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Abstract: We presenta methodfor optimizing adaptation
laws thatare generalizationsf the LMS algorithm. Time-
varyingparametersf linearregressiormodelsareestimated
in situationsvheretheregressorsirestationaryor have slow-
ly time-varying properties. The parametetvariationsare
modeledas ARIMA-processesand the aim is to usesuch
prior informationto provide high performancdiltering, pre-
diction or fixed lag smoothingestimatedor arbitrarylags.
The methodis basedon a novel signaltransformatiorthat
recastghealgorithmdesignprobleminto a Wienerdesign.

1. INTRODUCTION

Adaptationalgorithmsthat estimatetime-varying parame-
ters of linear regressionmodelsare fundamentattools in
signal processingcontrol and digital communication[1].
Whenthe statisticsof the parametewariationsare known,
Kalmanestimatorsarethe optimallinear algorithms.How-
ever, their computationatompleity is sometimesieemed
unacceptableMotivatedby therequiredlow compleity of
channelestimatorsn mobile radio systemswe have pro-
poseda classof adaptatiorlaws that attaincloseto the op-
timal Kalman performanceat a computationacomplexity
closeto thatof LMS [2, 3, 4]. An early versionhassuc-
cessfullybeenusedon D-AMPS 1900channeld5, 6], and
a casestudyon this applicationis presentedh [7].
Designof a relatedclassof constant-gaimalgorithms
hasbeeninvestigatedby Bernvenisteandco-workers[8] for
slowly varying regressionparameters.We hereoutline a
methodthatis effective alsofor trackingfastvariations.
Notation: Here, R(¢~ "), R(g™"') and R(¢~") denote
polynomials,polynomial matricesand causalrational ma-
trices,respectiely, in the backwardshift operatorg—*.

2. OUTLINE OF THE PROBLEM

Considerdiscrete-timeand possibly complex-valuedmea-
surementgeneratedby alinearregression

ye = prhe v, (1)

wherey; is the measureaignalwith n, elementsy, is a
noisevectorwhile ¢y is ann,|ny, regressiormatrix, which

is known atdiscretetime t. We assuméheregressorso be
persistentlyexciting, sothattheir covariancematrix

A .
R = Epipy 2

is nonsingular FurthermoreR is hereassumedonstant
andknown, while in practiceit maybeslowly time-varying.
Theaimis to estimatethetime varying parameterector

hnhfl,t)T b (3)

whenthe orderny, is known. Modelsdescribingthe varia-
tion of h; aresometimescalled hypermodelg8]. We will
hereconsidelineartime-invariantstochastienodels

ht == (hg’t

he = H(g Nes , 4)

wheree; is white noisewith covariancematrix R, andwhere
H(g~") is an ny|n,; matrix of stableor maminally stable
transferoperatorsLet thetrackingerrorbe denotedoy

~ A A
hiprie = Ptk — hoyrpe (5)

whereﬁHk‘t is an estimateof h;,; obtainedat time ¢ by
filtering (k = 0), prediction(k > 0) or fixedlag smoothing
(k < 0). Kalmanestimatorsbasedn (1) andonstate-space
realizationsof (4), arethe linear estimatorshat minimize
the errorcovariancematrix

A 7 T %
Pk,t = Eht+k|tht+k|t 3 (6)

wherethe expectationis with respectto e; andv;. Since
o} is time-varying,the Kalmangainswill notcorvemeto a
steadystatesolution,so Riccatiupdatesarerequired.

We hereconsidera classof adaptatiodaws obtainedby
usingpre-designedineartime-invariantfilters M (g™ )

Yt — wfilﬂt—l (7)
M@ e (8)

that operateon ¢;e;, which is the negative instantaneous
gradientof |e,|* with respecto hy;_;. TheLMS algorithm

gt =

ht+k|t =
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wherey > 0 is a scalargain, constitutesa simple special
caseof thegeneraktructure(7),(8).

The rationalmatrix M, canbe selectedo asymptoti-
cally minimize the trackingerror covariancematrix (6) un-
dervariousconstraintsandassumptionsNote thatfor ary
desiredk, a one-steppredictorM(¢—') mustalsobe de-
signed,dueto the presencef Bt|t_1 in (7).

