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ABSTRACT

In this paper we present a novel method for predictive cod-
ing with application to transmission of speech over packet-
switched networks. Our method uses multiplexing to dis-
tribute a part of the information about a segment of each
speech signal in several data packets while keeping the data
packet rate and payload for that part of the information
unchanged. We investigate three multiplexing schemes: a
packet hopping, a Hadamard multiplexing, and an exten-
sion of the Hadamard multiplexing that exploits a nonlinear
preprocessing and estimation method. We show by means
of formal AB-preference tests that multiplexed predictive
coding can lead to coders that are more robust to packet
losses than scalar quantization and packet loss concealment
according to the G.711 standard.

1. INTRODUCTION

Transmission of speech and audio signals over packet-switched
networks has recently become a topic of significant interest,
the most prominent example being Internet telephony.

The internet protocol makes efficient use of network re-
sources only when allowing IP routers to drop packets. Such
packet loss may cause severe impairments to the speech or
audio quality. To mitigate these effects, advanced protocol
mechanisms have been proposed as well as two classes of
signal processing methods: A first class adds redundancy
and significant delay at the transmitter side, e.g., with loss-
resilient codes[1] or with multiple-description source/channel
coding[2, 3, 4, 5]. A second class attempts perceptual con-
cealment of the packet loss through signal interpolation at
the receiver side[6, 7]. We propose a new class of signal
processing methods which modify the transmitter without
increasing the network payload data rate while minimizing
the perceptual effect of packet losses at the receiver side.

We develop our method in the framework of a heteroge-
nous networking scenario where some IP traffic may share
a connection between two gateways. In this context, multi-
plexing can be used to distribute a part of the information
about one sound segment in several data packets while keep-
ing the data packet rate and payload for that part of the
information unchanged. A lost packet leads to a partial loss,
i.e., the degradation is smeared over several sound segments,
instead of a total loss of a single sound segment. We show
by experiments in this paper that the modified loss charac-
teristic obtained by multiplexing can lead to degradations
that are less objectionable to the listener than those origi-
nating from a packet loss concealment method. The main
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drawback of multiplexing is that it depends on encoding
and packetization of multiple sound segments in parallel.

‘While multiplexing seems applicable to a wide range
of coding algorithms including filter-bank coders, trans-
form coders, and predictive coders, we focus in this pa-
per on the application of multiplexing to scalar predictive
speech coders with perceptual weighting. In such coders,
multiplexing is advantageously employed in the encoding of
the prediction residual signal, and combined with another
method such as loss-resilient coding for the robust transmis-
sion of side information. The prediction synthesis filter in
the receiver performs appropriate perceptual weighting of
the transmission errors due to packet losses. The restriction
to scalar quantization is made to keep complexity moderate
for the entire system.

2. MULTIPLEXED PREDICTIVE CODING

We consider a collection of K scalar adaptive predictive
speech coders with noise feedback coding of the kind pro-
posed by Atal and Schroeder[8]. In this system we replace
the traditional single-input single-output scalar quantizer
with what we call a multiplexed quantizer. The multiplexed
quantizer takes at each sampling instant n the K inputs g,
to ¢gX from all K predictive encoders and outputs quantized
representations §. to ¢X back to the individual predictive
encoders. In doing this, the multiplexed quantizer gener-
ates K quantization indices i} to iX each in the range 1
to 2° where b is the number of bits allocated for each in-
dex. These indices are packetized and transmitted over the
packet-switched network in K independent packet streams.
At the decoder side, the received indices 7} to X are avail-
able. These indices differ from the indices i, to iX in the
encoder whenever an index has been lost with a data packet
on the network, in which case the index value is replaced
by zero. The demultiplexer resolves K representations . to
GX of the quantized information from the available indices
i1 to 1X. These representations are subsequently input to
the K predictive decoders. Our encoding and decoding sys-
tem is shown in Figure 1. Not included in this figure is the
LPC analysis and side information quantization which leads
to coefficients for the predictors P (z), noise-feedback filters
Fk(2), and scaling factors ¥ for k = 1..K. The side infor-
mation is conveniently encoded with a loss-resilient coding
such as the Reed-Solomon code[9] to enable transmission
of this information in a robust manner using the same K
packet streams as the multiplexed quantized information.
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Figure 1: The multiplexed encoding and decoding systems. Only the k'th predictive encoder and decoder are shown.

