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ABSTRACT

In this paper, we introduce new rapid adaptation tech-
niques that extend and improve two successful methods previ-
ously introduced, cluster weighting (CW) and MAPLR. First,
we introduce a new adaptation scheme called CWB which ex-
tends the cluster weighting adaptation method by including a
bias term and a reference speaker model. CWB is shown to
improve the adaptation performance as compared to CW. Sec-
ond, we introduce an extension of cluster weighting that uses
penalized-likelihood objective functions to stabilize the estima-
tion and provide soft constraints. Third, we propose a variant
of MAPLR adaptation that uses prior speaker information.
Previously, prior distributions of transforms in MAPLR were
obtained using the same adaptation data, speaker independent
HMM means or by some heuristics. We propose to use the prior
information of speaker variability to obtain the priors, by using
CW or CWB weights. Penalized-likelihood or Bayesian theory
serves as a tool to combine transformation based and prior
speaker information based adaptation methods resulting in ef-
fective rapid adaptation techniques. The techniques are shown
to outperform full, block diagonal and diagonal MLLR as well
as some other recently proposed methods for rapid adaptation.

1. INTRODUCTION

A generic or speaker independent speech recognition system
is suited for general purpose speech recognition. Speaker and
environment adaptation is performed to adapt a generic sys-
tem to a new speaker or environment, so that it performs better
for the new input. Most current speaker adaptation techniques
modify HMM state output distributions represented by Gaus-
sian mixtures. Recent methods for speaker adaptation include
MAP [1], MLLR [2], cluster weighting [3, 4], eigenvoices [5],
and MAPLR [6, 7] among others.

The MAP method assumes a separate independent prior
for each HMM Gaussian component, and a maximum a poste-
riori probability (MAP) objective function is maximized. Only
the HMM components that were “seen” in the adaptation data
can be adapted with this method. In contrast, MLLR method
assumes that the new adapted component means are obtained
through a linear transform of speaker independent means, cou-
pling the parameters and enabling the “unseen” parameters
to be adapted as well. The transforms are estimated using
maximum likelihood. Another approach to adaptation is to
use prior speaker information to estimate an adapted model.
Speakers used in training the speech recognition system are
utilized to obtain representative HMM models. Then, the
adapted model means are represented as linear combinations
of the means of these models and the interpolation weights are
estimated by maximum likelihood. Representative HMMs can
be obtained by clustering similar speakers together [8, 4] or

by obtaining some eigenvectors that represent the most impor-
tant information to construct a speaker dependent model [5].
In this paper, we use clustering to obtain reference models as
in [8] and call the method “cluster weighting” (CW).

In this paper, we focus on the rapid adaptation problem,
such as when the adaptation utterance is typically less than
5 seconds. Maximum Likelihood Linear Regression (MLLR)
[2] method is better suited than MAP for this purpose. How-
ever, the amount of data to reliably estimate MLLR transform
parameters is not enough, resulting in overtraining the param-
eters. MLLR can be suboptimal in this case. We believe, clus-
ter weighting (CW) is more appropriate for rapid adaptation.
Since the number of parameters to estimate are fewer, they
can be estimated more reliably. On the other hand, MAPLR
adaptation regularizes the linear regression transform estima-
tion by using Bayesian theory. We propose a different approach
to MAPLR prior estimation in this paper.

In the following sections, we first give a background on
MLLR and CW adaptation approaches. We introduce an im-
proved version of CW called CWB. We also propose use of the
penalized-likelihood method to improve cluster weighting ap-
proaches. In the second part of the paper, we introduce a new
way to obtain prior distribution parameters for MAPLR adap-
tation. We propose to use the cluster weights to obtain prior
distributions for linear regression transformations in MAPLR.
We present encouraging rapid adaptation results for new pro-
posed algorithms.

2. BACKGROUND

Most current speech recognition systems use a continuous den-
sity HMM model with each state output distribution repre-
sented by diagonal covariance Gaussian mixtures. Assume, we
have M unshared mixture components in our system. The out-
put distribution corresponding to a single mixture component
m is given by:
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where p,., 2, are mean and covariance of the component m
and n is the dimension of the feature vector. The output distri-
bution for an HMM state is given by D o wimN(0; t,,,, Zm)
where w,, are mixture weights and S represents the set of com-
ponents belonging to a state.

2.1. Maximum Likelihood Linear Regression (MLLR)

In MLLR adaptation, the Gaussian distribution means are up-
dated with an affine transformation:

pMER = AT b =W Ym e R,



where the transform matrix A and bias vector b are shared
among components m € R, &, = [pu51]" is the extended
mean vector and W = [A b] is the extended transform matrix.
For simplicity, we ignore the dependence of the transformation
parameters on the regression class R in our notation. There are
usually multiple transforms {Wi,..., W g}, each of which are
applied to the HMM components in their respective regression
classes {R1,...,Rr}.