3. THE LOOP TRANSFORMATION

Thealgorithm(7),(8) canbeexpressedsastableandcausal
filter, denotedhelearningfilter £;(¢~'), thatoperate®na
signalvector

fr 2 e+ Rhye s (10)
since(7),(8) give

hoe1 = a " Mala e

e = Mi@ H(I+e ' RMy(¢Y)) i 2 Lia V-
(11)
Considekpie; andinsert(1), describingy;, into (7) to obtain

prer = SDtSOZilﬂt—l + prve - (12)

Adding and subtractingRBt|t_1 on the right-handside of
(12) gives

wiee = Rhy — Ri’it|t71 + (prpf — R)Eﬂtfl +opvp - (13)

Define

Zy erp; —R (14)

Ztﬁtlt—l + vt (15)
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which are called the autocorelation matrix noise[9] and
the gradient noise respectiely. The signal f;, canthen,
from (10), (13), (14) and(15), be expresseds

ft = Rhy + Ztilt\t—l + @iv = Rhy + 1, (16)

seeFig. 2. Thedesignof ouradaptatiodaw (7),(8) hasnow
beentransformednto a Wener filter designfor L4(¢g™1),
wheren, playstherole of noise,seeFig. 1.
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Fig. 1. Thefilter designproblem. The vectorh; is to be esti-
matedfrom f;, suchthatthe steadystatetrackingerrorcovariance
matrix of the parameteerror b, 1|, is minimized.
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The gradientnoiser; is affectedby the term Ztﬁt‘t_l,
herecalledthe feedbak noise It is shawvn in [4] thatthe

feedbacknoiseis negligible eitherwhenh; hassmallincre-
mentsor whenthe noisewv; hashigh variance.Suchsitua-
tions are denoted"slow variations”[4],[10]. The optimal
learningfilter will then operatein openloop, with 7, ~

peve.  Stability and corvergencein MSE is then guaran-
teedby stability of thelearningfilter, which followsdirectly
from a Wienerdesign. (While the learningfilter £;(q™ 1)

mustbe stable thefilter M;(g~*) in (11) neednot be sta-
ble, sinceit workswithin the feedbacKoop of Fig. 2.) An

iterative designmustbeeperformedwhen Ztﬁﬂt,l cannot
be ngglected seeSections.

4. LEARNING FILTER OPTIMIZATION

ThetransferoperatorLy(¢—!) canbe adjustedto minimize
(6) for t — oo whenH(¢g™') in (4) andthe propertiesof
7; aregiven. Thelearningfilter is heredesignedunderthe
constrainof stability, andunderthefollowing assumptions.
Assumption Al: Thesequencey;} is stationaryand
known upto time ¢, with R known andnonsingular O
Assumption A2: Thegradientoiser; is whiteandsta-
tionarywith zeromeanandcovariancematrix R,,. It is un-
correlatedwith h_; andwith h; ;; ; 1,5 >0 o
Assumption A3: Thelinearregressioncoeficientsare
describedy a stochastiorectorARIMA process

D@ Y =C(q Ve , (17)

with R, = Eezef nonsingulaywhereD = D, D,. Here
C and D, aremonicandstablyinvertible,while the poly-
nomial D,, haszerosonthestability limit (unitcircle) O
Under AssumptionsA1-A3, the (generalized)nnova-
tionsmodelof f; = Rh; + 1, canbeexpresseds

fi=RD7'Be;, & ¢=B"DR'f, (18)

wherethe polynomialmatrix 8(g!) is the stablyinvertible
spectralfactorande; is thewhite zeromeaninnovationse-
guencewith unit covariancematrix. By definingthe signal
_ A 1 -1 -1
= — = DSR 5 19
€ Du(qil)et ﬂ ft ( )
aWienerdesigneadaptatiotaw canberealizedasin Fig. 3,
in which D} ' Q,, representshe causalfactorof the real-
izable MIMO Wiener solution. By comparingFig. 1 and
Fig. 3, it followsthatthe optimizedcausalearningfilter is

