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ABSTRACT

In this paper, we explore a novel approach to enhancing �n-
gerprint images using a new binary directional �lter bank
(DFB). Automated �ngerprint identi�cation systems (AFIS)
are used to classify a �ngerprint in a large volume of images.
Many approaches to AFIS have been suggested, most shar-
ing in common the idea of extracting discriminate feature
representations. As part of that process, the raw �nger-
prints are often smoothed, converted to binary and thinned.

Conventional directional methods, which have been used
successfully in the past, provide representations that de-
lineate the directional components in the �ngerprint im-
age enabling separation, and enhancement. Our binary
DFB receives a binary input and outputs a binary image
set comprised of directional components. Through proper
weighting and manipulation of the subbands, speci�c fea-
tures within the �ngerprint can be enhanced. We propose a
new enhancement approach that remains in the binary do-
main for the entire process. This paper provides a descrip-
tion of a new binary DFB and its application to �ngerprint
pre-processing.

1. INTRODUCTION

Fingerprint identi�cation is a biometric technology that re-
quires great accuracy and high e�ciency to operate on a
vast amount of images. An automatic �ngerprint iden-
ti�cation system consists of four general steps: acquisition
of the �ngerprint, representation of that �ngerprint, feature
extraction, and �ngerprint identi�cation or classi�cation [1].
Many approaches to classi�cation have been proposed in
the literature. The approaches are varied in the stages of
classi�cation that occur. Some use higher level features,
such as directional elements [2], or use prede�ned classes
[3] to recognize �ngerprints of di�erent classes. Others use
local features, such as ridge line shapes, bifurcations, and
ridge endings [4], or rely on feature measurements (ridge an-
gles, separation, and curvature) [5] to determine the various
classes. Often control over acquisition is limited because
of problems in acquisition techniques. The ability to iden-
tify many feature details is dependent on the quality of the
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�ngerprint that has been acquired. Thus, it is often neces-
sary to pre-process the �ngerprint to improve the clarity of
the feature details so they may be properly represented in
preparation for classi�cation.

A number of techniques have been proposed to improve
minutiae features in �ngerprints [6] [7] [8] [9]. Typically
these algorithms rely on arithmetic performed with 
oating
point precision and, as a �nal step, convert the image to
binary form prior to feature extraction.

In this paper, we consider a novel approach to �nger-
print enhancement using �lter banks that operate in a bi-
nary �nite �eld{that is, they perform the equivalent of con-
volution and �ltering in the binary domain, a.k.a. GF(2).
As a recent historical note, the notion of employing �nite
�eld arithmetic for conventional �lter bank implementation
was originally introduced in [10] and later developed in [11].
Extensions to other forms of �lter banks are not possible
by direct extension thus, an important part of this devel-
opment is the introduction of a directional �lter bank for
binary images, where the output images represent direc-
tional feature components of the input, equivalent to fan
�lter outputs. Such a decomposition can be used for feature
extraction, classi�cation, and enhancement. For enhance-
ment of �ngerprints, the directional components provide the
ability to separate important ridge characteristics from un-
desirable discontinuities. Once the image is decomposed,
the undesirable features can be suppressed in the subband
reconstruction, leading to an enhanced image that is better
suited to feature extraction

In the sections that follow, we will develop the theory
of �nite �eld �lter banks, discuss the new angular �lter
bank, and then show an example of its application to the
enhancement of a �ngerprint.

2. FINITE FIELD FILTER BANKS

The classical analysis/synthesis two-band �lter bank, a block
diagram of which is shown in Figure 1, is a critically sam-
pled linear time varying system. An input signal is decom-
posed using a lowpass analysis �lter, H0(z), and a highpass
analysis �lter, H1(z). Reconstruction occurs in the syn-
thesis section using a lowpass �lter, G0(z), and a highpass
�lter, G1(z). If the �lters are chosen correctly, we can ob-
tain perfect reconstruction, i.e. X(z) = z�n0X(z) where
n0 is an integer delay.

Finite �eld �lter banks are similar to the classical sys-
tem but with the added constraint that the analysis output
representation is constrained to a predetermined number of
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Figure 1: Two-band analysis-synthesis �lter bank.

�nite levels. Originally introduced by Vaidyanathan [10],
this idea is motivated by an interest in constraining the
dynamic range expansion.

