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Abstract: We presenta methodfor optimizing adaptation
laws thataregeneralizationsof theLMS algorithm. Time-
varyingparametersof linearregressionmodelsareestimated
in situationswheretheregressorsarestationaryorhaveslow-
ly time-varying properties. The parametervariationsare
modeledasARIMA-processesand the aim is to usesuch
prior informationto providehighperformancefiltering,pre-
diction or fixed lag smoothingestimatesfor arbitrarylags.
The methodis basedon a novel signaltransformationthat
recaststhealgorithmdesignprobleminto a Wienerdesign.

1. INTRODUCTION

Adaptationalgorithmsthat estimatetime-varying parame-
ters of linear regressionmodelsare fundamentaltools in
signal processing,control and digital communication[1].
Whenthe statisticsof the parametervariationsareknown,
Kalmanestimatorsaretheoptimal linearalgorithms.How-
ever, their computationalcomplexity is sometimesdeemed
unacceptable.Motivatedby therequiredlow complexity of
channelestimatorsin mobile radio systems,we have pro-
poseda classof adaptationlaws thatattaincloseto theop-
timal Kalmanperformance,at a computationalcomplexity
closeto that of LMS [2, 3, 4]. An early versionhassuc-
cessfullybeenusedon D-AMPS 1900channels[5, 6], and
a casestudyon thisapplicationis presentedin [7].

Design of a relatedclassof constant-gainalgorithms
hasbeeninvestigatedby Benvenisteandco-workers[8] for
slowly varying regressionparameters.We hereoutline a
methodthatis effectivealsofor trackingfastvariations.

Notation: Here, � ( ����� ), � ( �	�
� ) and � ( �	�
� ) denote
polynomials,polynomialmatricesandcausalrationalma-
trices,respectively, in thebackwardshift operator� �
� .

2. OUTLINE OF THE PROBLEM

Considerdiscrete-timeandpossiblycomplex-valuedmea-
surementsgeneratedby a linearregression�	
������
�� 
�����
�� (1)

where �	
 is the measuredsignalwith ��� elements,��
 is a
noisevectorwhile � �
 is an ����� � � regressionmatrix,which

is known at discretetime ! . We assumetheregressorsto be
persistentlyexciting, sothattheir covariancematrix

R "�$#%�&
'� �
 (2)

is nonsingular. Furthermore,R is hereassumedconstant
andknown,while in practiceit maybeslowly time-varying.
Theaim is to estimatethetimevaryingparametervector� 
��)( �+*-, 
/.-.0. ��1�2	3546, 
'798:� (3)

whentheorder � � is known. Modelsdescribingthevaria-
tion of � 
 aresometimescalledhypermodels[8]. We will
hereconsiderlineartime-invariantstochasticmodels� 
 �<; ( ����� ) = 
 � (4)

where= 
 iswhitenoisewith covariancematrixR > andwhere; ( ����� ) is an � � � � � matrix of stableor marginally stable
transferoperators.Let thetrackingerrorbedenotedby?� 
A@ B	C 
 "� � 
A@ BED<F� 
A@ B�C 
 (5)

where F� 
A@ B�C 
 is an estimateof � 
A@ B obtainedat time ! by
filtering ( G �IH ), prediction( GKJ H ) or fixedlag smoothing
( GML H ). Kalmanestimators,basedon(1)andonstate-space
realizationsof (4), are the linear estimatorsthat minimize
theerrorcovariancematrix

P B , 
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A@NB�C 
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wherethe expectationis with respectto = 
 and ��
 . Since� �
 is time-varying,theKalmangainswill not convergeto a
steadystatesolution,soRiccatiupdatesarerequired.

We hereconsideraclassof adaptationlawsobtainedby
usingpre-designedlineartime-invariantfilters O B ( � ��� )P 
Q� �	
&DR���
 F� 
SC 
 354 (7)F� 
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 � O B ( ����� ) � 
 P 
 � (8)

that operateon � 
 P 
 , which is the negative instantaneous
gradientof � P 
 � T with respectto F� 
SC 
 3�4 . TheLMS algorithmF� 
A@ 4 C 
 � UV D � �
��W �&
 P 
X� (9)



where U J H is a scalargain, constitutesa simplespecial
caseof thegeneralstructure(7),(8).

The rationalmatrix O B canbe selectedto asymptoti-
cally minimizethetrackingerrorcovariancematrix (6) un-
dervariousconstraintsandassumptions.Note that for any
desiredG , a one-steppredictor O 4 ( �	�
� ) mustalsobe de-
signed,dueto thepresenceof F� 
SC 
 354 in (7).

