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Abstract

Many modern high-resolution spectral estimators in signal
processing and control make use of the subspace information
afforded by the singular value decomposition of the data ma-
triz, or the eigenvalue decomposition of the covariance ma-
triz. The derivation of these estimators involves some form of
matrix decomposition. In this paper, new computational tech-
niques for obtaining eigenvalues and eigenvectors of a square
matriz are presented. These techniques are based on the ma-
triz sector function which can be applied to break down a given
matriz into matrices of smaller dimensions and consequently
this approach is suitable for parallel implementation. Finally,
an example which illustrates the proposed method is provided.

1 Introduction

Signal processing based on the eigenstructure of subspaces
is the subject of intense research because it can be used in
sensor array and time series problems to effectively increase
the signal-to-noise ratio (SNR) and thereby enhance per-
formance. Performance enhancement typically involves in-
creased resolution, reduced variance of estimated parameters,
and the extension of threshold breakdowns to lower SNR. In
many cases, theoretical performance bounds are closely ap-
proached when subspace processing is applied. Many of these
signal subspace approaches depend on the eigenvalue decom-
position of an estimated covariance matrix.

In subspace methods, the autocorrelation matrix of large
order (usually much bigger than the number of sources to pro-
vide a more accurate modeling of the noise) obtained from the
data is decomposed and the signal and noise vectors are ex-
tracted according to the relative magnitudes of the singular
values. Pisarenko [1] was one of the firsts to apply eigenanaly-
sis to the problem of extracting signal information from an
estimated at a covariance matrix. In recent years, signal sub-
space approaches have been applied to obtain high resolution
estimators which include estimating the direction of arrival
(DOA) and the sinusoidal frequency estimation problems,
[2]-[4]. However, eigen-decomposition methods are compu-
tationally demanding since they involve the computation of
each singular eigenvector and corresponding eigenvalue. In
high resolution methods such as MUSIC, Minimum Norm,
and ESPRIT, the noise and/or signal subspace are all that
needed rather than the individual singular vectors. To re-

duce the computational cost associated with these methods,
various alternatives were proposed by several authors. Kay
and Shaw [5] suggested the use of polynomials and rational
functions of the sample covariance matrix for approximating
the signal subspace. In [6], Tufts and Melissinos used Lanc-
zos and power-type methods to approximate the signal sub-
space. Karhunen and Joutsenalo [7] approximated the signal
subspace using the discrete Fourier and Cosine transforms.
Ermolaev and Gershman [8] used powers of sample covari-
ance matrix based on Krylov subspaces to approximate the
noise subspace. For useful articles and books, the reader is
referred to [9], [10]-[12] and the references therein.

There are several algorithms for computing eigenvalues
and eigenvectors. Most popular are the power method, the
QR and LR algorithms [13]-[16]. The methods presented here
are based on calculating the matrix sector function of a given
matrix iteratively from blocks of eigenvalues and eigenvectors
projected in specific regions of the complex plane. The ba-
sic methodology is developed by mapping different groups of
eigenvalues of a given matrix onto a smaller known set of dis-
tinct complex numbers assigned to each sector in the complex
plane.

In this paper, we propose fast convergent algorithms for
computing an invariant subspace of Hermitian and non Her-
mitian matrices. Once we have block diagonalized a matrix,
one can recursively apply these algorithms to each of the di-
agonal blocks. This in effect gives algorithms for computing
the eigenvalue decomposition of any matrix.

2 Definition and Properties of the Ma-
trix Sector Function

Let A € C™*™ be a nonsingular complex matrix with no
negative eigenvalue, where C is the field of complex numbers.
The matrix sector function of a matrix A, denoted by S, (A4),
is defined as
S, (A) = A(VAY) T, (1)
where ¥/A" is the principal nth root of A™. The principal
nth root of the complex matrix A is defined to be any matrix
B € C™*™ such that B" = A and for every v, € o(B), o(A)
denotes the set of eigenvalues of A, we have 7y, = |y.|e*",
where 0, € (=7 /n,7/n), forr =1,---,m and i is the complex
number /—1.
Generally, an nth root of a complex matrix A €
is defined to be any matrix X € C™*™ such that X" =
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A.  When all eigenvalues of a non singular matrix A
are distinct there are n'™ distinct nth roots of A since
if A = P 'diag(\1, -+, Am)P, then each of the matrices
P~ tdiag(w’ /A1, -+, w'™ ¥/An)P is also an nth root of A,
for every set of integers {ji,j2, -, jm} C {0,1,---,n — 1},
where w is a primitive nth root of unity.