The �nite �eld �lter bank is a simple extension of the
classical system where arithmetic operations are performed
modulo-N [10]. To reconstruct, �ltering in the synthesis
portion is performed using the same modulo-N arithmetic
and the bands are combined using modulo-N addition. This
alone does not guarantee a result that matches the input.
However, a mapping based on the �lter gain, M , and the
dynamic range, N , can achieve exact reconstruction. The
output bx will be an exact reconstruction of the input image
x provided two conditions are met. First, the modulo op-
eration �eld size must be greater than or equal to the �eld
size of the input, N 0. This is required to avoid information
loss. Second, a constraint is placed on the gain of the sys-
tem, M . Let us assume the �lter coe�cients are integers.
The gain is dependent on the system �lters, that is

M = (
X
n

jh0[n]j �
X
n

jg0[n]j)

+ (
X
n

jh1[n]j �
X
n

jg1[n]j);

where h0[n] and h1[n] are the analysis �lters and g0[n] and
g1[n] are the synthesis �lters. A crucial relationship is nec-
essary to obtain perfect reconstruction. M and N are
required to be relatively prime, i.e. they must have no com-
mon factors.

While the �nite �eld property of the subband outputs
might appear highly attractive, the appearance of the re-
sulting subbands can be very noisey, owing to an implicit
scrambling of amplitude values. The degree this \value"
scrambling occurs is dependent on two variables, the system
gain M and the output �eld size N . Generally speaking,
the larger the value of N (with respect to M) the less se-
vere the wrap-around e�ects. However, even for N = 255
and modest values of M , wrap-around arithmetic can still
introduce a noisy scrambled appearance to the output. De-
pending on the system gain, the original image can be quite
di�cult to recognize because, it essentially wraps around it-
self several times. This issue must be handled in some way
in order for the �nite �eld �lter banks to be useful. In spite
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Figure 2: Two-band analysis-synthesis �lter bank using a
ladder implementation.

of this inherent di�culty it is interesting to observe that the
new binary directional �lter banks, which we introduce next
produce well-balanced �ltered representations.

3. DIRECTIONAL DECOMPOSITION

In this section, we will de�ne a 1-D �lter bank structure
that can be extended to 2-D. We will then show how this 2-
D structure can be modi�ed to perform all of its operations
in a binary �eld, GF(2). As in [13], we begin with a lowpass
�lter representation that is a halfband �lter. The equivalent
lowpass �lter can be expressed as

H0(z) =
(z�2N + z�1�(z2))

2
:

Similarly, the highpass �lter is expressed as

H1(z) = ��(z2)H0(z) + z
�4N�1

:

Implementation of these �lters can make use of a general-
ized polyphase �lter structure shown in Figure 2. Ansari
[13] shows that this system can be extended into a 2-D sys-
tem by replacing the transfer function �(z) with �(z0)�(z1),
the delays z�1 with 2-D delays z�1

0
z�1

1
, and the downsam-

pler with a downsampling matrix.
The �rst stage of a directional �lter bank is commonly

a fan �lter, formed by modulating a diamond �lter and us-

ing a downsampling matrix, M = [
1 1
1 �1

]: The fan �lter

characteristic can be achieved by modulating either the in-
put image or migrating it to the diamond �lter. Modulation
does not translate clearly to binary �elds, however, which
presents a challenge. We circumvent this problem by con-
verting all z0 to�z0 inH0(z0; z1) andH1(z0; z1) resulting in
a bi-directional �lter bank with a grayscale outputs. As an
example, we �lter the test image shown in �gure 3(a). The
images shown in Figure 3(b) and 3(c), depict the grayscale
outputs of the �lter bank.



a

b c

Figure 3: Test image for directional �lter bank is shown in
(a). Two-band grayscale decomposition shown in (b) and
(c).

Ultimately, we desire a binary �lter bank where a bi-
nary input results in a binary output. Assume, rather than
conventional �lters, we have integer halfband �lters with �

2

cuto� frequencies. If we perform all operations modulo-2;
the output would be binary but with an undesirable noisy
appearance. However, with this proposed structure, this
can now be overcome. If the �ltering, �(z0)B(z1); is cal-
culated in 
oating point arithmetic, reconstruction will not
be a�ected by any operations within the �lter block prior
to the summation.

