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Abstract: Adaptationlaws with constangains,thatadjust
parametersf linearregressiomodels areinvestigatedThe
classof algorithmsincludesLMS asits simplestmember
Closed-formexpressiondor thetrackingMSE areobtained
for parameterslescribedoy ARIMA processesA key el-

ementof the analysisis that adaptatioralgorithmsare ex-

pressedhslineartime-invariantfilters, herecalledlearning
filters, thatwork in openloopfor slow parametevariations.
Performanceanalysiscantheneasilybeperformedor slow

variations andstabilityis assuredby stability of thesdearn-
ing filters.

1. INTRODUCTION

Considerdiscrete-timeand possibly complex-valuedmea-
surementgeneratedy alinearregression

yr = @rhe v, (1)

wherey; is the measureaignalwith n, elementsy, is a
noisevectorwhile ¢y is ann,|ny, regressiormatrix, which
is known atdiscretetime t. The parametewector
T
hy = (hot - Pnyp—1,)" 2

with nj; known, is to beestimated.

We shallhereinvestigatea classof lineartime-invariant
estimators

ﬁt+k\t = My(q Yeser 3)

operatingon .
wier = pe(ye — (P;ht\t—l) > 4)

the negative gradientof |e;|2. Above, k1 is anestimate
of h;1 obtainedat time ¢ by filtering (¥ = 0), prediction
(k > 0) or fixedlag smoothing(k < 0). Mostknown linear
algorithmswith constangainsfit into this structureg.g.the
LMS algorithmwith M (g %) = (u/(1 —¢ ")) L
Wienermethodsfor adjustingM (¢~ *) have beende-
velopedin [1],[2]. In this presentationye outline a per
formanceanalysisof adaptationaws (3) that track slowly
varying parametenectorshy . The resultingestimation

error ﬁt+k|t = hgpp — Et+k|t is investigatedand closed-
form expressiondor the steady-statparametetrackinger
ror covariancematrix

A L L s
P = lm Pyygy = Hm Ehyypihy gy, (5)

thathold underthefollowing assumptionwill bepresented.

Assumption 1: The parametewector h; is well de-
scribedby a linear time-invariantvector ARIMA process
andthenoisev, is stationaryandzeromeanwhile ¢}, with
known dimensionjs stationarywith zeromeanandnonsin-
gularcovariancematrixR = E ¢, . Moreover, hy, v, and
o aremutuallyindependent O

We do not assumeconsecutie ¢} to be independent.
However, the assumptiorthat the regressorsp; areinde-
pendentof the parameterg; andof the noisewv; excludes
theanalysisof AR andARX models.

Notation: Here, R(g™ '), R(g" ') andR(¢!), denote
polynomials polynomialmatricesandcausatationalmatri-
ces respectielyin thebackwardshiftoperatog? (¢ ty; =
y¢—1), wWhile R, (q) is the conjugate-transposa the poly-
nomialmatrix R(g™!).

2. THE LEARNING FILTER

The basisfor the analysisis that all linear time-invariant
estimatorg3) canalternatvely be expressedis

ek = Lel@ Ve =Y LEfisi (6)
i=0

Lila™) & Mil@ )T+ ' RMy(g™)™ . (7)

Here L, (¢ '), calledthelearningfilter, mustbe stableand
causal.lt operate®n asignalvector f;, obtainedby insert-
ing (1) into ¢;e; andthenaddingand subtractingR7;—
ontheright-handsideof (4), giving

@& =  Rhy—Rhy_1 + (o9} — R)hyji—1 + prv
A A
= fi- Rht|t—1 . (8)
Thus, ) A
ft =Rhy1 + e = Rhy+mp . 9)



Theuseof pie; = fi — Rg™* Myp;e; from (9)in (3) gives
(6),(7). The signal f; canbe regardedas a measurement
consistingof a rotatedparametewnector Rh; disturbedby
an additive noiser,, calledthe gradientnoise If theterm
1 is regardedasa zeromeanstationaryadditive noise then
stableand causalffilters (6) canbe designedanalyticallyto
minimizethetrackingerrorcovariancematrix Py.

