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ABSTRACT substitution, exploiting the QR decomposition.
By connecting our work to that of [6], we demonstrate
A QR-decomposition based algorithm is presented for that the algorithm asymptotically produces an unbiased
unbiased, equation error adaptive IR filtering. The algo- estimate of the system parameters. We provide simulations

rithm is based on casting the adaptive IIR filtering in a corroborating this algorithm behavior.
mixed Least Squares - Total Least Squares (LS-TLS)

framework. This formulation is shown to be equivalent to 2. SYSTEM DESCRIPTION
the minimization of the mean-square equation error subject . . o
to a unit norm constraint on the denominator parameter Consider the system identification problem, as shown
vector. An efficient implementation of the mixed LS-TLS in Figure 1. We wish to model the unknown causal stable
solution is achieved through the use of back substitution system h(k) by observing the system input and outputs.
and inverse iteration. Unbiasedness of the system parame- The input u(k) drives the system, yielding v(k), which is
ter estimates is established for the mixed LS-TLS solution then corrupted by the uncorrelated noise sequence n(k).
in the case of uncorrelated output noise, and the algorithm n(k)
is shown to converge to this solution. u(k) R h(k)
1. INTRODUCTION
1 1
Equation error adaptive IIR filters are known to suffer \
from parameter bias when the desired filter output is mea- b, b,/ .. \by a/ - \& g
sured in the presence of noise, even when that noise is
uncorrelated [5]. A number of investigators have >3 e
addressed this issue by recasting the problem as one of oK)

minimizing the mean-square equation error subject to a
unit norm constraint on the denominator polynomial's
coefficient vector, rather than the traditional monic con- We can write the system relationship as:
straint, for example [1] and [6]. Doing so reinterprets the _

equation error lIR problem as a Total Least Squares (TLS) . y(k) = h(iktu(k) + h(k) @
minimization rather than one of Least Squares (LS), where h(k)is modeled as an IIR filter such that

Figure 1. Equation Error Filtering Diagram

whether or not this is explicitly noted. It is more correct, B(2)
however, to label this problem as mixed LS-TLS. The TLS H(z) = 1-A(2) )

formulation assumes noise on all the data while in mixed
LS-TLS some data is noisy and other data is not [4]. As the
filter inputs remain noiseless, the equation error IR adap-
tive filter problem is within the mixed LS-TLS class.

In this paper we develop a mixed LS-TLS based algo-
rithm to minimize the mean-squared equation error. The .
algonthm is based on the_ QR—decomposnmn approaph to U(k) = [u(k) u(k—1) ... u(k—M)]
mixed LS-TLS described in [2]. The first stage of our iter-
ative algorithm addresses a reduced dimension TLS prob-
lem and employs inverse iteration, efficiently implemented
via back substitution, as has been done in the full TLS set- V; _ T
ting ([7], [8]). The second stage concerns an embedded LS (k) = [y(k— Dyk=-2) ... y(k—N)]
problem, which is also efficiently implemented via back and composite regressor vectptk) = [U(k) Y (k)]

We will assume that B(z) is of order M and A(z) is of order
N. In (2), we imply that A(z) has been scaled such that
a, = -1, although this normalization is a convenience in
order to match the input/output relationship.

We define the regressor vectors

Y(K) = [y(k) y(k—1) ... y(k=N)] (3)



Let y be defined as the extended filter parameter

weights, where
v 0]

Y= |:V1 V2:|T
T T
81 = |by by ... by] 8, = [a 2, .. 3

It is often convenient to normalize y to have gy = -1
such that the usual input/output relationship is satisfied. In
this case, we define
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3. EQUATION ERROR APPROACHES
3.1. Mixed LSTLS

o 4

In the mixed LS-TLS problem, the goal is to find a solu-
tion to a system of equations where a portion of the input
data and the output vector are noisy and the remaining
input data are known exactly.

Suppose that we are trying to solve a system of equa-
tions AB = k. Furthermore, assume that A can be seg-
mented into its noise-free columns (A;) and its noisy
columns (A,). We can then write

@1AJﬁ1=K (6)
2

The goal of the mixed LS-TLS solution is to find A
and K such that the pertubation to the original system is
minimized in a Frobenius sensg, i.e.,

min][Ae =[R2 ] ”
subject to the constraint that
” ~ |O
kO HAl AZ}D ®)

Given A, and Kk, the LS method is used to find 0 asthe
minimum norm solution to

%1549=R ©)

The solution to the mixed LS-TLS problem is given in
[2]. A partial QR factorization of the matrix C =[A; K A,
is performed to give

T - _ |[Ruu Ry Rpp
QpartC = Qpart [Al K Az] = « (10)
0 RZK R22

such that Ry; iS an upper triangular square matrix of
dimension equal to the number of noise-free columns.

