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ABSTRACT1

Two common source-channel coding strategies, joint and
tandem, are compared on the basis of distortion vs. delay by
analyzing specific representatives of each when transmitting
analog data samples across a binary symmetric channel.
Channel-optimized transform coding is the joint source-
channel coding strategy; transform coding with Reed-Solo-
mon coding is the tandem strategy.  For each strategy, for-
mulas for the mean-squared error and delay are found and
used to minimize distortion subject to a delay constraint, for
data modeled as Gauss-Markov.  The results of such optimi-
zations suggest there is a threshold such that when the per-
missible delay is above this threshold, tandem coding is
better, and when below the threshold, channel-optimized
transform coding is better.

1.  INTRODUCTION

Two common approaches to source-channel coding for com-
municating analog data samples across a noisy channel are:
(1) tandem source-channel coding, in which a source code
designed without regard to the possibility of channel errors
is followed by a channel code designed without regard to the
source, and (2) joint source-channel coding, in which source
and channel code are jointly designed to combat channel
errors.  One common example of the joint is channel-opti-
mized quantization, where no explicit channel code is used,
but the quantizer is designed to be robust to channel errors.

Shannon showed that no system could have better perfor-
mance than the best tandem source-channel coding system.
However, over the years there has been considerable interest
in joint source-channel coding with the motivation that it
can attain better performance with less complexity and/or
delay than tandem source-channel coding.  On the other
hand, little quantitative evidence for this claim has appeared
in the literature.  Recently, we looked for such evidence by
quantitatively comparing representative systems of each
type on the basis of distortion vs. complexity [1,2].  In the
present work, we expand our investigation to find whether
joint source-channel coding achieves better performance
with less delay than tandem source-channel coding.

To avoid idiosyncrasies, we examine systems that are as
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"plain vanilla" as possible. Specifically, as the joint source-
channel code, we consider the channel-optimized transform
code studied by Vaishampayan and Farvardin [3].  As the
tandem source-channel code, we consider a conventional
transform code (optimized for a noiseless channel) followed
by a Reed-Solomon channel code, as studied previously by
the authors in [1,2].  We do not use entropy coding with
either system, because its performance tends to be highly
method specific, making it unlikely that one could choose a
representative plain vanilla version.  We also choose mean-
squared error (MSE) as the fidelity measure which, despite
its faults, is by far the most commonly used.  We evaluate
the performance of these systems on a Gauss-Markov (first-
order AR) source over binary symmetric channels (BSC).
The delay of these systems is derived and expressed in units
of data samples by considering buffering delay caused by
block processing.

Just as the results of previous studies [1,2] suggest there
is a threshold such that tandem coding is better than joint
when and only when the complexity is larger than the
threshold, the results of the present study suggest there is a
threshold such that tandem coding is better than joint when
and only when the permissible delay is above this threshold.

2.  THE SOURCE-CHANNEL CODING
SYSTEMS

In this section, we describe the representative systems men-
tioned previously.  The source is a stationary Gauss-Markov
random process, denoted {Ui}, with zero mean, unit vari-
ance, and correlation coefficient ρ=E[UiUi+1].  The channel is
a binary symmetric channel (BSC) (stationary and memory-
less) whose error probability is denoted p.  The number of
channel uses available to transmit one source sample is
denoted R and called the channel rate.

Joint: channel-optimized transform coding

For an integer L to be specified, an L-dimensional Karhun-
en-Loeve transform maps the L source data samples U =
(U1,U2,…,UL) into an L-dimensional vector of coefficients
V.  Each coefficient Vi, which is itself Gaussian with vari-
ance σ2

i , is then scalar quantized with a quantizer Qi having
Ns,i = 2Rs,i levels denoted yi,1<...<yi,Ns,i. The distortion
of Qi is Ds,i = E(Vi-Qi(Vi))

2.  Each quantization level yi,j
is assigned an Rs,i-bit binary sequence wi,j that is produced
when Vi is quantized to yi,j.  Let Bi denote the binary



sequence produced when quantizing Vi.  When R channel
uses are available per source symbol, the rate allocations
Rs,i, the quantization levels yi,j, and the binary sequences
wi,j are chosen to minimize the overall mean-squared error
distortion D = 

1
L ∑ i=1

L  Ds,i subject to the overall rate con-
straint 

1
L ∑ i=1

L  Rs,i ≤R.  This is done with the method of
[3] for the given source (parameterized by ρ) and the binary
symmetric channel (parameterized by p).

