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ABSTRACT

We analyse the dependencies between the variables involved
in the source and channel coding chain. This chain is com-
posed of 1/ a Markov source of symbols, followed by 2/ a
variable length source coder, and 3/ a channel coder. The
output process is analysed in the framework of Bayesian
networks, which provide both an intuitive representation of
the structure of dependencies, and a way of deriving joint
(soft) decoding algorithms. Joint decoding relying on the
hidden Markov model (HMM) of the global coding chain is
intractable, except in trivial cases, due to the high dimen-
sionality of the state space. We advocate instead an iter-
ative procedure inspired from serial turbo codes, in which
the three models of the coding chain are used in alternance.
This idea of using separately each factor of a big prod-
uct model inside an iterative procedure usually requires the
presence of an interleaver between successive components.
We show that only one interleaver is necessary here, placed
between the source coder and the channel coder. As a sub-
product, we also derive a soft VLC decoder with good (and
adjustable) synchronization properties.

1. INTRODUCTION

The wide usage of variable length codes (VLCs) in data
compression has motivated recent work on robust decod-
ing of variable length coded streams [1], [2], [3], [4]. The
authors in [2] derive a global stochastic automaton by com-
puting the product of the separate automata of the Markov
source, the source coder and the channel coder. The result-
ing automaton is used to perform a MAP decoding with the
Viterbi algorithm. Although states which cannot be reached
through any valid sequence of transitions can be eliminated,
the state space can remain very large. In [4], the authors
propose a serially concatenated iterative system consisting
of an outer variable length encoder and of an inner binary
convolutional coder separated by an interleaver.

In this paper, we also follow these lines in the case of a
very general coding chain, encompassing as particular cases
the models of the papers above. We focus on an analysis
and modeling of the dependencies between the variables in-
volved in the complete chain of source and channel coding,

by means of the Bayesian-network formalism. Our starting
point is a state space model of the three different elements
in the chain: the source of symbols, the source coder and
the channel coder. These models are cascaded to produce
the bitstream sent over the channel, and the randomness of
variables is introduced by assuming a white noise input of
the cascade. The product of these three automata induce
immediately a state variable model of the bitstream: the
triple of states — one state for each model — appears to be
a Markov chain, the transitions of which generate the se-
guence of output bits, that are sent over the channel. The ob-
served output of a memoryless channel corresponds to noisy
measurements of these bits. Therefore, we are exactly in the
HMM framework for which fast estimation algorithms are
well known.

This nice picture suffers from two difficulties. First,
the presence of two time indexes: the symbol clock of the
source model, and the bit clock of the channel coder model.
The translation is performed by the VVLC source coder. Since
not all symbols have the same length, the number of bits of
the coded sequence (as well as the position of symbol starts)
is a random variable, which is quite unusual. We therefore
have to solve a joint segmentation + estimation problem.
The second difficulty is more classical : it comes from the
fact that the state space dimension of the product model ex-
plodes in most practical cases, so that a direct application of
usual techniques is unaffordable, except in trivial cases.

In this paper, we thus rely on properties evidenced by
serial turbo-codes to design an estimation strategy : instead
of using the big product model, inference can be done in an
iterative way, making use of part of the global model at each
time. This decreases complexity since smaller state spaces
are involved. We use this idea in the following way, as it
was already suggested in [4]: we introduce an interleaver
between the source coder and the channel coder. This al-
lows the construction of an iterative soft decoder alternating
between the channel coder model and the joint model of
the source + source coder !, with the bit clock as time in-
dex. But the idea can be pushed further: why not splitting
also the joint model source (MS) + source coder (SC) ? We

1By contrast, [4] is assuming an i.i.d. source, which makes the source
model useless.



demonstrate that, due to the pointwise translation of sym-
bols into bits, there is no need of an interleaver there. The
joint MS+SC model can actually be processed optimally
by a sequential use of the SC model, followed by the MS
model.

2. PROBLEM STATEMENT

Let S = 5;...Sk be the sequence of quantized source sym-
bols taking their values in a finite alphabet composed of
29 symbols. The sequence S; ... Sk is assumed to be a
Markov chain. The symbols are then coded into a sequence
of useful bits U = U;...Uy, by means of a variable length
code. The length N of the information bitstream is a ran-
dom variable, function of S. U is then fed to the chan-
nel coder (a convolutional code), which yields the sequence
R = R;...Rj of redundant bits. In the triple (S, U, R),
all the randomness comes from S, since U and R are deter-
ministic functions of S. The bitstream (U, R) is sent over a
memoryless channel and received as measurements (Y, Z);
so the problem we address consists in estimating S given
the observed values y = y1...yn and z = 2z1...zp, point-
wise measurements on useful and redundant bits, respec-
tively. Therefore we are exactly in an HMM framework for
which fast estimation algorithms exist [5].

