoothed MFCC stream was
generated by taking a 5-point average and downsampling
by a factor of 5 to produce a 100 frames/sec stream. First
and second time derivatives are then computed from the
smoothed MFCC stream. With this new feature stream, the
means and the variances of the Gaussians and the transi-
tion probabilities of the HMM’s were re-estimated using a
Baum-Welch procedure.

3.3. Results

Figure 2 shows a histogram of the ratios of the variance of
the Gaussians in the baseline (FFT-based) system and the
variance of the Gaussians after retraining with the MVDR-
based MFCC. The large mass at 0.5 clearly indicates a strong
reduction in the variances of the re-estimated Gaussians.

For the test set, several speakers were recorded in a sta-
tionary and moving car at 30 mph and 60 mph. Ten different
sub-tasks within a navigation task, each with a different vo-
cabulary size, were used to create a test set. Simple BNF
grammars were constructed for each task and were used to
guide the search. Tables 1, 2, and 3 give a detailed com-
parison of the word error rates with the FFT-based MFCC
system and the new MVDR-based MFCC system. Results
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Figure 2: Histogram of ����7���!�� ��������
Task VocSize #words Baseline MVDR

airports 335 750 12.13 7.33
banks 63 985 9.64 5.69

commands 22 439 11.85 13.44
county 1876 194 45.36 29.38

gas-stations 16 101 2.97 1.98
hotels 55 461 6.29 3.90

reactions 33 189 12.70 5.29
service stations 39 164 7.32 2.44

US cities 12000 227 52.86 45.81

Table 1: WER of FFT-based baseline versus MVDR-based
MFCC system at 0 mph

clearly indicate a significant improvement in the recognition
accuracy in all the tasks and under all conditions. Average
relative improvements of 27.9%, 32.3%, 38.5% were ob-
served in the 0 mph, 30 mph, and the 60 mph conditions
respectively.

4. CONCLUSIONS

We described a robust feature extraction method for contin-
uous speech recognition. The method uses the MVDR spec-
trum estimation technique and a variance reduction tech-
nique based on the temporal smoothing of the cepstral tra-
jectories. The above method gave very significant improve-
ments in word error rate on continuous speech recognition
tasks in a stationary and moving car environments.
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