Tandem: Transform Plus Reed-Solomon coding

The tandem strategy uses a transform code as above, except
that the rate allocations and quantization levels are opti-
mized for the source by conventional means without regard
to the channel.  The binary sequence wi,j is simply the
binary representation of the integer j.  We define Rs =
1
L ∑ i=1

L  Rs,i to be the source code rate.  The channel code is
an (n,k,m) Reed-Solomon (R-S) code with n = 2m-1, k ≤ n,
and channel code rate denoted Rc = k/n.  With such a code, k
data symbols are encoded into n channel symbols, where
each data symbol consists of m bits from the transform code
and each channel symbol consists of m bits to be input to
the BSC.  The decoder can correct any pattern of t = n-k

2   or
fewer channel symbol errors, where a channel symbol error
is said to occur whenever the channel introduces one or
more bit errors within an m-bit channel symbol.

The R-S encoder is chosen to be systematic in the sense
that each codeword has the k data symbols that it encodes as
its first k channel symbols.  When the channel rate R is
specified, it is required that the source and channel codes be
chosen so that Rs/Rc = R.  We do not assume that the
number of bits, LRs, produced by the source code is equal
to, a divisor of, or a multiple of the number of bits, km,
encoded by one R-S codeword.  Rather, the bits produced by
the transform code are concatenated into a single stream that
is parsed into blocks of km for encoding by the R-S encod-
er.  It follows that the bits Bi describing coefficient Vi
might be embedded in two or more symbols from one or
two codewords2.

The R-S decoder operates as follows.  When the BSC
output, considered as an n-symbol sequence, is within Ham-
ming distance t of some R-S codeword, the decoder produces
the first k symbols of that codeword.  On the other hand,
when the Hamming distance between the BSC output and
each codeword exceeds t, the received sequence and decoder
are said to FAIL, and the decoder simply produces the first
k channel output symbols.  The resulting decoded symbol
stream is parsed into blocks of LRs bits and presented to the
transform decoder.  We have found that using this strategy
when the received sequence FAIL's works better than either
simply producing the first k symbols of the closest code-
word, or declaring an ERASURE and replacing the missing
transform coefficients with zeroes.

2The values of Rs, n, k and m considered are such that Bi  will
never be spread over three or more codewords.

3.  DISTORTION

The distortion of the channel-optimized transform coding
may be computed by the method of [3].

We give a brief overview of the method for computing
the tandem code distortion that was presented in [1,2]. The
distortion of the tandem code is determined by the source
parameter ρ, channel parameters p and R,  source code par-
ameters L and Rs, and channel code parameters n, k and m.
The distortion computation is complicated by the fact that
the binary sequence Bi representing coefficient Vi is, in gen-
eral, embedded in a different way in the channel coded bit
stream than the bits Bi+L representing coefficient Vi+L,
even though Vi+L is quantized in the same way as Vi.  For
example, B1 will be the first Rs,1 bits of the first channel
codeword, but depending on the values Rs, L, k  and m,
BL+1 might appear later in the same codeword or might be
divided between the first and second codeword, to mention
just two of the possibilities.  Moreover, the bits of BL+1
might not begin a symbol, whereas those of B1 do.

In effect, we need to average the MSE of coefficients of
the same type as Vi over the different ways that the bits rep-
resenting such coefficients can be embedded in the channel
coded bit stream.  To this end, let g denote the greatest com-
mon divider of LRs and km, let Ns = km/g and Nc = LRs/g.
It is easy to see that NsLRs = Nckm is the least common
multiple of LRs and km.  That is, Ns is the smallest inte-
ger such that the bits produced by Ns applications of the
transform code can be packed into an integer number of R-S
codewords.  Accordingly, we consider distortion associated
with encoding NsL data samples.  The corresponding trans-
form coefficients, V1,…,VNsL, are quantized as described
earlier, with the understanding that Vi and Vi+L are identi-
cally distributed and quantized by identical quantizers.