P = D;'Q,B7' DR . (20)

Thepolynomialmatrix@,,(¢~*) canbeobtainedrom closed-
form expression$3]. In particular Q, = q(8—D (), with
Bo beingtheleadingcoeficient matrix of 3(¢~!). With this
expressiorand(11),(20),the Wieneroptimizedfilter matrix
M(¢™") in (8) canbeshown [3] to begivenby

MP = D'Q B8R (21)
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Fig. 2. The predictionlearningfilter operatesn openloop for
slow variations,when Z;h,,_, canbe neglected. For fastvaria-
tions,thefeedbackwoiseztﬁm_l hasto betakeninto account.
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Fig. 3. TheWieneroptimizedtrackingalgorithm.

5. ITERATIVE WIENER DESIGN

For slow time-variations,the feedbacknoiseis by defini-
tion negligible [4], so we may performa one-shotdesign
usingn: = pvg. Otherwise the propertiesof ; dependbn
L1(g™ ") via (15). Themultiplicationby Z; in (15) actsasa
scramblerwhich for FIR modelswith white inputswill re-
ducetheCorrelationbetweerthefeedbachoiseandﬁt‘t,l,
soAssumptionA2 still holdsapproximatehfor white noisev;.
Theopen-loopdesigncanthenbe performedteratively. We
proceedasfollows:

1. Performa one-steppredictordesignfor slow time-
variations,i.e. useR, = Eguv;p} to designly(g ).
Verify thatthe closedloop aroundL; (¢~ !) of Fig. 2 is sta-
ble. If not, scaleup R, to decreas¢hegainof L1(¢™").

2. Basedon a simulationof ¢, v, h; and of fzt‘t,l,
estimateR,, from i, = ¢e,—R(hy—hy); 1) (se€(10),(16)),
by usingsampleaveragesoverj;.

3. Designa new estimatorC, (g=).

Repeatteps2. and3. until the differencein ilt+1|t be-
comessmall. Then,designL (¢~ ") for the desiredk.

Generalization$o coloredgradientnoiseanduncertain
hypermodel®xist, see[2, 3].

It will bepossibleto find aninitial stablesolutionunder
mild conditions.If H is stablethen£, (w) — 0V w when
the assumechoisepower is increased.If Z; hasbounded
elementsthenthe smallgaintheorem[11] impliesthatthe
closedloop of Fig. 2 canbe stabilizedby assuminga suffi-
ciently high noisepawerin thedesignof £(g™1).

Example. Considerthe uplink of a TDMA-basedmo-
bile cellular communicationsystemin which two mobile
userstransmitat the samefrequeng in the sametime slot.
A recever with two diversity branchesdetectsboth users
u; andu? simultaneouslyTwo-tapfadingchannelsareas-
sumedsothe modelcanthenbe expressedy (1) with

o f ut wiy uw wi, 0 0 0 0
P = 0 0 0 0w wi_, ul ul,
and

_ /1l 11 312 312 321 321 322 122 \T
hy = (bo,t biy bo,t bl,t bO,t bl,t bO,t bl,t) )

wherethe complex channetapsby, andb/, associatavith
themobileuserj andthereceverbranchi. Thetransmitted
symbols{u]}, hereassumedo be known by the receier,
arewhite QPSKsymbolswith zeromeanandR = Is. The
zeromeannoisev; is white with variances?21,.
Secondorderstatisticsof fadingradio channeltapscan
be well approximatedy autorgressie models. Theseare
hereassumedo be of secondbrderanddescribedy

1 1
D(g7"wo; T) 1-2p cos(wo ;T/V2)q 1 + p2q2~

wherews_; is the maximumDopplerangularfrequeng for
mobile j andT is thesamplingtime. (This modelprovides
areasonabl@pproximatiorto classicallalesRayleighfad-
ing statisticsif the poleradiusis selectedasp = 0.999 —
O.IWD,J'T for wD,jT < 010)

We investigatew, ; € [0.02 0.10], which approximately
correspondo vehicle speedsrom 45km/hto 225km/hin
symbolspacedsampledANSI-136 1900MHzsystems.