2.1. Packet Hopping

The simplest system that we can think of for the multi-
plexed quantizer block is a system in which indices from
scalar quantizers are hopped, i.e., cycled from one packet
stream to the next as the sample instant n increments. One
version of this system is specified by the equations

zfl -Q (q£n+k)m0d(x)+1) ’ (1)
q£n+k)m0d(K)+1 _ Q_l (12) , )

and
q-T(Ln+k)m0d(K)+1 _ Q_l (Eﬁ) , 3)

for k =1..K. Here Q(-) and Q !(-) are the mappings from
quantizer input to quantization index and from quantiza-
tion index to the quantized representation of the quantizer
input, respectively. For an adequate response to packet
losses Q7'(0) = 0. The notation (-)mod(K) denotes the
modulo K operation.

2.2. Hadamard Multiplexing

The packet hopping described in Section 2.1 can be ex-
pressed as a particular orthogonal transformation of the in-
put to the multiplexed quantizer followed by a quantization
of the transform output. Define column vectors with ele-
ments equal to the K scalar input, output, or index values
for the multiplexed quantizer and demultiplexer, such that
e.g., -

_[1 2 K
Then the multiplexed quantizer is defined by the equations

¢, = Mnygq,,
in = Q(Cn),
& = Q '(in),

and

The demultiplexer on the receiver side is defined by
¢, = Q_l(i")z
and
g, = MLé,.
The equivalence of these equations with the packet hopping
described by Equations 1 to 3 is obtained by letting the
transform matrix M, equate an adequate time varying row
or column permutation of an identity matrix.

With this formulation of the multiplexing, it is rele-
vant to investigate other transform matrices than the row
or column permuted identity matrix. A simple, yet relevant,
transform for this purpose is the normalized Hadamard
transform[10]. We expect the Hadamard multiplexing to
hold advantages over the packet hopping method. These
advantages are explained in the following.

The variance scaled prediction errors from the multiple
predictive coders can well be assumed to be independent
and identically distributed. Therefore, one advantage of
the Hadamard transform is that the elements of the trans-
formed vector ¢,, i.e., the inputs to the quantizers become
closer to Gaussian. This is a result of the central limit
theorem[11]. More Gaussian quantizer inputs result in less
outliers and thereby less overload distortion in the coded
prediction errors. Another advantage is that whenever less
than K packets are lost in the network there are no full
erasures of any sample in any of the quantized prediction
error signals. This advantage can be exploited when the
Hadamard transform is combined with a nonlinear prepro-
cessing and estimation scheme as described in the next sec-
tion.

2.3. Nonlinear Preprocessing and Estimation

Let us assume the elements of g,, to be uncorrelated and
neglect the impact of quantization noise. Then the matrix
MY is the linear minimum mean-squared error estimator
for g, given the coefficient vector &,. This estimator is
the mean-square optimum for Gaussian q,,. However, the



gain-scaled linear prediction errors for voiced speech signals
are known to be non-Gaussian. Thus, a nonlinear estimator
can result in lower mean-squared error. Indeed, we observed
in preliminary experiments that nonlinear estimation could
lead to a significant decrease of the mean-squared error.
However, the nonlinear estimation led to very high compu-
tational complexity. What we instead propose in this paper
is an alternative method in which a well defined nonlinearity
is applied to the input of the multiplexed quantizer. Knowl-
edge of this nonlinearity can then subsequently be exploited
to improve the reconstructed quantized prediction errors in
the case of packet losses.

The general method that we propose is to zero K,; of
the K inputs to the multiplexed quantizer prior to applying
the transform M,. Advantageously, the K,; inputs with
lowest amplitudes are set to zero. In our method no infor-
mation about the position of zero valued elements in §,, is
conveyed to the decoder, only the knowledge that K.; of the
elements were zero is exploited. The method is described
as follows.

