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ABSTRACT

In this paper we present an architecture to relax the crit-
ical cycle associated with the feedback operations in IIR
filtering when high sampling frequencies exceed the com-
putation bandwidth of digital arithmetics. Its complexity,
evaluated in terms of multiplications per output sample per
pole, equals that of the canonic IIR recursion and provides
considerable savings in comparison to existing techniques
such as Clustered and Scattered Look Ahead. The proce-
dure is shown to yield unconditionally stable implementa-
tions.

1. INTRODUCTION

The computation of very high speed digital FIR filters is ac-
complished via parallelization and pipelining of operations.
Nevertheless, the feedback inherent in IIR filters makes its
computation not so straightforward a task. The latency as-
sociated with arithmetic operations, and in particular, with
the feedback path, limits the maximum sampling frequency
of the input signal. Architectures other than the conven-
tional tap-delay filtering have been extensively sought, of
which Clustered (CLA) [1], Scattered Look Ahead (SLA)
[2],[4] and Minimum Denominator Multiplying (MDM) [3]
constitute the best known. [5] and [6] are also references of
interest. The philosophy is to modify the numerator and de-
nominator of the filter H,-1 = N_,-1/D,—1 so that the same
response H,—1 = N]_, /D’ _, is preserved but the compu-
tation of 1/D’_, can be tackled at the operation rate. By
way of an example, SLA would perform the following trans-
formation on a single real pole filter,

N,-1 (SLA)
_— -
1—pz—1

N, M,

H —_ = =
! 1—pmz—m

. (1)

2—1

with m = 2" and M, = I[_(1 + p? 27%"), so that the
zeroes of the polynomial M, -1 would cancel out the addi-
tional (stable) poles introduced in the denominator. The
computation of the filter output at the sampling frequency
can now be guaranteed as the computation of the feedback

0
This work was supported by TIC98-0412, TIC98-0703,
TIC99-0849 (CICYT) and CIRIT/Generalitat de Catalunya
1998SGR-00081.

can take place at the operation frequency. The compu-
tation of the denominator filter can always be efficiently
parallelized as no feedback occurs. The suite of techniques
proposed in the literature to include additional poles while
maintaining filter stability do always incur in additional
complexity. The multiplicative complexity of these archi-
tectures, Cx, defined as multiplies per sample per pole,
always increases with respect to the complexity of the con-
ventional TIR filter architecture. SLA provides an increase
of r = log, m times in multiplicative complexity.

The technique we propose, Canonic Look Ahead (CaLA),
provides considerable savings in C'x with respect to previ-
ously known critical cycle relaxing architectures, so that
the final complexity in the implementation of any IIR filter
equals that of the canonic IIR recursion. Cx is bounded in
all cases by,

OO 1 < GO < O a2
where C!°LAl would be reached by a IIR filter with an

X ,min
infinite number of poles and C’[chr%aﬁ] constitutes the multi-

plicative complexity of a single p,ole filter. Let P denote the
number of poles. Then, C[X(%;Ifl] < C[X?;LA] monotonically.
Thus, CaL A approaches the complexity of the conventional
IIR architecture asymptotically. This is done at the expense
of the additive complexity C, which increases by a factor
of 2 — m™! with respect to the conventional architecture,
irrespectively of the number of poles P.

We will describe CaLA in terms of first and second or-
der stages to implement real pole factors and conjugate
pair pole factors in the denominator D,-1. The minimum
multiplicative complexity is achieved by CaLA through ex-
ploitation of the common operations in computing the filter
M, 1. Therefore, CaL.A is essentially a block processing or
polyphase scheme. The parallelization of the direct numer-
ator filter V,-1 constitutes a different problem and is not
considered in the scope of this paper. Also, complexity is
only analyzed in terms of number of operations (multipli-
cations and additions). More detailed analyses should con-
sider bit-level implementation for a given application: the
dynamic range and bit width of signals.

2. CANONIC LOOK AHEAD

We will consider the critical cycle relaxed implementation
of first and second order stages of the objective IIR fil-



ter separately in the following sub-sections. Multiplicative
complexity of each derived architecture is analyzed later
and shown to equal that of the canonic update recursion.