From the above introduction we observe that the matrix
sector function is an nth root of the identity matrix I,, which
commutes with A, i.e., Sn(A)" = In, and AS,(A)"' =
Sn(A)~' A has all of its eigenvalues in the sector —Z < § < Z.
These two conditions can be viewed as a characterization of
the matrix sector function. Note that for the matrix sign
function this implies that So(A)? = I,,,, and that S2(A)A has
all its eigenvalues in the right half plane.

The matrix sector function provides an elegant way of
splitting C" into many complementary subspaces without ac-
tually computing any eigenvalues. The matrix S,(A) is di-
agonalizable and has the same invariant subspaces as A; its
eigenvalues are nth roots of unity corresponding to eigenvec-
tors of A whose eigenvalues are in the sectors @ <0<
@, k=0,1,---,n—1. The region @ <f< @
of the complex plane will be called the “kth sector”. The sec-
tor =% < 0 < = will be called the principal sector. Through-
out this paper, the notation A(A) will be used to denote an
eigenvalue of A.

From the definition (1) we can state several important
properties of the matrix sector function.

Theorem 1. the matrix sector function Sy (A) satisfies the
following properties:

() Su(AT) = S, (A)T and Sp(A*) = Sp(A)*.

(b) Sn(aA) = Sp(a)Sn(A), where a is any nonzero complex
number such that = # arg(a) # Z.

(c) Sn(A)A = AS,(A).
(d) The eigenvalues of S,(A) are nth roots of 1, i.e.,

Su(A)" = In.
(e) AS,(A)™" = S,(A)"'A and all eigenvalues of
AS,(A)~" are in the sector (==, Z).

(f) If V and Z are nonsingular matrices of same order, then
Sn(V™rZV) =V ~18,(Z)V, provided that S, (Z) is de-
fined.

(g) Sn(w"A) =w"S,(A), where w is any primitive nth root
of 1.

(h) Sn(A™Y) = Sn(A)".

Proof: the proof follows directly from (1).

3 Eigen-Decomposition Using the Ma-
trix Sector Function

In this section, we propose a method for computing invariant
subspace decomposition. These methods exploit the notion
of the matrix sector function resulting in methods of higher
order convergence. These higher order methods are derived
by mapping different groups of eigenvalues to a smaller known
set which consists of distinct complex numbers assigned to
each sector in the complex plane. To illustrate the proposed

procedure, let A € C™*™. The Jordan canonical form of A
can be expressed as

A=PI,P", 2)

where 14 is a triangular matrix of Jordan blocks of the eigen-
values and P is a transformation matrix containing the asso-
ciated eigenvectors. Clearly, if A is diagonalizable then [4 is
a diagonal matrix. Now, from Theorem 1 the matrix sector
function of A can be expressed as

Sn(A) = PSn(Ia)P ", (3)

where Sn(I4) is a diagonal matrix with eigenvalues,
Lw,w? - w" ! with w" = 1. Note that S,(A) and A
have the same eigenvectors. If an eigenvalue of the matrix
A is in the i-sector, then the corresponding eigenvalue of
Sn(A) is w'™'. Now assume that A is diagonalizable and
that Sy, (I4) = diag(Im,, wln,, -, w™ *In, ), where m; rep-
resents the number of eigenvalues of A in the (I — 1)-sector,
then

P P2 - Py
Sa(ay= | P2 P Bl i (L w0Eg 0" )
Pu Py -+ P,
Pi P - Pt
y Py Py - Poy 7
Py Paa -+ P

(4)
where P = [P;;] is partitioned into blocks of compatible di-
mensions.

The following theorem is the cornerstone of parallel com-
putation of EVD via the matrix sector function.

Theorem 2. Let P and S, (A) be partitioned into blocks as
described above and assume that the matrices {P;;};—, are
invertible, then

R=1IV"'"P+ PIy '+ 13 °Pla+IaPIy >+ 13 °PI3

+ AP+ 1 PrE
(5)
is block diagonal given
by R = ndiag(Pll,wPQQ’A4.’w"*1Pnn)> Let V — PflR,
then
VﬁlAV = diag(PfllDuPn, P)2721D22]3227 cee
= diag(4;),

Pyt Dy Pry)

(6)
where Ia = diag(Di1, D22, -+, Dm,m.), and A; =
P“_.lD“'P“' and |z| denotes the largest integer less than or
equal to x.

Proof: It can easily be shown by induction that R is block
diagonal. The main conclusion follows from the following
equation

VAV = (P'R)'AP 'R=R 'P"'APR = R 'DR,
(7)
and the fact that the product of block diagonal matrices is
also block diagonal. Q.E.D.
It should be noted that each of the matrices P“_leiiPiqj
have the same eigenvalues as the matrix A; and all lie in the



same sector. Thus, the spectrum of A are split according to
their position in the sectors. This process can be continued
if necessary to split the spectrum of the blocks A;. The com-
putation can be continued in parallel until all submatrices
reduce to Jordan form. An example showing how to apply
Theorem 2 is presented next.