Suppose that the number of lost packet streams is Ky,
and the lost packet streams are indexed by an integer set
kips. Then we may formulate a set of equations relating the
received coefficients €, with the encoded scaled prediction
errors g, .

G, = MLé, + M. (:, kips)x. (4)

In this equation « is a K, dimensional unknown vector.
We have used a matlab-style notation ML (:, kjps) to denote
a matrix consisting of the columns of ML that are indexed
by klps-

Now assume that §,, had Kj,, zero-valued elements in-
dexed by the set k.;: §,(kz:) =0, then

a = _Mg(kzi:klPS)_lMZ(kzia 1)En,
provided that MT (k,i, kips) has full rank. Furthermore,
a = én(kips). (5)

The indexing for the zero-valued elements of §,, is not known
by the decoder, however there are

K
C: = ( Kips )

ways in which the decoder can assume Kj,, elements of §,,
to be zero. Of these

Kzi

C2 = ( Kips )
will be true assumptions. Whenever K.; > Kjps there are
multiple true assumptions and all true assumptions will re-
sult in the same value for «, i.e., the one given in Equa-
tion 5. Thus, the method applicable in the decoder is to
calculate a for all C; possible choices of k.; and select the
o vector that occurred C> times. Hereafter g, is obtained
as the right-hand side of Equation 4.

Rank deficiency of the matrix MZ (k.i, kips) limits the
use of this method. For example, when M, equals the
permuted identity matrix that follows from the packet hop-
ping our nonlinear preprocessing and estimation does not
apply. In contrast, when M, is the normalized Hadamard

transform, the method applies with no complications for
Kips = 1. For Kjp, > 1, rank deficiency can occur for some
of the possible choices of k.;. In this case heuristics must
be introduced in the selection of a.

3. CODING EXPERIMENT

We conducted a coding experiment in which 12 speech files,
each containing two utterances, were jointly encoded by
multiplexed predictive coders (K = 12). Each predictive
coder had a 10th order linear predictive filter updated every
20 ms using a 30 ms Hann window and the autocorrelation
method to calculate the linear predictive coefficients. The
10 coefficients were uniformly quantized in the log area ratio
domain using 5, 4, 3, 3, 2, 2, 2, and 1 bits respectively.
A long-term section was included in the prediction filter.
This section had one non-zero coefficient at an optimized
lag in the range 20 to 147. The long-term lag and coefficient
was determined every 20 ms using the covariance method
and quantized using 5 and 7 bits respectively. Finally the
residual standard deviation 0¥ was determined every 20 ms
and uniformly quantized in the logarithmic domain using
6 bits. In total 40 bits were allocated for side information
every 20 ms.

The side information from 20 ms of all 12 speech signals
was organized in 3 messages of 160 bits each. For these 3
messages a Reed-Solomon code can be designed to gener-
ate 12 messages of 160 bits each from which the complete
side information can be recovered upon reception of any 3
of these 12 messages[9]. The 12 messages could constitute
the first part of the information in packets on each of the
12 packet streams. When, in addition, the multiplexed pre-
diction errors were quantized using 3 or 4 bits per sample
and appended to the messages in these packets then this re-
sulted in an encoding with a total bit rate of 32 or 40 kbps
per speech signal and with a packet rate of one every 20 ms
in each of the packet streams.

The noise feedback filter F¥(z) was derived from un-
quantized linear predictive coefficients using a bandwidth
expansion factor of 0.6. We applied a postfilter following the
design of Chen and Gersho[12]. The parameters of the post-
filter were adapted to the number of lost packet streams. In
the postfilter, the numerator and denominator coefficient
of the pitch-sharpening section, and the bandwidth expan-
sion factor of the short-term denominator were increased
linearly with the number of lost packet streams. Simulta-
neously, the bandwidth expansion factor of the short-term
numerator was decreased linearly.

In the experiment, the nonlinear preprocessing and es-
timation method was applied on dimension 4 subsets of the
12 coders and with K,; = 2 for each of these subsets. This
multiplexing was supplemented with packet hopping of the
dimension 4 coefficient sets.