First, the solution for the reduced dimension TLS problem
is found for (see [4] for a discussion of determining the
TLS solution)

R,,0,=R, (12)

K

Given 6,0, 8; can be determined by solving the LS
system of equations

~ a0
Ry16; =Ry —Ry502 (12)

The equation error iterative problem can easily be cast
into the mixed LS-TLS framework. At each k-th iteration,
the data matrices are augmented by a new row. A is aug-
mented by U(k), A, by Y (k) and k with y(k). We formu-
late the iterative equation error technique in a similar
manner but in such a way that the dimension of the prob-
lem does not grow with each new data point.

3.2. Equation Error Filtering

In the statistical equation error approach, the goal is to
minimize the mean squared error E{e"(k)} subject to a
unit norm constraj nt on y,. This error can be expressed as
elk) = o (k)y Assuming that the noise is uncorrelated
with the signal, the mean squared error is:

;
E{e?(k)}= [T 7] |Ruu Ruv| | V2 (13)
[V1 Vz} Ry, Ryy [Vz

The solution (see [6]) is a two step process. First, y, is
set to the eigenvector associated with the smallest eigen-
value of the matrix Ry, where Ry, is:

Ry/u - R RuvRuuRuv (14
The normalized yz |sthen used to compute y;:
-1 ~
Y1 = _RuuRUVVZEJ (15)

3.3. Equivalence of the Two Solutions

We now show that the mixed LS-TLS solution is equiva-
lent to the statistical equation error solution.

To start, we recognize that the sample autocorrelation
matrix approaches the true correlation matrix as the data
record gets long:

LT (0ck)= E(0(9 () sk~ (16)

Assuming that the iteration number is large, we can
ignore the dependence on k without loss of generality.
Recall that normalization of a5 = -1 is necessary to be con-
sistent with the input/output relationship, hence the scaling
due to k is superfluous.

In (10), the QR factorization is composed of unitary



transforms, hence it is true that

-
Ri1 Rik Rip| |Ri1 Rix Ryo —
0 Ry Rypl | 0 Ry Ry
Expanding (17), equating like size terms and rearrang-
ing, it is easy to show that

[RZK RZZJT[RZK RZZJ =Ry (18)

In section 3.1, GZD isthelast N components of the right
singular vector associated with the smallest singular value
of [Ry Ryy]. In section 3.2, y,[ is the eigenvector associ-
ated with the smallest eigenvalue of R,,. Given the equiv-
alence of (18), by inspection it must be true that

[—1 équ = o (19)

To seethe equivalence of 8, and y;, we can rewrite (12)

.
RUU Rl.lV
Ruv Ryy

17

as

R118,= _[RlK R12} [é_z 1% (20)

The pseudo-inverse of Ry is used to solve for 84 in a
LS senseto give:

~ T -1 7T -1
Blﬂ = —«(Ry;Ryy) Ryg [RlK R12j| [é % (22)
2

The equalities of (17) can be used to express (21) as

L |
8.7 = -R,.R,, [é % (22)

2

_ Clearly, considering (19) and (15), it must be true that
elmisequal to y1—.

3.4. Unbiased Property of Mixed LS-TLS

We have established that one approach to determining the
mixed LS-TLS solution involves estimation of an eigen-
vector of the Ry, matrix. Given that the noise is uncorre-
lated with the input, we can see from (14) that the only
term affected by the noiseis R, Furthermore, if the noise
is white, Ry, differs from R,,, on only the main diagonal
by an amount equal to the noise variance. Therefore, the
eigenvector associated with the minimum eigenvalue
extracted from Ry, (or a sum of Ry, and other noise-free
components) can only differ from the eigenvector associ-
ated with the minimum eigenvalue of R, in magnitude
and not direction. Since y, is post-normalized, the magni-
tude of the eigenvector is inconsequential. The remainder

of the parameter vector y; is computed from noise-free
guantities. Thus we conclude that the addition of white,
uncorrelated noise does not bias the solution away from
recovering the true parameter vector.