2.2. Cluster Weighting (CW)

To perform CW adaptation, the training data is clustered into
K groups each of which consist of “similar” speakers. A sep-
arate model for each cluster is obtained. In this paper, we
assume each cluster model is obtained by using MLLR adapta-
tion on the speaker independent means. However, it is possible
to obtain cluster models by other adaptation methods (such as
MAP) or even by direct EM training on the cluster data if
enough data for a cluster exists. We denote cluster dependent
model means by p* for k=1,..., K. Since the cluster means
were obtained by MLLR, we have:

o, = A gy + 6 = WEE, Vm € R/, (1)

where A* and b* represent the MLLR transforms for cluster k
and regression class R'.
The adapted model is represented by:

K
p = At = M A, Vm e R, (2)
k=1

where M, = [u},,...,pnE] and XA = [A1,...,Ax]7 is the vec-
tor of weights. The weights are shared among Gaussian com-
ponents m € R’ similar to MLLR.

2.3. Estimation

Let O = {o1,...,0r} represent acoustic feature vectors for
the adaptation utterance. Adaptation can be performed by
maximizing the likelihood of the adapted HMM model. In
this paper, we only focus on adaptation methods that modify
the means of the output distributions. The EM method is
used to maximize (increase) the likelihood for computational
simplicity. The EM auxiliary function can be written by:

Q) =K\ — K> Y > ym(t)log N(os; p(60), ), (3)

t=1 m=1

where 6 are the parameters that define the adapted means and
are to be estimated (e.g. W for MLLR and X for CW), vy, (¢) is
the a posteriori probability of occupying component m given
all the adaptation data O, the current output distributions
{wWm, 13!, ., } and transition probabilities'. ., (t) is found by
the forward-backward algorithm. K; and K> are constants for
the purpose of this optimization problem.

When the auxiliary function @ is maximized, we obtain a
closed form solution for both MLLR, and CW adaptation when
diagonal covariance Gaussian mixture components are used.
For MLLR case, we get a closed form solution for rows of W
matrix given by [2]:

-1
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1Tt is possible to iterate the EM algorithm in this case by re-
calculating vm (t) with adapted models and recomputing the next
iteration adapted models using new values.

where W ;. is the ith row of W and
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where we define the “counts” as ¢, = Elevm(t) and the

“counts for mean” as d,, = Zle Ym (t)ot, and R is the re-
gression class or the set of components that share a common
transform.

For CW adaptation, the weight vector A can be estimated
by maximum likelihood as [4]:

A=Golky, (4)
where

Gu= Y caMp3 My, ko= Y M3 dn. (5)
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Note that, the weights do not have to sum up to one and
they might be negative as well as positive since this is an un-
constrained estimation.

To determine the regression classes R, a hierarchical bot-
tom up clustering tree is used. Each leaf of the tree is a com-
ponent or a set of components in the HMM. Nodes are merged
using acoustic similarity measures. Then, we specify a thresh-
old t. for the total counts at each node (i.e. Em ¢m’s) and the
node that first exceeds that threshold determines a regression
class (e.g. see [9]).

3. CLUSTER WEIGHTING + BIAS (CWB)

The form of (2) is restrictive in that it assumes the adapted
means to be in the span of the cluster means. However, if the
channel conditions for the adaptation data are much different
than the training data, this assumption may not hold. Since
filtering in the time domain corresponds to addition in the
cepstral domain, a bias term is added to the feature vectors
if MFCC features (or linearly processed MFCC features) are
used. This effect can be corrected by incorporating a bias term
in the CW formulation.

A second shortcoming of the CW formulation is that it does
not contain the speaker independent means. There might be
cases such that the SI means represent the new speaker better
than all the cluster means. So, we center our new CW adap-
tation method on a reference model ¥ which represents a
“best guess” model which is believed to perform best on the
new speaker. So, we introduce the following cluster weighting
+ bias (CWB) adaptation method:

K
o = ™ Y M, — i) 0 (6)

k=1

Usually, we choose piBY = St

CWB estimation can be carried out in a similar fashion
as CW estimation. CWB is still an interpolation of various
vectors to obtain an adapted model. Equation (6) can be re-
written as:

P = W ML,
where M, = [u}, —pRFF . uX —pBEF Iand X' = AT, b7]7.
Then, the equations (4) and (5) could be used to estimate A’
(i.e. XA and b) except that d, should be replaced by d., —
cm B in equation (5).