Three steps are required to produce a �eld limited �l-
tered image. First, we �lter along the rows and columns of
the downsampled image with �(z0) and B(z1), respectively:
The result will be limited to the range [�1; 1]. Second, we
limit the �eld to GF (2) by thresholding the �ltered image
using

f(x) =

�
1 if x > 0;
0 if x � 0:

Finally, quantize the combination of this quantized image
and the downsampled image with a new quantization func-
tion,

f(x) =

�
1 if x > 1;
0 if x � 1:

The transformation is now combined with the downsam-
pled image in the upper branch using modulo-2 summation.
The modulo-2 addition guarantees that the analysis band
output remains GF (2) or binary. This additional set of op-
erations results in considerably less wrap-around distortion.
As seen in Figure 4(a), the binary output is comparable to
the grayscale output.

In fact, it even manifests greater visually suppression of
directional information. We continue to the second stage
to form the other direction. The next stage also �lters the
image with �(z0)B(z1) and uses a similar thresholding func-
tion to quantize. Figure 4(b) shows that the other angle is

a b

Figure 4: Two-band binary decomposition shown in (a) and
(b).

represented in the binary image and is similar to (in fact
even better than) the grayscale output band.

As previously mentioned, reconstruction is performed
by using a similar transformation and adding the inverse
to the band output. To achieve perfect reconstruction re-
quires a reversal of the �ltering order. That is, we must
reconstruct the second stage prior to the reconstruction of
the �rst stage. All operations are performed modulo-2 re-
sulting in an output image bx matching the input image x.

4. EXAMPLES AND APPLICATIONS

This directional �lter bank can be extended to more bands
than two and can provide a useful representation for anal-
ysis applications. Similar to a conventional rectangular de-
composition, this can be achieved by using a tree structure.
In this work, we employ a four band decomposition using a
tree structure, like the one discussed in [6] for 
oating point
systems.

There are several applications areas where directional
�lter banks (DFBs) are useful, such as computer vision,
image analysis, and image enhancement. Image processing
systems sometimes use directional �lter banks as a basis
for the orientation analysis stage. For example, image de-
tection and feature enhancement of systems have typically
contained a stage where the energy of di�erent angular fea-
tures is determined followed by an application dependent
processing. In [14], the author applied DFB-based process-
ing to detect linear features and enhance both �ngerprint
and cell images.

Linear feature detection in noisy images had previously
been performed using a Radon transform [15]. Radon
transforms, however, are not exactly invertible for discrete
images. The lack of invertibility may lead to undesirable
distortion during an analysis/synthesis enhancement pro-
cess. Bamberger [14] applied DFBs successfully to linear
features in �ngerprints. However, this body of work was
all done in the context of in�nite precision arithmetic. The
new binary DFB provides an alternate more e�cient way
of achieving similar results.

Indeed there are many ways in which a binary DFB tool
could be employed for �ngerprint enhancement. How one
uses the binary DFB should be governed by the speci�c ar-
tifacts in the �ngerprint one wishes to suppress or enhance.
For example, smudges or ink blobs might be present in the
original, arising from a non-ideal acquisition process. In
such case, the location of the ink blob can be targeted and
its presence removed using the DFB. Similarly, the DFB



Figure 5: (a) Original �ngerprint image. (b) Binarized
image. (c) The enhance �ngerprint image.

could be used to enhance the directionally dominant ridges,
thereby reducing the e�ects of smudges. As an example of
enhancement processing using the binary DFB, we consider
here the problem of removing three scars in the �ngerprint
as shown explicitly in Figure 5(a). For the purposes of
illustration, let's assume these markings occurred acciden-
tally through a cut after the original recorded �ngerprints
were taken. Thus, we wish to remove these markings prior
to matching. First, we split the input x[n] using a four
band directional decomposition. We next segment the im-
age into its dominant components and those comprising ar-
tifacts. For the purposes of this paper, we have performed
this manually but techniques exist that automate the pro-
cess [7].

The subbands are treated as a set, noting that one sub-
band in the region of the scar is associated with ridges that
we wish to preserve, while another subband (the horizon-
tal component in this case) is associated with the scar. By
weighting the horizontal subband coe�ent with a gain of
approximately zero in the region, and resynthesizing the
binary image using the binary DFB bank, we can suppress
the e�ects of the scar. This is shown in Figures 5(b) and
(c), where 4(b) shows the binary original and 4(c) shows the
output after enhancement, when one sees that the e�ects of
the scar have been dramatically reduced.

5. CLOSING REMARKS

The binary DFB has the attractive property of allowing
directional information to be displayed visually in the sub-
bands. Moreover, its reconstruction process is well behaved
and allows subband modi�cations to be made while en-
abling good quality reconstruction. Thus, the binary DFB
can �nd application in �ngerprint enhancement by provid-
ing the capability to perform region target suppression of

artifacts and pattern feature enhancements.
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