Optimal Wienerdesign,presentedn [1], resultsin sta-
ble learningfilters L;(¢™'). For adaptationaws obtained
by other means stability mustbe verified separately For
the LMS algorithm,

(I- q_ll)ilt+1\t = ppier (10)
thelearnindfilter
Lig)=T-T-pR)g™") " p (11)

is obtainedby insertingpie: = fi —q‘lRﬁH”t from (9)in
(10), or directly by insertingM;(g~") = (u/(1 — ¢~ ")) I
in (7). The stability requirementon L4(¢g™!) in (11) cor
responddo the classicalconditionfor corvergencein the
mean[3]

0<p< , (12)

)\max
whereax IS thelargesteigervalueof R. Thisreadilyfol-
lows by aneigervaluedecompositiorof R in (11).

In openloop, stabilityandboundedestimatiorerrorsare
guaranteedy stability of thelearnindfilter. However, since
(9) and(8) imply that

N = Ztilt\t—l + o, (13)
whereZ; is the zeromeanmatrix
Zy=pip; — R, (14)

the gradientnoisen; will containa time-varying feedback
term Ztﬁm,l from old parametererrors, here called the
feedbak noise This feedbacknvolvestheone-steppredic-
tion learningfilter £, (¢~ !), seeFig. 1. The gradientnoise
1 will thereforebeinfluencedoy thedesignof theestimator
andthefeedbackmayin a generakasecausenstability.

A sufficient but conserative condition for stability of
the feedbackis provided by the small gaintheorem[4]: If
L1(g ')Z; is causaland L,-stable stability is preseredif

e L1@ ") Zehgje—1llp < Yhge—ally 5 v <1 .
In [5], lessconsenrative conditionsarederivedfor FIR sys-
temswith white input data.

3. PERFORMANCE ANALYSIS

By (6), (9) and(13), thetrackingerrorcanbeexpresseds

herre = @ — ¢ FLeR) ok — Lrprvy — Ly Zihyyy -
(15)

Fig. 1. ThefeedbacKoop aroundc; (g~ ") via thefeedbacknoise
Ztﬁﬂt,l may significantly affect the fictitious measuremeny,
and may also causeinstability. The variationsof h; will bere-
gardedasslow whenthis feedbackcanbeneglected.

Thus, threetermsaffect the tracking error: The lag error
(I — ¢ *LkR)hsyr, anerrorterm L p;v; causedy mea-
surementoise anda feedbacknoiseterm l:thiLﬂt_l in-
fluencedby old parametertracking errors.

If ﬁt+k|t is stationary thenthe error covariancematrix
(5) will underAssumptionl begivenby

T k k k k k
Pr = tllglo (Vh,t Voot TVais T Vi + chinL,t)

Zh,t
(16)
where
V,’f,t = E(| —q_kLkR)hH_k ((| —q_kﬁkR)hH_k)*
(7)
Vi = E(Lrpron)(Lrpivr)® (18)
V§,~1,t = E(LiZithyi—1)(LrZihyi—r)* - (19)

The two lasttermsin (16) aredueto correlationshetween
thefeedbacknoise thelag errorandy,v;, respectiely.
Slow variationsand slow adaptatiorarea commonas-
sumptionin analysisof adaptatioralgorithms|6, 7, 9, 10].
This conceptcan be quantifiedin variousways. Some-
times, indicatorsreferredto as “the degreeof nonstation-
arity” (DNS) [8],[11] areintroduced. In the book [12] by
Macchi, the degreeof nonstationaritys definedas

E”‘Pf(ht - ht—l)”%
E |v[? '

(20)

Parametewnariationsare consideredslow if this quantityis
alwayssmall.