3. THE LOOP TRANSFORMATION

Thealgorithm(7),(8)canbeexpressedasastableandcausal
filter, denotedthe learningfilter Y B ( � ��� ), thatoperatesona
signalvector Z 
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 354 � (10)
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Adding andsubtractingR
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 354 on the right-handsideof
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which are called the autocorrelation matrix noise [9] and
the gradient noise, respectively. The signal

Z 
 , can then,
from (10), (13), (14)and(15),beexpressedasZ 
 � R � 
 � a 
 ?� 
SC 
 354 �\� 
 � 
 � R � 
 ��b 
 � (16)

seeFig. 2. Thedesignof ouradaptationlaw (7),(8)hasnow
beentransformedinto a Wiener filter designfor Y B ( ����� ),
whereb	
 playstherole of noise,seeFig. 1.= 
 d ; d� 
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Fig. 1. Thefilter designproblem.Thevector jlknm�o is to beesti-
matedfrom p k , suchthatthesteadystatetrackingerrorcovariance
matrix of theparametererror qj knmro-s k is minimized.

Thegradientnoise b�
 is affectedby the term
a 
 ?� 
SC 
 3�4 ,

herecalled the feedback noise. It is shown in [4] that the

feedbacknoiseis negligible eitherwhen � 
 hassmallincre-
mentsor whenthe noise ��
 hashigh variance.Suchsitua-
tions aredenoted“slow variations” [4],[10]. The optimal
learningfilter will then operatein openloop, with b 
Rt� 
 � 
 . Stability and convergencein MSE is then guaran-
teedby stabilityof thelearningfilter, whichfollowsdirectly
from a Wienerdesign. (While the learningfilter Y B ( �	�
� )
mustbestable,the filter O 4 ( � �
� ) in (11) neednot besta-
ble, sinceit workswithin the feedbackloop of Fig. 2.) An
iterative designmustbeeperformedwhen

a 
 ?� 
SC 
 354 cannot
beneglected,seeSection5.

4. LEARNING FILTER OPTIMIZATION

ThetransferoperatorY B ( � ��� ) canbeadjustedto minimize
(6) for !Muwv when ; ( �	�
� ) in (4) and the propertiesofb 
 aregiven. The learningfilter is heredesignedunderthe
constraintof stability, andunderthefollowing assumptions.

Assumption A1: Thesequencex � �
zy is stationaryand
known up to time ! , with R known andnonsingular {

Assumption A2: Thegradientnoiseb	
 is whiteandsta-
tionarywith zeromeanandcovariancematrix R | . It is un-
correlatedwith � 
 3
} andwith F� 
 3~} C 
 3~}A3�4 ������H {

Assumption A3: The linear regressioncoefficientsare
describedby a stochasticvectorARIMA process�

( �	�
� ) � 
���� ( �	�
� ) = 
�� (17)

with R > ��# = 
 = �
 nonsingular, where
� ����� �c�

. Here� and
� �

aremonicandstablyinvertible,while thepoly-
nomial � � haszeroson thestability limit (unit circle) {

Under AssumptionsA1-A3, the (generalized)innova-
tionsmodelof

Z 
�� R � 
5�cb	
 canbeexpressedasZ 
�� R
� 3�4f��� 
�� � 
�� � 354 �

R
354 Z 
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wherethepolynomialmatrix
�

( ����� ) is thestablyinvertible
spectralfactorand

� 
 is thewhite zeromeaninnovationse-
quencewith unit covariancematrix. By definingthesignal�� 
 "� V� � ( � �
� ) � 
 � � 3�4 �c�

R
3�4 Z 
 � (19)

aWienerdesignedadaptationlaw canberealizedasin Fig.3,
in which

� 354�I� B representsthe causalfactorof the real-
izable MIMO Wienersolution. By comparingFig. 1 and
Fig. 3, it followsthattheoptimizedcausallearningfilter isY��]� 
B � � 3�4��� B � 3�4 � �

R
3�4 . (20)

Thepolynomialmatrix
� B ( � �
� ) canbeobtainedfromclosed-

form expressions[3]. In particular,
� 4 � i ( � D ��� * 7 , with� * beingtheleadingcoefficientmatrixof

�
( � �
� ). With this

expressionand(11),(20),theWieneroptimizedfilter matrixO�� ( � ��� ) in (8) canbeshown [3] to begivenbyOQ�]� 
� � � 3�4 � B � 354* R
354 . (21)
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Fig. 2. The predictionlearningfilter operatesin openloop for
slow variations,when

¨ k qj k©s k ��� canbe neglected.For fastvaria-
tions,thefeedbacknoise
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Fig. 3. TheWieneroptimizedtrackingalgorithm.