2.1. Real Poles

Let us consider the implementation of the single real pole
filter H, ,—1 = (1 — pizfl)_l. The corresponding time up-
date equation is given by,

Yk = Tk + PilYk—1 3)

with xp and yx the input and output of the stage H, ,-1,
respectively. We will refer to (3) as the conventional or
canonic time update equation. We define the following vec-
tors,

[y, Yo—1,- - 7'yk7m+1]T (4)

[mk, Th—1,""", 37k7m+1}T

Ye =
Xk =

Then, the recursion in (3) can be expressed as,
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with the indices fulfilling 1 < p,q < m, C; upper triangular
and D; diagonal. We re-express (5) in terms of the new
diagonal matrix A; defined by [A;], = pP~!. Hence,

D;A; = pi" (6)
with I the m x m identity matrix. Then,
vie = Cixip + Afllp;nyk—m (7)
Also,
C: = A 'ZA, (8)
By = 0l b5

with ¥ the upper triangular addition matrix. Then, sub-
stitution of (8) into (7) yields,
ye = A7'SAixe+ A1 Yk-m 9)
A7 (BAxE + 107 Yr—m)

Defining matrix U; as that having its first column equal to
all ones and the rest to zero, we can formulate (9) as,

vi = AN (ZAxE+ ol Uiye-m) (10)
YkA = Ayyx
yi = ZAxk+pUiA] 'y,

= BAxg+ ol Uiye m < (11)

where U1 A; ' = U;. The arrow in (11) indicates the defin-
itive update procedure to compute the i-th filtering stage
with minimum multiplicative complexity. Note that the op-
eration count is low as A; is diagonal and the product with
the upper triangular summation matrix 3 can be efficiently
performed with additive complexity equal to m. The corre-
sponding z-transform equivalence can be derived as follows,

Y& = ZAX. i+l "UYS (12)
YzA—l = (I—p:nz_mUl)71 EAZ‘X271
Y. = A'YR, =H,, X,
With ,
H,. = A (I-p/'2"U)) " 2A, (13)

we obtain the matrix transfer function H; ,-1describing
the architecture. It is easy to show that this architec-
ture is unconditionally stable by substituting the inverse
of I—pi"2z~™U; in (13),

H,, 1=A] (I+#U1) SA, (14)

1_‘01' vz—m

Hence, the multiplication latency T, can be relaxed from
T, <Ts to T, <mT; as decimation has been effected and
the slow feedback loop can tackle the high data sampling
frequency fs = 1/Ts. Henceforth, m will be referred to as
the latency expansion factor. The remaining matrix oper-
ations will introduce additional latency in the final compu-
tation of the filter output but are critical cycle free due to
their non-recursive nature. The filter will be implemented
with the concatenation of the matrix transfer functions of
each stage as,

Yp.-1=Hp.1Yp_ .1 = (L_pH,.1) X1 (15)

with Yp -1 denoting the vector z-transform at the output
of the P-th stage. Additional savings in multiplicative com-
plexity occur when the A; of one stage is merged with the
A" of the previous stage yielding A;;—1 = A;A; Y Let
us consider the case P = 2 by way of an example,

MLH, . = Ay (I-p52"U) 'S (16)
A271 (prﬁnz_mUl)_l 2A1
Ary = AsAT!

with A ; also diagonal. The number of multiplies per sam-
ple per pole after the AiA;ll merging operation are (as-
suming different real poles),

al, 1 & A p;nzim
o - e E e )
S bed)

where the superscripts A; and p;"z~™ indicate what matrix
operation in (11) is being considered (trivial multiplications
by zero and one are not computed in the evaluation of the



multiplicative cost). In comparison, C[Xca] =1 is the multi-
plicative complexity of the canonic time update recursion.
The number of additions per sample in (11) per pole is given
by,

!

m

P
R 1 > p;nz—m
cleAl _Z{(m_l)Jr m ] (18)
1
= 2-m7!

in comparison to C_[Ea] = 1, the additive complexity of the
canonic time update recursion. We have assumed that all
the addition operations involved by the multiplication by 3
are carried out recursively in only m — 1 additions. When
the more general recursion yr = azr + piyr—1 with input
amplification « is considered, the input factor a can be
merged into A; in (14) so that complexities become,

CE(CaLA] -1 +P—l ’ CE(Ca] -1 +P_1

that is, Canonic Look Ahead requires the same multiplica-
tive complexity of the canonic time update recursion, irre-
spectively of the expansion factor m.

2.2. Conjugate poles

The structure derived for real poles can also be applied
to filters possessing conjugate poles. Nonetheless, the sin-
gle pole sections would require complex arithmetic to the
detriment of multiplicative complexity. It is more advan-
tageous to implement conjugate poles with an alternative
architecture on real arithmetic. Let us now consider the im-
plementation of the single conjugate pair pole filtering stage
H;, -1 = (1 — piz71)71 (1 — p;‘zfl)il.
can be expressed as,

The denominator

-1
4,21

= 1-2Re[p]z"" +|pi*27"

= 1—27”1'(1',271 +7’i2272

with 7, = |p;] < 1 for stability and 0 < |(;| < 1. The
associated time recursion is given by,

Y = Tk + 27 CiYk—1 — rfyk—z (19)

To arrive at equations similar to (10), we previously pack
the yi’s and zx’s into two-component subvectors as,

/ T ! T
Vi = Wk, Ye—1]" , X = [Tk, Tr—1]