3. JOINT MODEL OF THE PAIR SOURCE +
SOURCE CODER

Let us first assume that S; ... Sk is a white noise sequence,
each Sy obeying a stationary distribution P;. For a non
dyadic Py, and despite the optimality of the Huffman code,
the average length of a codeword remains strictly above the
lower bound (at most 1 bit above it). Therefore there re-
mains some correlation between the bits at the output of
the coder. This form of redundancy can be modeled and
exploited to help the segmentation + estimation of the bit-
stream (and thus the estimation of the symbol sequence).
However, this inner codeword redundancy is quite low. The
MS model incorporates the major part of the redundancy.
A model of the distribution of U, capturing both in-
ner codeword and intersymbol correlation, can be obtained
by mapping the transition probability P;(Sk+1|Sk) on the
Huffman tree, which requires to keep track of the last sym-
bol Sy produced. The state variable of a bit clock model
of U thus takes the form X,, = (v, s), where s is the last
symbol produced, and v is a vertex on the Huffman tree.
It is also necessary to count symbols, in order to ensure
that the last state X corresponds to a correct segmenta-
tion of the bitstream into K symbols. So the actual state
variable is X,, = (v,s,k), where k is augmented by 1
each time v reaches a leaf of the Huffman tree. Bits of
U are produced by transitions of this Markov chain X, i.e.
U, = ¢(Xn-1,X,). This yields the dependency structure

shown on the upper part of fig. 1, which is well adapted to
fast MAP or MPM estimation (by a BCJR), provided the
state space for X, is not too large. One can further extend
this model with a semi-Markov model of the channel coder
(CC), taking U as input and producing R, with state variable
X/, (lower part of fig. 1). A global (product) HMM model
of the pair (U, R) follows by gathering the state variables
X, and X, but this model is intractable in practice.
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Fig. 1. A graphical model representing dependencies be-
tween the model of U and the channel coder model, pro-
ducing R. X, is the state of the source + Huffman coder
model, and X is the internal state of the convolutional
coder. Pointwise measurements Y and Z on U and R are
not represented for clarity.

4. ITERATIVE ESTIMATION

A direct estimation based on the global HMM model is only
affordable for trivial cases, and should be approximated in
most practical situations. We consider instead iterative in-
ference, using in alternance parts of the model.

4.1. Two model case

We first consider a separate representation of the state vari-
ables of the two models: X, for the source + Huffman
coder model, and X, for the channel convolutional coder
model, in order to make apparent dependencies between
them. The Bayesian network incorporating the complete
chain MS+SC+CC is depicted on fig. 1: the top part repre-
sents the bit clock product model for MS+SC, and the bot-
tom part represents the serial concatenation of a convolu-
tional encoder. Variables of R are depicted as functions of
the coder state X', but could as well be functions of state
transitions. State spaces of variables X,, = (v, s, k) and
X/, = (m) are smaller than in the global HMM, obtained
by agregating X, and X, into the same state variable.

The price to pay for this expansion is a quite complex
Bayesian network (or Markov field) which is not a tree.
Hence, we go out of the range of fast algorithms like BCJR
or Viterbi, that only extend to trees. However, if cycles
of the graph are long enough, efficient approximate MPM
(max of posterior marginals) or MAP estimators can be ob-
tained by running a belief propagation algorithm on the graph



as if it were a tree, ignoring the presence of cycles [6, 7]. As
discovered by [8], cycles can be made “long” at no cost by
simply introducing an interleaver between the two models
(fig. 2), which evidences a structure similar to serial turbo
codes.

Belief propagation on this graph can arrange message
circulations in such a way that it amounts to performing a
soft decoding on each model separately. One ends up with
an iterative estimation procedure, alternating use of the two
models, with exchange of soft information, just like for se-
rial turbo codes. The only difference is in the last step, cho-
sen to be a standard MAP step instead of an MPM step as
usual, in order to prevent finding a non decodable bitstream,
or a bitstream associated to an incorrect number of symbols.
However, the estimation of the joint MS+SC model still re-
mains hardly tractable beyond 4 or 5 bits quantization of the
source, for K around several hundreds.
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Fig. 2. Introducing an interleaver between the two hid-
den Markov models augments the minimal length of depen-
dency cycles.