4. QR-RMTLSALGORITHM

We now propose and describe a QR based recursive algo-
rithm for mixed LS-TLS, dubbed QR-RMTLS. A QR
decomposition is used to track the sample data matrix but
an inverse iteration procedure is used to track the mini-
mum eigenpair of Ry,

The extended data matrix C(k) is factored into its QR
decomposition as C(k) = Q(k)R(k), where Q(K) is aunitary
matrix and R(K) is upper triangular. R(K) is a tall matrix,
with all but the first N+M+2 rows zero. For compactness
sake, let R(K) represent the first N+M+2 rows of R(K).

For each new @(k), R(k) is computed from R(k-1) viaa
transformation matrix T(k) as

[R(k)} - T [R(k—l)} )
0 o(k)

where T(k) is the culmination of a series of Givens rota
tions (see[3]). In this manner, we are able to track the R(k)
matrix faithfully, efficiently and compactly.

It must be true that the resulting R(k) is a continuation
of the partial QR decomposition expressed in (10). The
full QR factorization can be expressed as

o Ry (K) Ry, (K) Ryp(K)
Qadd RpartC(K) = | 0 Ry (k) Ryy(k)[ (24
0 0 0

We intend to use the sub-matrix Rp(k) = [Rp1(K)
Rp2(K)] to track the right hand singular vectors of [Ry(k)
Roo(K)]. We therefore require that these two matrices have
the same right hand singular vectors. By inspection, we
claim that thisistrue since R(K) is calculated by a series of
additional left sided orthogonal transformations. These
transformations do not perturb the right handed singular
vectors.

The eigenvector asgociated with the minimum eigen-
value of the matrix Rp(k)Rp(k) (vo(k)) is tracked via a
two-step inverse iteration procedure. The procedure is best
illustrated via the following pseudo-code:
set Yo(k) = yp(k—1)
iterate until conyergence is detected:
solvefor Z in Rp(k)Z = Y,(k)
solvefor € in Rp(k)E =

set \A/Z(k) = —&/&, (impose monic constraint)

Note that in the ?bove procedure, R,(K) is upper trian-
gular (and hence Rp(k) is also triangular). Therefore, no




matrix inversions are required to compute the desired vec-
tors; back substitution is instead employed to simplify the
computations. Furthermore, since the iteration begins with
the previous estimate of a slowly changing process, one
iteration pass is deemed sufficient.

The remainder of the coefficient vector estimate y; (k)
can be found from (20) by solving:

Ru(V2(K) = =[Ry, (K) Ryp(K)v2(k)  (25)

Note that in the above, Ry4(K) is also upper triangular; thus
(25) can also be solved via back substitution, avoiding the
computational expense of matrix inversion.

The following is asummary of the algorithm.

-
Set: R(0) = 1, y(0) = (L/(N+M+2))[1 . 1]
for each k:
Compute R(k) from R(k-1) and (k) via (23)
Perform one-step back substitution inverseiteration
procedure using Ry(k) and y,(k-1) to give yo(k)
Solve (25) using y(k) and sub-matrices of R(k)
viaback substitution to give y; (k)

5. QR-RMTLSASYMPTOTIC BEHAVIOR

Clearly, as the iteration get large, (16) must converge to
the true correlation matrix. Therefore, the QR decomposi-
tion of the extended data matrix must also asymptotically
converge such that (18) istrue. Given that Rp(k) - R as
k - oo, theinverse iteration procedure using the previous
estimate acting upon a constant matrix will also converge.
Clearly, the denominator polynomial estimate y, will con-
verge to the eigenvector associated with the minimum
eigenvalue of the matrix R R . Therefore, since y, has
converged and is unbiased (under the stated noise condi-
tions), it must be true that y; has aso converged and is
unbiased. Thus, we have argued that in the asymptotic
case under white uncorrelated noise, QR-RMTLS con-
vergesto the mixed LS-TLS solution.

6. SSIMULATION RESULT

Shown in Figure 2 is a comparison of the normalized
parameter error of the QR-RMTLS algorithm versus QR-
RLS. The input sequence {u(k)} is a unit-variance white
sequence. The output noise is white and uncorrel ated with
the input, with variance such that the SNR is 6 dB. The
true system is a second order section with

a=[10505 adb=[o5 05025 (26)

As can be seen from Figure 2, QR-RMTLS is much
preferred over QR-RLS.
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7. CONCLUSION

We have presented an iterative algorithm for unbiased
equation error filtering by applying the mixed LS-TLS
technique. Furthermore, we have presented an efficient
implementation based on a QR decomposition and inverse
iteration via back substitution. We then argued that the
algorithm will converge asymptoticaly to the desired
solution, and we demonstrated its performance viasimula
tion.
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