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Abstract: Adaptationlaws with constantgains,thatadjust
parametersof linearregressionmodels,areinvestigated.The
classof algorithmsincludesLMS asits simplestmember.
Closed-formexpressionsfor thetrackingMSEareobtained
for parametersdescribedby ARIMA processes.A key el-
ementof the analysisis that adaptationalgorithmsareex-
pressedaslinear time-invariantfilters, herecalledlearning
filters,thatwork in openloopfor slow parametervariations.
Performanceanalysiscantheneasilybeperformedfor slow
variations,andstabilityis assuredby stabilityof theselearn-
ing filters.

1. INTRODUCTION

Considerdiscrete-timeandpossiblycomplex-valuedmea-
surementsgeneratedby a linearregression�������
	��� ��
������ (1)

where ��� is the measuredsignalwith ��� elements,��� is a
noisevectorwhile � 	� is an ����� ��� regressionmatrix,which
is known atdiscretetime � . Theparametervector� � ��� ����� � �!��� ��"$#�%�&'� �)(+* � (2)

with � � known, is to beestimated.
We shallhereinvestigatea classof lineartime-invariant

estimators ,� �.-�/�0 � �213/ ( 4�576 ) �8�:9;�<� (3)

operatingon �8�=9��>�2�8�?�.���8@A� 	� ,� �B0 � %�& ( � (4)

thenegative gradientof � 9 � � C . Above,

,� �.-�/�0 � is anestimate
of � �.-D/ obtainedat time � by filtering ( E �GF ), prediction
( EIH F ) or fixedlag smoothing( EIJ F ). Mostknown linear
algorithmswith constantgainsfit into thisstructure,e.g.the
LMS algorithmwith 1 & ( 4 576 ) ���.KDLM�BNO@ 4 576 (P(�Q .

Wienermethodsfor adjusting 13/ ( 4R5S6 ) have beende-
velopedin [1],[2]. In this presentation,we outline a per-
formanceanalysisof adaptationlaws (3) that track slowly
varying parametervectors � �.-D/ . The resultingestimation

error T� �.-�/�0 � � � �.-D/ @ ,� �.-�/�0 � is investigatedandclosed-
form expressionsfor thesteady-stateparametertrackinger-
ror covariancematrix

P/VU�XWZY\[�^]`_ P�.-D/�0 � �aWZY\[�^]`_�bcT� �.-�/�0 � T� 	�.-�/�0 � � (5)

thatholdunderthefollowingassumption,will bepresented.
Assumption 1: The parametervector � � is well de-

scribedby a linear time-invariant vector ARIMA process
andthenoise� � is stationaryandzeromean,while � 	� , with
known dimension,is stationarywith zeromeanandnonsin-
gularcovariancematrixR � b � � � 	� . Moreover, � � , � � , and� 	� aremutuallyindependent d

We do not assumeconsecutive � 	� to be independent.
However, the assumptionthat the regressors� 	� are inde-
pendentof the parameters� � andof the noise ��� excludes
theanalysisof AR andARX models.

Notation: Here, e ( 4 5S6 ), f ( 4 576 ) and g ( 4 5S6 ), denote
polynomials,polynomialmatricesandcausalrationalmatri-
ces,respectively in thebackwardshift operator4 576 ( 4 5S6 �������� %�& ), while f 	 �ih ( is the conjugate-transposeof the poly-
nomialmatrix f ( 4 5S6 ).

2. THE LEARNING FILTER

The basisfor the analysisis that all linear time-invariant
estimators(3) canalternatively beexpressedas,� �.-D/�0 � �kjl/ ( 4 576 ) m �>� _n o p � L

/o m � % o � (6)jl/ ( 4 576 ) U�213/ ( 4 576 ) � Q 
 4 576 R 1 & ( 4 576 ) ( %�& � (7)

Here j / ( 4 576 ), calledthe learningfilter, mustbestableand
causal.It operateson a signalvector m � , obtainedby insert-
ing (1) into � � 9 � andthenaddingandsubtractingR T� �B0 � %q&
on theright-handsideof (4), giving�8�=9�� � R � ��@ R

,� �B0 � %�& 
��i�8�B� 	� @ R ( T� �B0 � %�& 
r�D�=���U� m �D@ R
,� �B0 � %q& � (8)

Thus, m ��� R
,� �B0 � %q& 
r�8�=9�� U� R � �q
�sR� � (9)



Theuseof �D�=9���� m �q@ R 4 5S6 1 & �D�=9�� from (9) in (3) gives
(6),(7). The signal m � can be regardedas a measurement
consistingof a rotatedparametervectorR � � disturbedby
an additive noise s � , calledthe gradientnoise. If the terms � is regardedasazeromeanstationaryadditivenoise,then
stableandcausalfilters (6) canbedesignedanalyticallyto
minimizethetrackingerrorcovariancematrix P/ .