The MSE may now be written

D  =  
1

NsL
 ∑
i=1

NsL
 Di , (1)

where Di = E[(Vi-V̂i)2], and where Vi, the ith transform
coefficient, is Gaussian with variance σ2

i  = σ2
i mod L, and V̂i

is its decoded reproduction.  To compute the Di's we assume
that when the decoder does not FAIL, it always produces the
correct decision.  As can be seen from [4], this is a good
assumption when the error correcting capability t is at least
4.  It follows that

Di  =  Ds,i(Rs,i) P(NFi) + E[(Vi-V̂ i)2 | Fi] P(Fi) ,   (2)

where Fi is the event  that the received sequence containing
the bits Bi representing Vi FAILS, or if Bi is spread over
two received sequences, that one or both of these FAILS,
and where NFi is the NO FAIL event, i.e. the complement
of Fi.  By the usual argument of combined source-channel
coding (cf. [5], pp. 179-181),

E[(Vi-V̂ i)2|Fi]  =  Ds,i + Dc,i ,              (3)

where Ds,i = Ds,i(Rs,i) is the quantizer distortion described



earlier and Dc,i is the channel distortion defined by

Dc,i  =  ∑
j,j'=1

Ns,i
 (yi,j-yi,j')2 Pi(j) Pi(wi,j'|wi,j,Fi) ,     (4)

where Pi(j) is the probability that the quantizer for Vi pro-
duces the jth level yi,j, and Pi(wi,j'|wi,j,Fi) is the probabil-
ity that the channel decoder outputs the binary sequence for
yi,j' given that the channel input was the binary sequence
for yi,j and that the sequence(s) containing Bi FAILED.  To
find an expression for Pi(wi,j'|wi,j,Fi),  one must take into
account the position of  Bi  in the encoded bit stream rela-
tive to symbol and codeword boundaries.  This is done by
separately considering the cases that  Bi  is entirely con-
tained within one R-S codeword and that Bi is spread over
two codewords.  We omit the details.  However, the end
result is an expression for Pi(wi,j'|wi,j,Fi) that when substi-
tuted into (4) and combined with (1)-(3) yields a computable
expression for D.

4.  DELAY

The delay introduced by a system when transmitting symbol
Ui is the number of data samples Ui+1, Ui+2, ... that sub-
sequently arrive at the encoder until the time that the repro-
duction Ûi is produced by the decoder.  The delay of a
source-channel code is the maximum delay for any source
symbol.  Though delay can be caused by encoding/decoding
hardware, we consider only buffering delay because it is
always present and it is the only type of delay that cannot
be reduced by adding resources.

The delay for a channel-optimized transform code is sim-
ply the dimension L of its transform, which is the time
required to buffer the L samples of one block.

For the analysis of delay in a tandem system, we con-
sider the encoding of NsL data samples as described in Sec-
tion 3.  When NsLRs bits are packed into Nc codewords, we
take g bits as the "packing unit", where g is the greatest
common divisor of LRs and km.  Thus, LRs transform out-
put bits consist of Nc units and one codeword consists of
Ns units. We need to pack NsNc units coming from Ns
transform blocks into Nc codewords.  The appropriate ex-
pression for delay depends on the values of LRs and km.

(1) If km is a multiple of LRS, i.e., NSLRS=km, then NS

transform outputs are nicely packed into one codeword.
Thus, the delay is the time required for buffering NS trans-
form outputs for channel encoding, i.e. NSL=(km/LRS)L.
(2) If km is not a multiple of LRs, but is greater than LRS,
thne one channel codeword, consisting of NS units, takes NS

units from more than one transform block.  For a given R-
S codeword, let MT denote the number of transform blocks
from which it receives units.  MT is the number of trans-
form block outputs that need to be buffered, for packing
units into this codeword.  One can show that the maximum
value of MT is 1+ (km-g)/LRs .  Thus, the delay in this
case is 1+ (km-g)/LRs L.  (3) For the case that LRS is a
multiple of km, the transform outputs are nicely packed
into Nc codewords, and thus the delay is the time required
for buffering source samples for transform encoding and is

given by L. (4) If LRS is not a multiple of km and LRS is
greater than or equal to km, then the Nc units coming from
one transformation are divided and packed into more than
one codeword. The codeword that takes the last unit of the
transformation cannot be sent right after the transformation
since it needs to include other units from the next transfor-
mation.  When the codeword containing the last unit of the
transformation is decoded, all bits resulting from the prior
transformation are available and the source decoding for the
prior transformation can be performed. Thus, there is need
to buffer two transform blocks and the delay is 2L.

After simple manipulations, the delay expressions for
the four cases can be combined into:

τ  =  (1+ km-g
LRs

 ) L ,     (5)

where g is the greatest common divisor of km and LRS.