We introduceandmotivatea definitionthatis relatedto
(20) but is moreusefulin the presenformalism:

Definition 1: Regressionparametersare regardedas
slowly time-varyingwhenthefeedbacknoiseZtBt‘t,l can
be neglectedin an optimal MSE design,without affecting
thetrackingerrorcovariancesignificantly O

For slow parametewnariations,we canthusneglectthe
threelasttermsin (16) whenevaluatingthe performance.



Let the feedbacknoisecontributionto n; be neglected
andassumehatthe remaininggradientnoisecanberepre-
sentedby a stablyinvertible vectorvaluedARMA process
with commonstabledenominator

M@
N@H

T = ptv = (21)
with v; beinga zeromeanwhite noisewith a nonsingular
covariancematrix

Evwf =R, 2 MR, . (22)

Furthermorelet the assumedectorvaluedARIMA model
of h; be representedn polynomial form with a common
stableor mamginally stabledenominatoD(¢ 1)

1

"= B

(& (q_l) €t , (23)
with a nonsingulaicovariancematrix

Eewe! =R. 2 AR, . (24)

The designof L4 (¢ !) cannow be basedon Theoreml
in [1] (with D (¢~") = D(g~H)I). By invoking (1),(6),(9),
(21)-(24),the MSE-optimallearningfilter is thengivenby

LPq N =Qua HBa@ ) 'N@HR™ . (25)

HereB(¢™ ') is thestablesolutionto theleft polynomialma-
trix spectrafactorization

BB, =XCR.C.NN, +\,DR"'MR,M,R™'D,
(26)
while Q, (¢~ "), togethemwith a polynomialmatrix Ly.(g),
is theuniquesolutionto the Diophantineequation

/\ech F_eeC*N* = QB +qIDLy. . (27)

Let R, andR, be nonsingulaandfixed, while the scalars
Ae and \, may vary. For a vanishingparametedrift-to-

noiseratio A, /A, — 0, thevariationswill beslow accord-
ing to (20). We now statethatthefeedbacknoisecanin fact
be ngglectedin this situation,which occurseitherwhenthe
parameters; vary slowly, or whenthenoiselevel is high.

Lemma 1: Letthelearningfilter £;(g~") be obtained
by (25)—(27),assumingy, = ¢;v;. Under Assumptiond,
the relative impact of the feedbacknoise Ztﬁt|t_1 on the
trueerror (15) will thentendto zeroasA./A, — 0.

Proof: SeeLemmal andLemmaz2 of [5] O

With a negligible feedbacknoise,the feedbackaround
L1(g"") in Figure 1 can be neglected. Stability will for
| Z¢hye—1]] = 0 beassuredby stability of thelearningfilter.

LIt canbe notedfrom (13) and (14) that the feedbacknoisevanishes
wheny; p} canbesubstitutedy its averageR.

The Wienerdesignpresentedn [1] canfor slow vari-
ations be performeddirectly, without iterations. Further
more,wheneer the feedbacknoisecanbe neglected,stea-
dy statetrackingerrorcovariancematricescanbecalculated
for a given (not necessarilyoptimally designedpdaptation
law with constanigain. More specifically for slowly vary-
ing parametersand for stationarytracking errors, the co-
variancematrix Py, of the steady-staté&-steptrackingerror,
definedby (5), is underAssumptionl givenby

Pp= lim (V§,+VE ). (28)
t—o0 ’

v,t

For systemalescribeddy (1),(6),(9),(21)-(24),this equals

_ e —k CR.C. & dz
Pk—wf(' s HaR) CoE (1 - LanR)
Ay MR, M, dz

+ o 7{ T (29)

The integrandsof (29) provide the distribution in the fre-
quengy domainof the parametedag error and the noise-
inducederror, respectiely.