5. ITERATIVE WIENER DESIGN

For slow time-variations,the feedbacknoiseis by defini-
tion negligible [4], so we may performa one-shotdesign
using b 
 �µ� 
 � 
 . Otherwise,thepropertiesof b 
 dependonY 4 ( ����� ) via (15). Themultiplicationby

a 
 in (15)actsasa
scrambler, which for FIR modelswith white inputswill re-
ducethecorrelationbetweenthefeedbacknoiseand

?� 
SC 
 3�4 ,
soAssumptionA2 still holdsapproximatelyfor whitenoise��
 .
Theopen-loopdesigncanthenbeperformediteratively. We
proceedasfollows:

1. Performa one-steppredictordesignfor slow time-
variations,i.e. useR | �¶#M� 
 � 
 � �
 � �
 to design Y 4 ( ����� ).
Verify that theclosedloop aroundY 4 ( � ��� ) of Fig. 2 is sta-
ble. If not,scaleup R | to decreasethegainof Y 4 ( ����� ).

2. Basedon a simulationof �&
 , ��
 , � 
 andof F� 
SC 
 3�4 ,
estimateR | from Fb 
 ��� 
 P 
 D R ( � 
 D F� 
SC 
 354 7 (see(10),(16)),
by usingsampleaveragesover Fb	
 .

3. Designa new estimatorY 4 ( �	�
� ).
Repeatsteps2. and3. until thedifferencein F� 
A@ 4 C 
 be-

comessmall.Then,designY B ( � �
� ) for thedesiredG .
Generalizationsto coloredgradientnoiseanduncertain

hypermodelsexist, see[2, 3].
It will bepossibleto find aninitial stablesolutionunder

mild conditions.If ; is stable,then Y 4 (A·¸7 u H�¹º· when
the assumednoisepower is increased.If

a 
 hasbounded
elements,thenthesmallgaintheorem[11] impliesthat the
closedloop of Fig. 2 canbestabilizedby assuminga suffi-
ciently highnoisepower in thedesignof Y 4 ( � �
� ).

Example. Considerthe uplink of a TDMA-basedmo-
bile cellular communicationsystemin which two mobile
userstransmitat thesamefrequency in thesametime slot.
A receiver with two diversity branchesdetectsboth users» 4
 and » T
 simultaneously. Two-tapfadingchannelsareas-
sumedsothemodelcanthenbeexpressedby (1) with� ´k½¼�¾À¿ �k ¿ �k �
� ¿+Ák ¿�Ák �
� Â Â Â ÂÂ Â Â Â ¿ �k ¿ �k �
� ¿ Ák ¿ Ák �
�MÃ
and � 
 �Ä(
Å 4f4*-, 
 Å 4f446, 
 Å 4 T*-, 
 Å 4 T46, 
 Å T 4*0, 
 Å T 44Æ, 
 Å TfT*-, 
 Å TfT46, 
 7 8 �
wherethecomplex channeltaps Å }ÈÇ*-, 
 and Å }ÈÇ46, 
 associatewith
themobileuserÉ andthereceiverbranch� . Thetransmitted
symbols x » Ç 
�y , hereassumedto be known by the receiver,
arewhite QPSKsymbolswith zeromeanandR � W�Ê . The
zeromeannoise��
 is whitewith varianceË5TÌ W T .

Secondorderstatisticsof fadingradiochanneltapscan
bewell approximatedby autoregressive models.Theseare
hereassumedto beof secondorderanddescribedbyV�X( i 3�4 �9·

D
, Ç�Í 7 � VV D�Î�ÏÑÐ�ÒlÓ0(n·

D
, Ç Í�ÔzÕ Î�7 i 354 ��Ï T i 3 T �

where · D
, Ç is themaximumDopplerangularfrequency for

mobile É and Í is thesamplingtime. (This modelprovides
a reasonableapproximationto classicalJakesRayleighfad-
ing statisticsif the pole radiusis selectedas Ï��ÖHr. ×z×�×ØDH+. V ·

D
, Ç Í for · D

, Ç ÍµÙ H+. V H .)
We investigate· D

, Ç�ÚÜÛ H+. HzÎÝH+. V H�Þ , whichapproximately
correspondto vehiclespeedsfrom 45km/h to 225km/hin
symbolspacedsampledANSI-1361900MHzsystems.