5.  OPTIMIZING DISTORTION WITH A
DELAY CONSTRAINT

Channel-optimized transform code
For specific choices of the source parameter ρ, channel para-
meters R and p, and delay constraint Τ, a computer program
evaluates the distortion of the transform code for the largest
transform dimension L in the set {1,2,4,8,...., 128} such
that the delay is no larger than Τ.

Tandem source-channel code
For specific choices of the source parameter ρ and channel
parameters R and p, and a delay constraint Τ, a computer
program finds the best choices of source code parameters L
and Rs, and channel code parameters n, k and m subject to
the constraints that Rs≤R, nRs/R≤k, n=2m-1, LRs is an
integer and τ(L,Rs,n,k,m) ≤ Τ.  To do so, the expressions
of Sections 3 and 4 are used to compute the MSE and delay,
with parameter values varying in three nested loops. The
values of L come from the set {1,2,4,8,....,128}; the values
of Rs are such that LRs equals 1,2,......, RL ; the values of
m come from the set {1,2,...,12}; and finally k= nRs/R .
Note that for a given choice of L, Rs, k and m, the program
must choose Ns and Nc as described in Section 3.

6. RESULTS AND CONCLUSIONS

Representative results of the optimizations described above
are provided by Figure 1, which plots the SNR in dB of
channel-optimized and tandem source-channel coding for the
case that the source has correlation coefficient ρ=0.9, the
BSC has error probability p=2x10-2, and the channel is used
R=5 times per data sample.  The bottom line shows the per-
formance of transform coding optimized without regard to
the channel, but used directly on the channel without chan-
nel coding.  It is easy to see that there is no benefit to
increasing the delay, i.e. the transform dimension. However,
as delay increases, the SNR of channel-optimized transform
coding improves.  Specifically, there is about a 5 dB gain
over conventional transform coding for Τ =4, and the gain
increases until it saturates at about 11 dB for Τ≅ 30.  At this



point, there is no benefit to further increases in dimension.
Not surprisingly, the performance of optimized tandem

source-channel codes also increases with delay.  For small
values of delay, its SNR is not as large as that of channel-
optimized transform coding, while for larger values, it is
larger.  In particular, tandem coding becomes better at
around 50 samples of delay.  At this point, although the
SNR of channel-optimized transform coding has saturated,
allowing additional delay permits the tandem code to con-
tinue to improve.  Thus, there appears to be a threshold
such that channel-optimized transform coding gives better
performance than tandem coding when and only when the
delay is constrained to be less than this threshold.  Also
shown in the figure is the SNR of a tandem system consis-
ting of conventional transform code with L=128 and an ideal
channel code (the transform code has rate R times the capac-
ity of the BSC and its encoded bits are assumed to be unaf-
fected by channel errors), and also the best possible perfor-
mance of any tandem code (the Shannon distortion-rate func-
tion of the source evaluated at R times the capacity of the
BSC).

Tables 1 and 2 show the delay threshold and the gain of
the tandem system over the joint system at 5 times the
threshold.  The latter is intended as an indicator of how
much can be gained with the additional delay of tandem cod-
ing.  Notice that the delay thresholds decrease and the gains
increase as the channel becomes more reliable and more
channel uses are available.  This means that contrary to
what one might initially think, channel coding is more
immediately useful, i.e. useful with moderate delay, when
the channel is more reliable.

In summary, the distortion vs. delay performance of
representative tandem and joint source-channel codes has
been computed and compared.  The results suggest that there
is a threshold such that when the permissible delay is above
this threshold, tandem coding is better, and when below the
threshold, channel-optimized transform coding is better.  In
other words, the results suggest using joint source-channel
coding when low delay is required, and using tandem coding
when better performance is needed and substantially more
delay is allowed.
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Figure 1: Performance of channel-optimized transform
coding and tandem coding for R=5, p=2x10-2 and ρ = 0.9

Table 1.  Delay thresholds and gains of tandem over joint
coding at 5 times threshold for ρ = 0.9.

R
3 4 5

0.02 400/0.6dB 80/0.8dB 47/1.9dB
p 0.01 125/0.7dB 55/2.1dB 25/2.5dB

0.001 115/0.7dB 60/1.8dB 25/2.4dB

Table 2.  Delay thresholds and gains of tandem over joint
coding at 5 times threshold for R=5.

ρ
0.70 0.90 0.95

0.02 40/1.2dB 47/1.9dB 30/2.9dB
p 0.01 20/2.3dB 25/2.5dB 15/2.4dB

0.001 15/1.8dB 25/2.4dB 30/3.2dB