The expression(29) holds for arbitrary parameterdy-
namics(23) aswell asfor coloredmeasurementoiseand
correlatedregressorsaslong asthe feedbacknoisecanbe
neglected.Note,however, thatﬁt+k|t mustbeassumedta-
tionary, implying boundedvariance,even for parameters
generatedy mamginally stablesystemg23). Stationarityis
guaranteedf andonlyif £;(¢ ") is stableandall elements
of thelagerrormatrixin (15),I—¢—* L (¢~ )R, areassured
to containall mamginally stablefactorsof D(g™') in their
numerators.This propertywill be guaranteedn the MSE-
optimaldesign[1]. In thecaseof integration,D = 1 — ¢~ %,
thelow-frequeny gain(for z = e/ = 1) of L (2~*) must
beR™!. Thisis e.g.truefor the LMS filter (11).

4. EXAMPLE

The validity of expression(29) will be investigatedfor a
scalarFIR systemwith two parameters

ye = hogue + by gup 1 + v, (30)

with white zero meannoiseandwith white zeromeanre-
gressorsy; € {1,-1,i,—i}, yieldingR = I,. Theparam-
eterdynamicsis governedby the seconcbrderAR process

hs = 2pcoswohy 1 — pPheo + e (31)

with p = 0.999 andwherew, is herevariedto provide dif-
ferentmagnitude®f the DNS expressedy (20). The vari-
anceof v; is setto 0.01 andR, = A.I, where). is selected
to give anoutputSNRof 20dB, with E || ||2 = 1.
One-stepredictionestimatesreobtainedcby LMS and
by aWienerdesigneddaptationaw (WLMS), tunedto the



dynamicsof the FIR systemby using (25)-(27). (These
equationsbecomesimple andscalar with closed-formso-

lutions, in this case[2].) The LMS step-sizeu is tunedto

minimize the simulatedperformancewhereaghe Wiener

designis herebasedon the assumptiorof slow parameter
variationsaccordingto Definition 1.

Table 1 comparestr P; with correspondingestimates,
obtainedby simulation over 100000data (italic figures).

Note the muchlower trackingerrorvariancefor the Wiener
designascomparedo LMS.

Thetermtr V. = lim_o Vlzﬁ,t, whichis thelargest
term dueto the feedbacknoisein (16), is also measured.

This term essentiallyexplains the differencebetweenthe .
expression(29) that neglectsthe feedbacknoise, and the Fig.
true performance. A more accurateperformanceanalysis
that works for fastvariationsin FIR parameterdy taking
alsothetermtr Vlz,-1 into accounts presentedh [5].

For LMS, the expression(29) predictsthe performance 2]
reasonablywell for w, belor 0.005,while the Wienerde-
sign,performancés well predictedoy thetheoryuptow, ~
0.02 if thelimit for significantdeviationsis setto 10%.

Figure2 displaysthe spectraof the two errorterminte- [3]
grandsin (29) for w, = 0.01 . Notethe peakof the LMS
lag erroraroundw, andthe contribution of high-frequeng
noiseto theLMS errorspectrum. (4]

The bottomline of this exampleis thatit doesindeed
payoff to usemoresophisticateélgorithmsthanLMS even [5]
in casesof slow parametewariations. Onereasonis that
LMS implicitly assumesandomwalk parametevariations.
Furthermorethe degreeof nonstationarity(20) is designed
for LMS but givesa somevhat crudeindicationof whena
simplified analysisis adequatén general. The conceptof [6]
negligible feedbacknoisegivesbetterguidelines.

Table 1. Theasymptotictrackingerrortr P; whensecondorder 7
FIR models(30),(31)aretrackedby LMS andWLMS. Theoretical
predictionsfrom (29) (bold) andsimulationresults(in italics).

(8]

Wo 0.001 0.005 0.01 0.02 0.10
DNS: (20) .0141 .0510 .1005 .2002 .9996

LMS: trPy .0011 .0027 .0045 .0075 .0360 [9]
.0012 .0030 .0052 .0099 .0650
tr Vlzﬁ .0001 .0003 .0007 .0020 .0278

WIENER  trP: .0007 .0013 .0019 .0028 .0061 [10]
DESIGN: .0007 .0014 .0021 .0031 .0076
tr Vlzﬁ .0000 .0001 .0002 .0003 .0015

(11]
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