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ABSTRACT

A QR-decomposition based algorithm is presented for
unbiased, equation error adaptive IIR filtering. The algo-
rithm is based on casting the adaptive IIR filtering in a
mixed Least Squares - Total Least Squares (LS-TLS)
framework. This formulation is shown to be equivalent to
the minimization of the mean-square equation error subject
to a unit norm constraint on the denominator parameter
vector. An efficient implementation of the mixed LS-TLS
solution is achieved through the use of back substitution
and inverse iteration. Unbiasedness of the system parame-
ter estimates is established for the mixed LS-TLS solution
in the case of uncorrelated output noise, and the algorithm
is shown to converge to this solution.

1. INTRODUCTION

Equation error adaptive IIR filters are known to suffer
from parameter bias when the desired filter output is mea-
sured in the presence of noise, even when that noise is
uncorrelated [5]. A number of investigators have
addressed this issue by recasting the problem as one of
minimizing the mean-square equation error subject to a
unit norm constraint on the denominator polynomial’s
coefficient vector, rather than the traditional monic con-
straint, for example [1] and [6]. Doing so reinterprets the
equation error IIR problem as a Total Least Squares (TLS)
minimization rather than one of Least Squares (LS),
whether or not this is explicitly noted. It is more correct,
however, to label this problem as mixed LS-TLS. The TLS
formulation assumes noise on all the data while in mixed
LS-TLS some data is noisy and other data is not [4]. As the
filter inputs remain noiseless, the equation error IIR adap-
tive filter problem is within the mixed LS-TLS class.

In this paper we develop a mixed LS-TLS based algo-
rithm to minimize the mean-squared equation error. The
algorithm is based on the QR-decomposition approach to
mixed LS-TLS described in [2]. The first stage of our iter-
ative algorithm addresses a reduced dimension TLS prob-
lem and employs inverse iteration, efficiently implemented
via back substitution, as has been done in the full TLS set-
ting ([7], [8]). The second stage concerns an embedded LS
problem, which is also efficiently implemented via back

substitution, exploiting the QR decomposition.
By connecting our work to that of [6], we demonstrate

that the algorithm asymptotically produces an unbiased
estimate of the system parameters. We provide simulations
corroborating this algorithm behavior.

2. SYSTEM DESCRIPTION

Consider the system identification problem, as shown
in Figure 1. We wish to model the unknown causal stable
system h(k) by observing the system input and outputs.
The input u(k) drives the system, yielding v(k), which is
then corrupted by the uncorrelated noise sequence n(k).  

Figure 1: Equation Error Filtering Diagram

We can write the system relationship as:

(1)

where h(k) is modeled as an IIR filter such that

(2)

We will assume that B(z) is of order M and A(z) is of order
N. In (2), we imply that A(z) has been scaled such that

, although this normalization is a convenience in
order to match the input/output relationship.
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Let γ be defined as the extended filter parameter
weights, where

(4)

It is often convenient to normalize γ to have a0 = -1
such that the usual input/output relationship is satisfied. In
this case, we define

     (5)

3. EQUATION ERROR APPROACHES

3.1. Mixed LS-TLS

In the mixed LS-TLS problem, the goal is to find a solu-
tion to a system of equations where a portion of the input
data and the output vector are noisy and the remaining
input data are known exactly.

Suppose that we are trying to solve a system of equa-
tions Aθ = κ. Furthermore, assume that A can be seg-
mented into its noise-free columns (A1) and its noisy
columns (A2). We can then write

(6)

The goal of the mixed LS-TLS solution is to find 
and  such that the pertubation to the original system is
minimized in a Frobenius sense, i.e.,

(7)

subject to the constraint that

(8)

Given  and , the LS method is used to find θ as the
minimum norm solution to

(9)

The solution to the mixed LS-TLS problem is given in
[2]. A partial QR factorization of the matrix C = [A1 κ A2]
is performed to give

(10)

such that R11 is an upper triangular square matrix of
dimension equal to the number of noise-free columns.

First, the solution for the reduced dimension TLS problem
is found for (see [4] for a discussion of determining the
TLS solution)

(11)

Given , θ1 can be determined by solving the LS
system of equations

(12)

The equation error iterative problem can easily be cast
into the mixed LS-TLS framework. At each k-th iteration,
the data matrices are augmented by a new row. A1 is aug-
mented by U(k), A2 by  and κ with y(k). We formu-
late the iterative equation error technique in a similar
manner but in such a way that the dimension of the prob-
lem does not grow with each new data point.

3.2. Equation Error Filtering

In the statistical equation error approach, the goal is to
minimize the mean squared error  subject to a
unit norm constraint on γ2. This error can be expressed as

. Assuming that the noise is uncorrelated
with the signal, the mean squared error is:

(13)

The solution (see [6]) is a two step process. First, γ2 is
set to the eigenvector associated with the smallest eigen-
value of the matrix Ry/u, where Ry/u is:

(14)

The normalized  is then used to compute γ1:

(15)

3.3. Equivalence of the Two Solutions

We now show that the mixed LS-TLS solution is equiva-
lent to the statistical equation error solution.

To start, we recognize that the sample autocorrelation
matrix approaches the true correlation matrix as the data
record gets long:

 as (16)

Assuming that the iteration number is large, we can
ignore the dependence on k without loss of generality.
Recall that normalization of a0 = -1 is necessary to be con-
sistent with the input/output relationship, hence the scaling
due to k is superfluous.