3.1 EVD Using the Matrix Sign Function

Let us next illustrate the idea of utilizing the matrix sector
function Sz for the parallel computation of EVD, let A, 14,
and P be as in Theorem 2. In this case, R = IaP + Pla,
and therefore V.= P'R = P~ 'I4P + I4. To compute V,
we need to compute S2(A) and I4 first. The dimensions of
the Jordan blocks of I4 are unknown and can be computed
as follows. Assume that the two Jordan blocks are of dimen-
sions m1 and mga, then S2(A) is similar to diag(lm,, —Im,)-
Clearly,
trace(S2(A)) = mi — mao,

n=mi-+ mea.
Solving for mi, and mo yields

g =" + trac;(Sg (A))’
g = 1 trach(Sg(A).

Here trace(B) denotes the sum of diagonal elements of B.
Thus the matrix V' which block diagonalizes A is completely
determined.

3.2 EVD Using the Third Order Matrix

Sector Function

Let us next illustrate the idea of utilizing the matrix sector
function S3(A) for the parallel computation of EVD, let A,
14, and P be as in Theorem 2. In this case

R=1I3P+ PI3 + 1aPIa,
and therefore
V=P 'R=P AP+ 1%+ P I PI,.

To compute V', we need to compute S3(A) and I first. The
dimensions of the Jordan blocks of /4 are unknown and can
be computed as follows. Assume that the three Jordan blocks
are of dimensions m1, msz, and ms, then S3(A) is similar to
diag(Limy , Wlny, w? Iy ), where w # 1 is a cubic root of 1.
Additionally one can show that
trace(S3(A)) = m1 + wma + w’ma,
trace(S3(A)%) = m1 4+ w’ma + wma, (8a)
n=mi -+ msos + ms.

Solving for mi, mo, and ms yields

n + trace(S3(A)) + trace(Ss(A))?

m1 = i

3
2 2
g — n+ wtrace(Sg(A))3+ w* trace(S3(A)) 7 (8b)
e = w? trace(S3(A)) 4+ w trace(S3(A))?
3= .

3

Thus the matrix V = I3 + S3(A)14 + S3(A)?, which block
diagonalizes A, is completely determined.

4 Computation of S,(A)

As indicated in the previous section, invariant subspace de-
composition via the proposed approach requires the compu-
tation of the matrix sector function. For Theorem 2 to be
applicable, one must develop efficient methods for computing
the matrix sector function. The matrix sector function can
be computed as follows:

Theorem 3 [17]. Let A be a nonsingular m X m matrix
such that none of its eigenvalues are on the boundary of the
sectors {@ <6< @ »Zs. Then the matrix sector

function has the following integral representations:

st =22 [T a0
0
and o -
Sn(A):%(Z)/ (y" A" + In) “Ady.  (9b)
0

Part (9b) of this result follows directly from (9a) and the
relation S, (A1) = S, (A)7 .
The integrals (9) can be computed over the finite interval
[0, 3] by using the change of variable y = tan(6) in which case
(9) transcribed to
S ( A)—l — &(%) X
K
z (10a)
/ (sin™(0) L, + A™ cos™(0)) A" L cos™ 72 (6)d6,
0

and

Sn(A) = nsin(3) /7(A” sin”(0) 4 cos™(0)Im) " Acos"2(0)d6.

(100)

In the next example we illustrate how to apply Theorem 2

and the matrix sector function to compute the matrix eigen-
decomposition.

5 Example

Consider the following 6 x 6 complex hermitian matrix A.
To fit this matrix in a single column, it is written as
A = [4 Az], where A; and Az are 6 X 3 complex
matrices representing the the first and last three columns
of A, respectively. The eigenvalues of A are given by
the set {5.3375, 1.4203, —3.0970, —1.6982, —1.1247, —0.8379}.
The matrices A1 and A2 are given as:

—0.1101
1.1454 + 0.12351
0.2044 + 0.447617

1.1454 — 0.1235¢
—0.7610
1.3670 — 0.32261

0.2044 — 0.44761
1.3670 + 0.32261
0.8186

A= 1.2281 + 0.4249: 1.7474 — 0.5630¢ 0.6553 — 0.3940:¢
0.7005 4 0.8174¢ 1.8891 4 0.0217¢ 0.5996 — 0.7140¢
0.6686 — 0.3036¢ 1.3173 — 0.5199¢ 1.0431 4 0.5153¢
and
1.2281 — 0.4249; 0.7005 — 0.81747 0.6686 + 0.3036¢
1.7474 + 0.5630¢ 1.8891 — 0.0217¢ 1.3173 4+ 0.5199:¢
Ay = 0.6553 4+ 0.3940¢ 0.5996 + 0.7140¢ 1.0431 — 0.5153¢