The recursion in (19) can now be cast into matrix form as,

i = Aixip+Biyi o
/ _ 1 27‘147, r_ / —’I‘,? 0
A = { 0 1 } B = A [ G -} ]

This is also an unconditionally stable recursion as the eigen-
values of B} have modulus ; < 1,

A(Bj) =i (2@2 —1djy/1-(2¢2 - 1)2>

It only remains now to re-vectorize data as,

T _ /T T /T
Ye = Ye s Yk—2"" s Yk—2m/
T /T T /T

X = Xk 9y Xk—2y "y Xkg—2m/

’

with m = 2m’. Then, we are able to write,

yi = Cixp +Dil'y; (20)
[ A BIAL BMA
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Now, Defining matrix U} as that having its first two columns
equal to matrix 1’ and the rest to zero, we obtain the vec-
torized form,

yi = Cixy + D;Ulyi—m

where now, as in (6), D; and A; are both block-diagonal
and,

B™ 0 o0
DZAI = 0 T . 0 = B;m
o o B™

In its turn, C; is now expressed as C; = AZfIZ)A,'Ai7 with,

A 0 o0 L I I
Ai=| o . 0 |»Z=]0 . I
0 0 A 0 0 I

Reproducing the same steps, we arrive at the equivalent
expression to that in (10),

Ye = A7 (SAAx+ADUlyim) (21)
v = Ay (22)
v = SAAx+BINUIA YR, (23)

= SAAx+ B Ulyk ,, < (24)

for one single filtering stage, where UjA7! = U}. So
that with A; and A, block-diagonal themselves, we can
merge them into a single block-diagonal matrix. The cor-
responding z-transform equation is provided by Y,-1 =
Hi,z*1XZ*17 with,

, -1
H, , 1=A" (I—z*mB:" U’l) TAA; (25)




The product H, -1 = IIj_p H, ,-1 with P. = P/2 the num-
ber of conjugate pole pairs does already produce an effi-
cient matrix transfer function. Nevertheless, slight savings
in multiplicative complexity can be achieved after some ma-
nipulations: additional algebra shows that,

, —1
A (I—z*’"B:" U’l) SAA,  (26)

’ 1
— AN (1—z;mT;" U;) TA

with T; = A;'B;A; and A; = A;'A;A; also block di-
agonal. Hence, cascading all P. conjugate pole stages with
P. the number of conjugate pole pairs, allows us to bring
all the A, matrices to the final stage such that the corre-
sponding multiplies can be merged and overall multiplica-
tive complexity reduced. In view of the previous property,
we consider the recursive definition of the auxiliary matri-
ces,

K, =IIi,A, Gi=K; 'BK;, A, =K; 'AK; (27)

so that the final expression for the global matrix transfer
function H, _1is,

1
SA;

H, o =(Ip A:) T AT (I—z—mG:”’U'1>

This matrix transfer function defines an alternative time
recursion to that in (21) and will also allow multiplication
merging between consecutive stages. Resorting to the spe-
cial structure of the matrices A, and B, the evaluation
of the multiplicative complexity of this architecture (repre-
sented in the figure) yields,

a 1 1 a _
CE(CLA]:1+F(27E) ,C&C]:l‘i’P 1

So that for conjugate poles, CaL A is slightly above the mul-
tiplicative complexity of the canonic recursion, but approx-
imates unity asymptotically in the number of poles.

3. CONCLUSIONS

An algorithm for IIR filtering using slow arithmetic has
been proposed that equals the canonic recursion in mul-
tiplicative complexity (multiplies per sample per pole ap-
proximately equal to unity). The critical cycle can be ex-
panded to handle high input/output data bandwidths with
a smaller operation bandwidth. Additive complexity in
the AR polynomial is almost doubled with respect to the
canonic recursion. Two architectures for the uncondition-
ally stable implementation of single and conjugate pole stages
have been presented. In terms of bit-level complexity, a
more detailed analysis is necessary for each particular filter,
as the pole distribution will determine the dynamic range
and bit widths necessary at each point in the proposed ar-
chitecture, which will ultimately determine area and power
consumption.

X—a [ Xk—2 [ X%
= E T
B3
A1 |N|Giz <] 61

D D

D
VO T

:

=

v

aait [ Xlezer![X] es 6

<N | ,
el el

3
[><]ross[D]ae s ] A
v

v VT Ap —aas A

Y'k—a Y2 Y%

Figure 1: H,—1 = allZ, (1 —2riCiz7t +rfz‘2)_lwith an
expansion factor m = 6. The scheme is exposed in equa-
tion (27). The three vertical data paths are processing two-
component vectors and boxes identify the 2 x 2 matrices
derived in the text. The whole data path operates at 1/6
the sampling frequency. The latency of non-recursive oper-
ations can be absorbed via pipeline registers which should
be placed at the input to each parallel processing block.
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