Speech files were encoded at both 32 and 40 kbps and
decoded after that a percentage of the data packets had
been randomly dropped. Random packet loss rates between
0% and 40% were simulated. As a reference system we used
a 64 kbps p-law quantization and packet loss concealment
(PLC) according to the ITU-G.711 standard[7]. The ref-
erence system was simulated for the same speech files and
packet losses as the multiplexed predictive coders.



Packet loss rate | 0%  10% 20% 30% 40%

Packet loss rate | 0% 10% 20% 30% 40%

Packet Hopping | 189 12.3 9.0 7.1 5.5
Hadamard Mult. | 21.7 13.0 9.4 7.3 5.7
Nonlinear Method | 16.5 15.1 11.6 8.5 6.6

Table 1: Seg-SNR measures for the multiplexed predictive
coders at 32 kbps. Packet hopping, Hadamard multiplex-
ing, and nonlinear preprocessing and estimation are com-
pared.

Packet loss rate | 0% 10% 20% 30% 40%
Packet Hopping | 23.7 134 9.5 7.5 5.8
Hadamard Mult. | 27.0 13.7 9.8 7.6 6.0
Nonlinear Method | 19.1 17.2 12.7 94 7.0

Table 2: Seg-SNR measures for the multiplexed predictive
coders at 40 kbps. Packet hopping, Hadamard multiplex-
ing, and nonlinear preprocessing and estimation are com-
pared.

4. RESULTS

Segmental signal-to-noise ratio (Seg-SNR) measures were
obtained by averaging over all 12 speech files and all 20 ms
segments with a standard deviation larger than the average
standard deviation within each speech file minus 40 dB.
The Seg-SNR measures were obtained for the decoded sig-
nals prior to postfiltering. The results are given in Tables 1
and 2. We see that when the packet loss rate is nonzero the
Hadamard multiplexing, and especially the nonlinear pre-
processing and estimation, resulted in Seg-SNR measures
that were consistently higher than those obtained by the
packet hopping. As a maximum, an improvement of 3.8 dB
was observed for the nonlinear method over the packet hop-
ping. This occurred for coding at 40 kbps with a packet loss
rate of 10%. We also noticed that without packet losses the
Hadamard multiplexing had significantly higher Seg-SNR
measures than the packet hopping, which without packet
losses has the performance of a standard adaptive predictive
coder. This was consistent with our expectations according
to Section 2.2.

Informal listening revealed that the effect of packet losses
in the multiplexed predictive coders is to introduce a sta-
tionary sounding noise source in the decoded signal. The
adaptive postfilter was able to lower the perceived loudness
of this noise significantly. Perceptually, the noise appeared
as a very different type of distortion than the tonal or tran-
sient like noise, which is the result of packet losses when
G.711 with PLC is used. During informal listening, we ob-
served no large difference between the packet hopping and
the Hadamard multiplexing. However, the substantial gain
in Seg-SNR for the nonlinear preprocessing and estimation
method was clearly audible, especially for packet loss rates
of 10% and 20%. This improvement was obtained at the
cost of a slight degradation of perceived quality when no
packets were lost.

We conducted a formal AB-preference test of the 40 kbps
multiplexed predictive coder with packet hopping versus the
reference system. In this test 7 listeners were subjected to
24 utterances processed by the two systems in randomized
order. For each utterance the listeners made a preference
decision. The results are given in Table 3. We see from

Preference to MPC | 35% 63% 7% 92% 9%
Preference to G.711 | 656% 37% 23% 8% 3%

Table 3: Results from AB-preference test of the 40 kbps
multiplexed predictive coder (MPC) with packet hopping
versus the 64 kbps G.711PLC system.

these results that multiplexed predictive coding was pre-
ferred over G.711PLC for packet loss rates in the range
from 10% to 40%.

5. CONCLUSION
In this paper we have described methods for multiplexed

predictive coding and shown by means of formal AB-preference

tests that such methods can lead to coders that are more
robust to packet losses than scalar quantization and packet
loss concealment according to the G.711 standard. In ad-
dition, the multiplexed predictive coders can be designed
to operate at significantly lower bit rates than the G.711
standard.
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