OptimalWienerdesign,presentedin [1], resultsin sta-
ble learningfilters jl/ ( 4R5S6 ). For adaptationlaws obtained
by other means,stability mustbe verified separately. For
theLMS algorithm,� Q @ 4�576 Q!( ,� �.- & 0 � �tK�� � 9 � � (10)

thelearningfilterj & ( 4 576 ) ��� Q @u� Q @AK R ( 4 5S6 ( %q& K (11)

is obtainedby inserting�8�i9���� m ��@ 4 576 R ,� �.- & 0 � from (9) in
(10), or directly by inserting 1 & ( 4 576 ) �v�^KDL��BNw@ 4 5S6 (+(�Q
in (7). The stability requirementon j & ( 4�576 ) in (11) cor-
respondsto the classicalcondition for convergencein the
mean[3] F J K J xy�z�{P| � (12)

where
yMz�{+|

is thelargesteigenvalueof R. This readilyfol-
lows by aneigenvaluedecompositionof R in (11).

In openloop,stabilityandboundedestimationerrorsare
guaranteedby stabilityof thelearningfilter. However, since
(9) and(8) imply thats��>�~}>� T� �B0 � %q& 
r�8�)����� (13)

where }>� is thezeromeanmatrix}��>�2�D�)� 	� @ R � (14)

the gradientnoise s�� will containa time-varying feedback
term }>� T� �B0 � %q& from old parametererrors,herecalled the
feedback noise. This feedbackinvolvestheone-steppredic-
tion learningfilter j�� ( 4�576 ), seeFig. 1. Thegradientnoises � will thereforebeinfluencedby thedesignof theestimator
andthefeedbackmayin a generalcasecauseinstability.

A sufficient but conservative condition for stability of
the feedbackis providedby the small gain theorem[4]: Ifj & ( 4R5S6 ) }�� is causaland �>� -stable,stability is preservedif� 4 576 j & ( 4 5S6 ) } � T� �B0 � %q& � ���r� � T� �B0 � %�& � �2�I� J N �
In [5], lessconservativeconditionsarederivedfor FIR sys-
temswith white input data.

3. PERFORMANCE ANALYSIS

By (6), (9) and(13), thetrackingerrorcanbeexpressedasT� �.-�/�0 � ��� Q @Ah % / jl/ R ( � �.-�/�@�jl/��8�=���D@�j`/R}�� T� �B0 � %�& �
(15)

���� 4��� �
R ���i� �� �^��� ��� ��� ��� �� � � �� � �

�>� ��� ��� ��� ��� ��� 6 � ��4�576�
� �� %
�.� % �'¡�¢ �   � �� � � � 5S6

Fig. 1. Thefeedbacklooparound�>� ( 4R5S6 ) via thefeedbacknoise¢ � �� � � � 576 may significantly affect the fictitious measurement
� �

and may also causeinstability. The variationsof
���

will be re-
gardedasslow whenthis feedbackcanbeneglected.

Thus, threetermsaffect the trackingerror: The lag error� Q @�h % / jl/ R ( � �.-D/ , anerror term j`/��D�=��� causedby mea-
surementnoise, anda feedbacknoiseterm jl/$}>� T� �B0 � %�& in-
fluencedby old parametertracking errors.

If T� �.-�/�0 � is stationary, thenthe error covariancematrix
(5) will underAssumption1 begivenby

P/l�aW\YZ[�^]£_�¤ V /� � � 
 V
/¥§¦ � � 
 V

/¨�©� � � 
 V
/� ¨�©� � � 
 V

/¥$¦ ¨�©� � �)ª
(16)

where

V
/� � � � b � I @«h % / j`/ R ( � �.-�/w¬+� I @«h % / j`/ R ( � �.-D/�­ 	

(17)

V
/¥§¦ � � � b �ijl/��8�)��� ( �:j`/��8�)��� ( 	 (18)

V
/¨ ©� � � � b �ij / } � T� �B0 � %q& ( �:j / } � T� �B0 � %q& ( 	 � (19)

The two last termsin (16) aredueto correlationsbetween
thefeedbacknoise,thelagerrorand �8�=��� , respectively.

Slow variationsandslow adaptationarea commonas-
sumptionin analysisof adaptationalgorithms[6, 7, 9, 10].
This conceptcan be quantifiedin various ways. Some-
times, indicatorsreferredto as “the degreeof nonstation-
arity” (DNS) [8],[11] are introduced. In the book [12] by
Macchi,thedegreeof nonstationarityis definedas® b � � 	� � � � @ � � %q& ( � CCb � ��� � C � (20)

Parametervariationsareconsideredslow if this quantityis
alwayssmall.