If the two vehicleshave different velocities, yielding·
D
, 4 and · D

, T respectively, and if the channelsto differ-
ent receiversareassumeduncorrelated,then �ß� W Ê and� �áà�âäã	å Û � 4f4 � 4 T � T 4 � TfT Þ in the hypermodel(17),
with diagonalblocks

� }ÈÇ ( ����� ) ���X( i 354 �S·
D
, Ç Í 7 W T .

Thereceiver is assumedto besynchronizedto mobile1,
resultingin zero correlationbetweentapsfrom mobile 1.
Weassumecorrelation0.8in thetapsfrom mobile2 andset
the SNR equalfor both users. This determinesR > which
becomesÎºæXÎ -block diagonal.Thevelocity of mobile1 is
fixedto 45km/h,while thevelocityof mobile2 is varied.

Four-steppredictionestimators( G �èçé7 areappropriate
in Viterbi detectors[7]. They aredesignedaccordingto the
iterative schemeoutlinedabove, for thetwo cases· D

, T Í �H+. HzÎ and · D
, T Í �)Hr. V H , andfor anSNRperchannelin the

range10dB-30dB.Fig. 4 displaysthe trackingMSE êfërìîí
for designsassumingslow time-variations(dashedcurves)
andfull iterativedesigns(solidcurves),measuredfrom sim-
ulationsof length10000.A singleiterationwassufficientat
all designpointsexceptat30dBin theuppercurves.

Theperformanceof theconstant-gaintracker is closeto
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Fig. 4. Thesumof squaredfour-stepchanneltappredictionerrorsï'ðéñ�ò
whenmobile1 movesat 45km/hwhile mobile2 hasveloc-

ity 45km/h(lower curves)and225km/h(uppercurves). Results
for one-shotdesignsassumingóôk ¼ � k � k (dashed),full iterative
design(solid) andtheKalman4-steppredictor(dash-dotted).

thatof the Kalmanestimator
4

at all operatingpoints. This
performancecanbewell approximatedat many, but not all,
operatingpoints by the non-iterative designfor slow pa-
rametervariations.Theexceptionsarehigh vehiclespeeds
at high SNR’s: In the upper curve of Fig. 4, the useofb 
 �µ� 
 � 
 at SNR30dBresultsin instability. A designthe-
ory basedon slow time-variations[8] simply cannothandle
suchsituations.However, whenthe covariancematrix forb 
 is scaledup in the first iteration,our iterative designis
completedsuccessfully.

In Table1, we comparethetrackingMSE andthecom-
putationalcomplexity T for Kalmanpredictors,for theWiener
design,denotedthegeneralconstantgainalgorithm(GCG),
for exponentiallywindowedRLS andfor LMS estimators.
The GCG Wiener designattainsnearly the sameperfor-
manceastheKalmanestimator, at muchlower complexity.
Note that the useof RLS would in this exampleresult in
bothbadperformanceanda highcomputationalload.

SNR õ D ö Á�÷ Kalman GCG RLS LMS
10 0.10 0.477 0.516 1.43 1.58
30 0.10 0.093 0.142 0.82 1.00
10 0.02 0.170 0.179 0.33 0.413
30 0.02 0.013 0.017 0.077 0.115

#mult. 5440 416 1564 132

Table 1. Steadystatesumof meansquaretrackingerrors
ï'ð

P
ò

and numberof real multiplications per time step, obtainedby
optimizedKalman tracking, the generalconstantgain algorithm
(GCG),RLS andLMS adaptationalgorithms.� TheKalmanpredictoris designedbasedonastate-spacerealizationof
(17)with 16complex-valuedstateswith (1) asthemeasurementequation.Á Measuredas the required number of real-valued multiplication-
accumulationoperationspersample.We utilize the diagonalstructureofø

( � �
� ) andR ù andtheblock-diagonalstructureof R ú .

6. CONCLUSIONS

We have outlined the designof a classof adaptationlaws
which aregeneralizationsof LMS. For details,see[2, 3, 4].
Comparedto Kalmantrackingof linearregressionparame-
ters,a mainadvantagewith theproposedclassof algoritms
is their lowercomputationalcomplexity. Anotheradvantage
is that it becomesmorestraightforwardto designfixed-lag
smoothingestimators.A disadvantageis that our Wiener
designis a steady-statesolution,which couldleadto worse
transientpropertiesthanfor a Kalmanestimator.
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