4. PENALIZED-LIKELIHOOD CLUSTER
WEIGHTING

Since equation (3) is an unconstrained objective function, the
weights A in CW and CWB adaptation can take any value.
However, it might be a good idea to put some “soft” constraints
on their values for stability of the algorithm when only very lit-
tle adaptation data is available. Penalized-likelihood provides a
framework for incorporating such constraints. We add penalty
terms to the log-likelihood function to penalize deviations from
our soft constraints. This is equivalent to Bayesian estimation
(MAP) when the penalty functions are seen as the logarithm of
the prior distribution on the parameters. However, it is more
convenient for us to adopt the penalized-likelihood view. In
penalized-likelihood, instead of maximizing the log-likelihood
L(0), we minimize —L(#) + R(#) where R is the penalty func-
tion. For CW adaptation, we minimize —Q(X) + >, BiRi(\)
where (; represent how much each penalty function is weighted.
We define the following penalty function for CW:

2R(A) = 51(2 A — 1) + 6o Z AL
k k

We make sure the penalty functions are quadratic, so that the
optimization is easier. R; encourages the weights sum up to
one and R» discourages negative weights if we assume R; is
satisfied. Any of the £’s could be set to zero to ignore that
penalty function. Additional penalty functions can be added if
more information is available for the new speaker. Reasonable
values of 8’s could be determined by experimentation.

This penalized-likelihood objective is optimized directly
with a formula similar to (4) :

A= (Gu+B1+Bd) " (kuw+B).
For CWB adaptation, the following penalty function makes

sense: . .
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In this case, setting 81 and 32 to large numbers will encourage
the weights and the bias term to be close to zero, in which case
the adaptation will favor the reference model (u®F) and will
not deviate a lot from it which might be a good idea if we have
very short adaptation data. To remove the constraints on the
weights and bias terms, the beta values could be set to zero, in
which case the adapted model will deviate from the reference
model and will be equivalent to the maximum likelihood CWB
solution.

5. MAPLR WITH PRIORS THROUGH CLUSTER
WEIGHTING

MAPLR is an extension of the MLLR method of adaptation
which was introduced recently [6, 7]. In MAPLR formulation,
a prior distribution on the transformation parameters W is
assumed. The estimation is done by maximizing a maximum a
posteriori (MAP) objective function instead of the usual maxi-
mum likelihood. It is shown that a closed form solution is pos-
sible when the distribution is chosen from the family of ellip-
tically symmetric matrix variate distributions [6]. In practice,
diagonal covariance Gaussian priors are used and the priors are
estimated from data. MAPLR with matrix variate Gaussian
priors is equivalent to penalized-likelihood when the penalty
term is a sum of weighted least squares functions for the rows
of the transformation matrix.

HW) = QW)+ (Wi — 1) ST (Wi — 1),

where W ;. denotes ith row of the matrix W, m; is the prior
mean and S; is the prior covariance for the ¢th row of W.
Here (3 is a hyperparameter that determines how much weight
is to be given to the penalty function (or the log-prior). It
is equivalent to weighting the prior (co)variance matrix S; by
1/8 in Bayesian method.

In previous studies [6, 7], only priors obtained from the
adaptation data itself or speaker independent model means
were used. Structural MAPLR [9] makes use of the regression
tree as an additional information source. In this paper, we
propose to find the priors (or the penalty term parameters)
using the cluster weights from CW or CWB adaptation. We
make use of the prior training speaker information unlike all the
other MAPLR methods. In some way, this is a hybrid between
cluster weighting and transform based adaptation. Since the
clusters were obtained by MLLR transformations as in equa-
tion (1), we can write the CW adapted means as follows:

SV = Z,\kA’mi{ + Z,\kb’c = Z A WEEST
k k k

This is equivalent to applying the affine transformation M wk
directly to the SI means. We choose this transform to be the
prior mean for MAPLR, i.e.

oy :Z)\ka‘..
k

The prior variance terms S;’s can be obtained by many ways.
Using the weights to obtain prior variance is not a good idea,
since weights might be negative, but absolute value or square
of the weights could be used. We use the following simple
formula to find the prior diagonal covariance matrix for row ¢:

(S0);; = 1/K > (Wl —riyy)*. (7)
k

When we use CWB adaptation to find the priors, we nat-
urally use the following equation for the prior mean transfor-
mation when pRPF = 45"

o= T+ M(A" 1), O Mb")+b|.
k k

The variance computation remains the same as (7).
The estimation formula for MAPLR is given by:

Wi = (Gi+BS7") (2 + BS; ).

Note that the statistic G; is proportional to c¢,,, the adapta-
tion counts. So, when we have a lot of counts, G; dominates
the denominator, however in a low count case, the prior term
dominates. The level of domination depends on the value of
B which can be determined with experimentation for a given
system.