We introduceandmotivatea definitionthatis relatedto
(20)but is moreusefulin thepresentformalism:

Definition 1: Regressionparametersare regardedas
slowly time-varyingwhenthefeedbacknoise }�� T� �B0 � %�& can
be neglectedin an optimal MSE design,without affecting
thetrackingerrorcovariancessignificantly d

For slow parametervariations,we canthusneglect the
threelasttermsin (16)whenevaluatingtheperformance.



Let thefeedbacknoisecontribution to s�� beneglected
&

andassumethat theremaininggradientnoisecanberepre-
sentedby a stablyinvertiblevector-valuedARMA process
with commonstabledenominators � �2� � � � �°¯ ( 4�576 )±

( 4 576 ) ² � � (21)

with ² � beinga zeromeanwhite noisewith a nonsingular
covariancematrixb ² � ² 	� � R ³ U� y ³8Ŕ ³ � (22)

Furthermore,let theassumedvector-valuedARIMA model
of � � be representedin polynomial form with a common
stableor marginally stabledenominatorµ ( 4 576 )� �>� Nµ ( 4R5S6 ) ¶ ( 4�576 ) · ��� (23)

with a nonsingularcovariancematrixb · � · 	� � R ¸ U� y ¸SŔ ¸ � (24)

The designof j / ( 4 5S6 ) can now be basedon Theorem1
in [1] (with ¹ ( 4�576 ) � µ ( 4R5S6 ) Q ). By invoking (1),(6),(9),
(21)-(24),theMSE-optimallearningfilter is thengivenbyj`º � �/ ( 4R5S6 ) �2» / ( 4�576 ) ¼ ( 4R5S6 ) %q& ± ( 4�576 )R %q& � (25)

Here ¼ ( 4 5S6 ) is thestablesolutionto theleft polynomialma-
trix spectralfactorization¼½¼ 	 � y ¸ ¶ Ŕ ¸ ¶ 	 ±�± 	 
 y ³ µ R

%q& ¯ Ŕ ³ ¯ 	 R %�& µ 	
(26)

while » / ( 4 5S6 ), togetherwith a polynomialmatrix ¾ / 	 �ih ( ,
is theuniquesolutionto theDiophantineequationy ¸ h / ¶ Ŕ ¸ ¶ 	 ± 	 �k» / ¼ 	 
rh Q µ¿¾ / 	 � (27)

Let Ŕ ¸ andŔ ³ be nonsingularandfixed,while the scalarsy ¸ and
y ³ may vary. For a vanishingparameter-drift-to-

noiseratio
y ¸ L y ³ÁÀ F , thevariationswill beslow accord-

ing to (20). Wenow statethatthefeedbacknoisecanin fact
beneglectedin this situation,which occurseitherwhenthe
parameters� � varyslowly, or whenthenoiselevel is high.

Lemma 1: Let the learningfilter jl/ ( 4 5S6 ) beobtained
by (25)–(27),assumings � �Â� � � � . UnderAssumption1,
the relative impactof the feedbacknoise } � T� �B0 � %�& on the
trueerror(15)will thentendto zeroas

y ¸ L y ³ À F .
Proof: SeeLemma1 andLemma2 of [5] d
With a negligible feedbacknoise,the feedbackaroundj � ( 4�576 ) in Figure 1 can be neglected. Stability will for� }�� T� �B0 � %q& � À F beassuredby stabilityof thelearningfilter.6 It canbe notedfrom (13) and(14) that the feedbacknoisevanishes

when Ã � Ã�Ä� canbesubstitutedby its averageR.

The Wienerdesignpresentedin [1] can for slow vari-
ationsbe performeddirectly, without iterations. Further-
more,whenever the feedbacknoisecanbeneglected,stea-
dy statetrackingerrorcovariancematricescanbecalculated
for a given(not necessarilyoptimally designed)adaptation
law with constantgain. More specifically, for slowly vary-
ing parametersand for stationarytracking errors, the co-
variancematrixP/ of thesteady-stateE -steptrackingerror,
definedby (5), is underAssumption1 givenby

P/l�ÅWZY\[�^]`_ � V
/� � � 
 V

/¥§¦ � � (�� (28)

For systemsdescribedby (1),(6),(9),(21)-(24),this equals

P/l� y ¸x�Æ�ÇVÈ ¬ I @«É % / j`/ R ­ ¶ Ŕ ¸ ¶ 	µÊµ 	 ¬ I @«É / jl/ 	 R ­ Ë ÉÉ
 y ¦x�Æ�Ç�È j`/q¯ Ŕ ³ ¯ 	±�± 	 j£/ 	 Ë ÉÉ � (29)

The integrandsof (29) provide the distribution in the fre-
quency domainof the parameterlag error and the noise-
inducederror, respectively.