—0.2250
1.4371 4 0.0381¢
0.6843 — 0.63441

1.4371 — 0.0381¢
0.0726
0.4183 — 0.0213:

0.6843 + 0.63441
0.4183 + 0.0213¢
0.2049



If the integral formula (10b) is applied using Gaussian
quadrature with 16 points we obtain an approximation for
Sa(A) such that [|(S2(A)2 — Is)||2 = 1.3819(10) 7. The com-
puted matrix sign function is given by S2(A4) = [B1 : Ba],

where

Bi = 0.4298 + 0.16611 0.4296 — 0.0369¢ 0.0442 — 0.15471
0.3198 + 0.33161¢ 0.3714 — 0.0104% 0.1546 — 0.44744
0.1570 — 0.3270¢ 0.3877 — 0.17861¢ 0.5101 + 0.5439¢

[ 0.4298 — 0.1661% 0.3198 — 0.33161 0.1570 + 0.3270¢ 7]
0.4296 + 0.03691 0.3714 + 0.01041 0.3877 + 0.17861
By = 0.0442 4 0.15474 0.1546 + 0.44744 0.5101 — 0.54391

The matrix I4 can be shown to be Iy =

Therefore the matrix V is given by V = I4 + S2(A).

—0.5279 — 0.00001
0.3259 + 0.09961
—0.2183 + 0.0352¢

—0.4971 — 0.00001
0.4812 4 0.1418¢
0.1445 — 0.2369¢

0.3259 — 0.0996¢
—0.5037 + 0.0000%
0.3345 — 0.1099¢

0.4812 — 0.1418¢
—0.4063 + 0.0000%
—0.0664 — 0.06681

—0.2183 — 0.0352¢ 7

0.3345 4 0.1099¢
0.1458 + 0.00002

0.1445 + 0.23691
—0.0664 + 0.06681%

—0.2106 — 0.0000% |

I, 0
0 —I4|
The

matrix V block diagonalizes A so that VAV ™! = [C; : Ca,

where

[1.5957 — 0.7318¢
2.0870 + 1.69761
0.0000 + 0.0000¢

—0.2685 — 1.0322¢
5.1621 + 0.7318:
0.0000 — 0.00002

0.0000 — 0.0000¢
0.0000 + 0.0000z
—1.7049 — 0.53101

G = 0.0000 4 0.0000¢z  0.0000 — 0.0000¢  —0.2739 — 0.0132:
0.0000 4 0.0000¢  0.0000 — 0.0000¢  —0.6220 4 0.0334¢
L 0.0000 + 0.00007  0.0000 + 0.0000¢  —0.1006 — 0.3769:
[ 0.0000 — 0.0000¢ 0.0000 — 0.0000¢ 0.0000 — 0.0000%
0.0000 + 0.0000z 0.0000 + 0.0000z 0.0000 + 0.0000:
Cy = —0.7852 — 0.45137 —1.7766 + 0.41807 —0.5034 — 0.08541

—1.9547 — 0.0818:
—0.3645 — 0.1728:

—0.0664 + 0.60537
—1.6446 + 0.78174

—0.2183 + 0.28031
—0.2339 — 0.0767:

L —0.3651 — 0.7337¢ —0.8378 — 0.20987 —1.4537 — 0.1689¢

Note that the matrix VAV ™' is block diagonal. This process
can be repeated in parallel if necessary untill all blocks reduce
to one dimensional matrices.

6 Conclusion

In this paper, the main objective is to develop fast paralleliz-
able matrix inverse free algorithms for the general algebraic
eigenvalue problem using the matrix sector function. The re-
sulting methods are highly modular and well suited for paral-
lel implementation. The basic principle of this approach can
be used to compute the complete EVD of any matrix. How-
ever, the efficiency of this technique is mainly influenced by
the accuracy of computing the matrix sector function. Us-
ing the integral representation given in (9)-(10) and [17], the
nth order matrix sector function can be computed using the
Pade approximation from which exact partial fraction expan-
sion can be obtained. Parallel implementation for the special
case n = 2 is given in [11]. This novel concept will not only
be useful as a powerful tool in signal/image processing, and
control theory but also as a new parallelizable approach in
computational linear algebra.
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