If the two vehicleshave different velocities, yielding
wp,1 andwp o respectiely, andif the channelsto differ-
entreceversare assumedincorrelatedthenC = Ig and
D = diag[D 11D 12D 21D 53] in the hypermodel(17),
with diagonablocks D ;;(¢™") = D(g ", wo ; T) L.

Thereceveris assumedo besynchronizedo mobile1,
resultingin zero correlationbetweentapsfrom mobile 1.
We assumeorrelation0.8in thetapsfrom mobile2 andset
the SNR equalfor both users. This determinesR, which
becomeg x 2-block diagonal. Thevelocity of mobile 1 is
fixedto 45km/h,while the velocity of mobile 2 is varied.

Four-steppredictionestimatorg k = 4) areappropriate
in Viterbi detectorg7]. They aredesignedaccordingto the
iterative schemeoutlinedabove, for the two casesu, 2T =
0.02 andwy,,»T = 0.10, andfor an SNR perchannelin the
rangel0dB-30dB.Fig. 4 displaysthe trackingMSE tr P,
for designsassumingslow time-variations(dashedcurves)
andfull iteratve designgsolid curves),measuredrom sim-
ulationsof length10000.A singleiterationwassufficientat
all designpointsexceptat30dBin the uppercurves.

The performancef the constant-gairrackeris closeto
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Fig. 4. Thesumof squaredour-stepchannetappredictionerrors
tr P4 whenmobile 1 movesat 45km/hwhile mobile 2 hasveloc-
ity 45km/h (lower curves) and 225km/h (uppercurwes). Results
for one-shotdesignsassumingy; = ¢.v; (dashed)full iterative
design(solid) andthe Kalman4-steppredictor(dash-dotted).

that of the Kalmanestimatot at all operatingpoints. This
performanceanbewell approximatedat mary, but notall,
operatingpoints by the non-iteratve designfor slow pa-
rametervariations. The exceptionsare high vehicle speeds
at high SNR’s: In the upper curve of Fig. 4, the use of
1: = vy at SNR30dBresultsin instability. A designthe-
ory basedon slow time-variations[8] simply cannothandle
suchsituations. However, whenthe covariancematrix for
1 is scaledup in the first iteration, our iterative designis
completedsuccessfully

In Table1, we comparethe trackingMSE andthe com-
putationakcomplexity? for Kalmanpredictorsfor theWiener
designdenotedhegenerakonstangainalgorithm(GCG),
for exponentiallywindowed RLS andfor LMS estimators.
The GCG Wiener designattainsnearly the sameperfor
manceasthe Kalmanestimatoy at muchlower compleity.
Note that the useof RLS would in this exampleresultin
bothbadperformanceanda high computationaload.

SNR | wp,2T | Kalman GCG RLS LMS
10 0.10 0.477 0516 143 158
30 0.10 0.093 0.142 0.82 1.00
10 0.02 0.170 0.179 0.33 0.413
30 0.02 0.013 0.017 0.077 0.115

#mult. 5440 416 1564 132

Table 1. Steadystatesumof meansquaretrackingerrorstr P4
and number of real multiplications per time step, obtainedby
optimized Kalman tracking, the generalconstantgain algorithm
(GCG),RLS andLMS adaptatioralgorithms.

ITheKalmanpredictoris designedasecn a state-spacesalizationof
(17) with 16 comple-valuedstateswith (1) asthemeasuremergquation.

2Measuredas the required number of real-alued multiplication-
accumulatioroperationgper sample. We utilize the diagonalstructureof
D (¢~ ") andR,, andtheblock-diagonaktructureof Re.

6. CONCLUSIONS

We have outlinedthe designof a classof adaptationlaws
which aregeneralizationsf LMS. For details,see[2, 3, 4].
Comparedo Kalmantrackingof linearregressiorparame-
ters,a mainadvantagewith the proposedtlassof algoritms
is theirlowercomputationatomplexity. Anotheradvantage
is thatit becomesnore straightforvardto designfixed-lag
smoothingestimators. A disadwantageis that our Wiener
designis a steady-statsolution,which couldleadto worse
transientpropertieghanfor a Kalmanestimator
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