The expression(29) holds for arbitrary parameterdy-
namics(23) aswell asfor coloredmeasurementnoiseand
correlatedregressors,aslong asthe feedbacknoisecanbe
neglected.Note,however, that T� �.-�/�0 � mustbeassumedsta-
tionary, implying boundedvariance,even for parameters
generatedby marginally stablesystems(23). Stationarityis
guaranteedif andonly if jl/ ( 4 576 ) is stableandall elements
of thelagerrormatrixin (15), Q @wh % / jl/ ( 4�576 )R, areassured
to containall marginally stablefactorsof µ ( 4 576 ) in their
numerators.This propertywill beguaranteedin the MSE-
optimaldesign[1]. In thecaseof integration, µ �ÌNÍ@ 4�576 ,
thelow-frequency gain(for ÉÁ� ·!ÎPÏ �ÐN ) of j / ( ÑR576 ) must
beR

%q&
. This is e.g.truefor theLMS filter (11).

4. EXAMPLE

The validity of expression(29) will be investigatedfor a
scalarFIR systemwith two parameters���>� � ��� �=ÒS�q
 � &?� �:Ò7� %q& 
������ (30)

with white zeromeannoiseandwith white zeromeanre-
gressors,Ò7�½Ó«Ô$N$�!@lN$�PÕ'�!@OÕ�Ö , yieldingR � Q C . Theparam-
eterdynamicsis governedby thesecondorderAR process� � � xØ× ÙØÚ§Û§Ü º � � %q& @ × C � � % C 
 · � � (31)

with × �~F � ÝRÝ$Ý andwhere Ü º is herevariedto provide dif-
ferentmagnitudesof theDNS expressedby (20). Thevari-
anceof ��� is setto F � F�N andR ¸ � y ¸ Q , where

y ¸ is selected
to giveanoutputSNRof 20 dB, with b � � � � CC �ÞN .

One-steppredictionestimatesareobtainedby LMS and
by aWiener-designedadaptationlaw (WLMS), tunedto the



dynamicsof the FIR systemby using (25)-(27). (These
equationsbecomesimpleandscalar, with closed-formso-
lutions, in this case[2].) The LMS step-sizeK is tunedto
minimize the simulatedperformance,whereasthe Wiener
designis herebasedon the assumptionof slow parameter
variationsaccordingto Definition1.

Table 1 comparesß+à P& with correspondingestimates,
obtainedby simulation over 100000data (italic figures).
Notethemuchlower trackingerrorvariancefor theWiener
designascomparedto LMS.

Theterm ß+à V
&¨ ©� �kWZY\[Á�^]`_ V

&¨ ©� � � , which is thelargest
term due to the feedbacknoisein (16), is also measured.
This term essentiallyexplains the differencebetweenthe
expression(29) that neglects the feedbacknoise,and the
true performance.A more accurateperformanceanalysis
that works for fastvariationsin FIR parametersby taking
alsotheterm ß+à V

&¨ ©� into accountis presentedin [5].
For LMS, theexpression(29) predictstheperformance

reasonablywell for Ü º below 0.005,while the Wienerde-
sign,performanceiswell predictedby thetheoryupto Ü ºâáF � F x if thelimit for significantdeviationsis setto N�F§ã .

Figure2 displaysthespectraof thetwo errorterminte-
grandsin (29) for Ü º �°F � FMN . Note the peakof the LMS
lag erroraroundÜ º andthecontribution of high-frequency
noiseto theLMS errorspectrum.

The bottomline of this exampleis that it doesindeed
payoff to usemoresophisticatedalgorithmsthanLMS even
in casesof slow parametervariations. Onereasonis that
LMS implicitly assumesrandomwalk parametervariations.
Furthermore,thedegreeof nonstationarity(20) is designed
for LMS but givesa somewhatcrudeindicationof whena
simplified analysisis adequatein general.The conceptof
negligible feedbacknoisegivesbetterguidelines.

Table 1. Theasymptotictrackingerror ä)å P 6 whensecondorder
FIR models(30),(31)aretrackedby LMS andWLMS. Theoretical
predictionsfrom (29) (bold)andsimulationresults(in italics).æèç 0.001 0.005 0.01 0.02 0.10

DNS: (20) .0141 .0510 .1005 .2002 .9996

LMS: ä)å P 6 .0011 .0027 .0045 .0075 .0360
.0012 .0030 .0052 .0099 .0650ä)å V 6éèêë .0001 .0003 .0007 .0020 .0278

WIENER ä)å P 6 .0007 .0013 .0019 .0028 .0061
DESIGN: .0007 .0014 .0021 .0031 .0076ä)å V 6éèêë .0000 .0001 .0002 .0003 .0015
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