In practice, the transform or weight sharing could be dif-
ferent for CW and MAPLR adaptation methods. Since we
ignored regression classes in our notation, this is not apparent.
However, it is easy to remedy this situation by using the hier-
archical tree nature. We usually have MAPLR, count threshold
(t.) to be much lower than CW or CWB threshold?, so we use
the cluster weights from parent nodes in MAPLR regression
classes.

2The reason for this is that the MAPLR transform will favor the
prior transform if we have low count anyway, so there is no reason to
have a high threshold which will result in a coarse set of transforms.



6. RESULTS

We have tested the methods introduced in this paper on IBM
name dialer test data. Each utterance is very short about 2-5
seconds which qualifies for rapid adaptation tests. The test
data has 5190 name dialer calls. We compared our methods
with other popular rapid adaptation techniques. The results
are shown in Table 1.

The starting system is a generic telephony system trained
with 600K sentences of telephony data (8KHz) from different
domains. The system uses an LDA matrix applied to 9 spliced
frames of 13 MFCC components each to reduce the dimension
to 39. The decoding parameters were optimized for the tele-
phony data. The vocabulary size was about 8000 words. We
applied “massive adaptation” to this generic system to obtain
a massive adapted system. We used a pool of name dialing
data as adaptation data (about 10K calls) and adapted the
generic system to the names domain. This reduced the word
error rate considerably from 11.21% to 9.53%. We consider this
adapted system to be the baseline system for us. For use in
CW and CWB adaptation, we performed speaker clustering of
the training speakers. For each speaker, we computed a simple
one Gaussian per context-independent phone state model and
used k-means on the means to cluster speakers into groups.
We generated an 8 cluster system.

Starting with the baseline system, we applied unsupervised
adaptation to each utterance separately. We first decoded the
utterance using the baseline system, then used the decoded
script to compute statistics for adaptation. After adapting the
baseline model with various methods, we decoded the same call
using the adapted models. Hence, the adaptation and the test
data were the same in our tests. We used maximum likelihood
estimation for CW and CWB adaptation. Penalized-likelihood
with different 8 values were used for MAPLR experiments.
The regression thresholds ¢. were obtained by heuristics and
past experience.

Method tc WER | UER
Generic telephony system - 11.21 | 12.37
Massive adapted (MLLR+MAP) | 800 | 9.53 10.52
MLLR (full) 800 | 9.39 10.37
MLLR (diagonal) 200 | 9.21 10.21
MLLR (2x2 block diagonal) 300 | 8.83 9.90
DLLR (A=0.1) 200 | 8.96 9.83
CW (K =38) 100 | 9.12 10.10
MAPLR, CW prior (8 = 50) 5 8.33 9.27
MAPLR, CW prior (8 = 100) 5 8.42 9.44
CWB (K =38) 200 | 8.79 9.81
MAPLR, CWB prior (8 = 1) 5 8.80 9.87
MAPLR, CWB prior (8 = 50) 5 8.59 9.56
MAPLR, CWB prior (8 = 100) 5 8.65 9.61
MAPLR, CWB prior (8 = 200) 5 8.73 9.79

Table 1: Utterance adaptation results for name dialer test data.
Word error rate (WER) and utterance error rate (UER) in per-
centages are shown. Baseline is the massive adapted system. t.
is the count threshold to determine regression classes R. Triple
line separates old methods and newly proposed methods.

The results show that block diagonal MLLR performed the
best among old rapid adaptation methods. Discounted likeli-
hood linear regression (DLLR) [10] also performed better than
full and diagonal MLLR. CWB outperforms CW method, but
the best result is obtained with MAPLR with CW priors and

B = 50 which achieves a 12% reduction in the WER reducing
it to 8.33% from 9.53%.

7. CONCLUSION

We introduced new penalized-likelihood methods for rapid adap-
tation of speech recognizers. Our methods extend and im-
prove previously introduced cluster weighting and MAPLR
techniques for adaptation. We introduced CWB method that
adds bias and reference speaker terms to the CW method. We
propose to use penalized-likelihood cluster weight estimation
for stability. We introduced a new way to obtain priors for
MAPLR adaptation using CW or CWB weights. The new
methods outperform other techniques in an unsupervised rapid
adaptation scenario for a name recognition task.

The adaptation methods we tried were performed on the
HMM model component means. In real applications of tele-
phony speech recognition, it is very expensive to update the
models for each utterance. There are a class of feature space
transformations that achieve similar effect as the model space
transformations [11]. Feature space transforms are cheaper in
terms of computation and storage. In our future work, we plan
to study feature space transform counterparts of our methods.
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