4.2. Three model case.

Therefore, one can further decide to process separately the
MS and the SC models, applying the same method. Surpris-
ingly, in this case, there is no need of an extra interleaver,
and the successive use of the SC model and the MS model
is optimal, which is a new result for soft VLC decoding.
The SC model alone assumes an input of independent
symbols, and thus only makes use of the intra-codeword re-
dundancy, and of the constraint on the number of symbols.
Its state variable X,, reduces to a pair (v, k), since memory
of the last symbol is useless. On the other side, the state
variable X/ of the Markov source model cannot be reduced
to the last symbol produced (s). Actually, the difficulty of
VLC decoding comes from the lack of synchronization be-
tween the symbol clock and the bit clock. In other words,
the estimation of the transmitted symbols (or bits) must be
performed jointly with the segmentation of the received bit
stream. Hence the MS model state variable must include a
counter of the number of bits produced by the first & sym-
bols, which yields X' = (s,n). Joint MS+SC soft decod-
ing then amounts to estimating X assuming an input of in-
dependent symbols, then translating soft information on X,
into soft information on Sy, which requires some “clock

conversion,” and finally estimating X”. In other words, the
joint MS+SC decoding first assumes a white source for soft
VLC decoding, and then takes inter-symbol correlation into
account.

For decoding the complete chain MS+SC+CC, we thus
end up with a turbo procedure alternating between the two
sources of redundancy, the Marko source and the channel
code, where the intermediary VLC source coder model is
used as a translator of soft information from the bit clock to
the symbol clock. Full details can be found in [9].

5. EXPERIMENTAL RESULTS

To evaluate the performance of the joint decoding proce-
dure, experiments have been performed on a first-order Gauss-
Markov source, with zero-mean, unit-variance and correla-
tion factor p = 0.9. The source is quantized with a 16 lev-
els uniform quantizer (4 bits) on the interval [—3, 3], and
we consider sequences of K = 200 symbols. The VLC
source coder is based on a Huffman code, designed for the
stationary distribution of the source. The channel code is
a recursive systematic convolutional code of rate 1/2 de-
fined by the polynomials F(2) = 1 + z + 22 + 2* and
G(z) = 1+ 2% + 2%, Since very few errors have been
observed with rate 1/2, we have augmented it to 3/4 by
puncturing the redundant bit stream. A variable size inter-
leaver is introduced between the source coder and the chan-
nel coder. All the simulations have been performed assum-
ing an AWGN channel with a BPSK modulation.
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Fig. 3. Residual BER (left) and SER (right) vs Ey/Ng, for
successive iterations, with a Gauss-Markov source.

Figure 3 provides the residual bit error rates (BER) and
symbol error rates (SER) for different channel E;/Ny. On
each plot, the top curve corresponds to an ML estimation
of the bitstream assuming independent bits (and no chan-



nel coding), followed by a hard Huffman decoding. On the
BER plot, the second curve corresponds to a MAP channel
decoding, assuming an input of independent bits. The third
one is the result of the first iteration, where knowledge on
symbol correlation and codeword structure has been intro-
duced. Successive curves show the extra gain of iterations in
the procedure, which depends on the degree of redundancy
present on both sides of the source coder.
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Fig. 4. Same conditions as the previous figure, except that
inter-symbol correlation is not taken into account.

The same experiments have been performed assuming
the symbol source is white (fig. 4), in order to evidence
the gain introduced by the intersymbol correlation. On the
BER plot, the top curve still represents the error rate with-
out channel coding. The second one is obtained using the
CC model only (1st step of the 1st iteration). Then comes
the BER after the first iteration for a white noise model,
which can be viewed as the BER at the output of the SC
model for the Gauss-Markov source. The lowest curve is the
BER at the end of the first iteration for the Gauss-Markov
source. Hence these four curves help understanding the ef-
fect of each component in the model. As expected, the SC
model has little influence since it uses little bit correlation
and mainly relies on constraints on the number of bits and
on codeword structure. Nevertheless, this effect is sufficient
enough to evidence some gain in the successive iterations,
when symbols are assumed to be independent. A compari-
son with the Markov source case shows that taking the inter-
symbol correlation into account brings a gain of more than
2 dB for the SER.

6. CONCLUSION

The turbo principle, revealed by turbo codes, can be gener-
alized into the iterative use of factors of a big product model.

It is a promising strategy that has improved existing estima-
tion algorithms in many problems, at almost no cost. We
have shown that this strategy performs well in this specific
problem of joint source-channel decoding. However, its use
is not always relevant: in the particular case of the prod-
uct model of the source + source coder, one doesn’t need
to separate factors by an interleaver. The iterative use of the
factors can be optimal. This advocates a careful understand-
ing of dependencies before choosing a turbo strategy.

Finally, let us mention that using the three models sep-
arately allows many variations. For example, a variable
source coder can be used, in particular to introduce dummy
bits at some known symbol positions, in order to facili-
tate the resynchronization of the symbol stream and the bit
stream, which is the major weakness of VLC schemes. This
“soft synchronization” possibility could be an alternative to
the use of reversible variable length codes (RVLC), and of-
fers the advantage of being easily tunable in terms of rate
loss vs resynchronization power.
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