In (10), the QR factorization is composed of unitary
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transforms, hence it is true that

(17)

Expanding (17), equating like size terms and rearrang-
ing, it is easy to show that

(18)

In section 3.1,  is the last N components of the right
singular vector associated with the smallest singular value
of [R2κ R22]. In section 3.2,  is the eigenvector associ-
ated with the smallest eigenvalue of Ry/u. Given the equiv-
alence of (18), by inspection it must be true that

(19)

To see the equivalence of θ1 and γ1, we can rewrite (12)
as

(20)

The pseudo-inverse of R11 is used to solve for θ1 in a
LS sense to give:

(21)

The equalities of (17) can be used to express (21) as

(22)

Clearly, considering (19) and (15), it must be true that
 is equal to .

3.4. Unbiased Property of Mixed LS-TLS

We have established that one approach to determining the
mixed LS-TLS solution involves estimation of an eigen-
vector of the Ry/u matrix. Given that the noise is uncorre-
lated with the input, we can see from (14) that the only
term affected by the noise is Ryy. Furthermore, if the noise
is white, Ryy differs from Rvv on only the main diagonal
by an amount equal to the noise variance. Therefore, the
eigenvector associated with the minimum eigenvalue
extracted from Ryy (or a sum of Ryy and other noise-free
components) can only differ from the eigenvector associ-
ated with the minimum eigenvalue of Rvv in magnitude
and not direction. Since γ2 is post-normalized, the magni-
tude of the eigenvector is inconsequential. The remainder

of the parameter vector γ1 is computed from noise-free
quantities. Thus we conclude that the addition of white,
uncorrelated noise does not bias the solution away from
recovering the true parameter vector.

4. QR-RMTLS ALGORITHM

We now propose and describe a QR based recursive algo-
rithm for mixed LS-TLS, dubbed QR-RMTLS. A QR
decomposition is used to track the sample data matrix but
an inverse iteration procedure is used to track the mini-
mum eigenpair of Ry/u.

The extended data matrix C(k) is factored into its QR
decomposition as C(k) = Q(k)R(k), where Q(k) is a unitary
matrix and R(k) is upper triangular. R(k) is a tall matrix,
with all but the first N+M+2 rows zero. For compactness
sake, let R(k) represent the first N+M+2 rows of R(k).

For each new φ(k), R(k) is computed from R(k-1) via a
transformation matrix T(k) as

(23)

where T(k) is the culmination of a series of Givens rota-
tions (see [3]). In this manner, we are able to track the R(k)
matrix faithfully, efficiently and compactly.

It must be true that the resulting R(k) is a continuation
of the partial QR decomposition expressed in (10). The
full QR factorization can be expressed as

(24)

We intend to use the sub-matrix Rρ(k) = [Rρ1(k)
Rρ2(k)] to track the right hand singular vectors of [R2κ(k)
R22(k)]. We therefore require that these two matrices have
the same right hand singular vectors. By inspection, we
claim that this is true since R(k) is calculated by a series of
additional left sided orthogonal transformations. These
transformations do not perturb the right handed singular
vectors.

The eigenvector associated with the minimum eigen-
value of the matrix  (γ2(k)) is tracked via a
two-step inverse iteration procedure. The procedure is best
illustrated via the following pseudo-code:
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matrix inversions are required to compute the desired vec-
tors; back substitution is instead employed to simplify the
computations. Furthermore, since the iteration begins with
the previous estimate of a slowly changing process, one
iteration pass is deemed sufficient.

The remainder of the coefficient vector estimate γ1(k)
can be found from (20) by solving:

(25)

Note that in the above, R11(k) is also upper triangular; thus
(25) can also be solved via back substitution, avoiding the
computational expense of matrix inversion.

The following is a summary of the algorithm.

5. QR-RMTLS ASYMPTOTIC BEHAVIOR

Clearly, as the iteration get large, (16) must converge to
the true correlation matrix. Therefore, the QR decomposi-
tion of the extended data matrix must also asymptotically
converge such that (18) is true. Given that  as

, the inverse iteration procedure using the previous
estimate acting upon a constant matrix will also converge.
Clearly, the denominator polynomial estimate γ2 will con-
verge to the eigenvector associated with the minimum
eigenvalue of the matrix . Therefore, since  has
converged and is unbiased (under the stated noise condi-
tions), it must be true that γ1 has also converged and is
unbiased. Thus, we have argued that in the asymptotic
case under white uncorrelated noise, QR-RMTLS con-
verges to the mixed LS-TLS solution.

6. SIMULATION RESULT

Shown in Figure 2 is a comparison of the normalized
parameter error of the QR-RMTLS algorithm versus QR-
RLS. The input sequence {u(k)} is a unit-variance white
sequence.  The output noise is white and uncorrelated with
the input, with variance such that the SNR is 6 dB. The
true system is a second order section with

 and (26)

As can be seen from Figure 2, QR-RMTLS is much
preferred over QR-RLS.

           

Figure 2: QR-RMTLS Simulation Performance

7. CONCLUSION

We have presented an iterative algorithm for unbiased
equation error filtering by applying the mixed LS-TLS
technique. Furthermore, we have presented an efficient
implementation based on a QR decomposition and inverse
iteration via back substitution. We then argued that the
algorithm will converge asymptotically to the desired
solution, and we demonstrated its performance via simula-
tion.
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