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ABSTRACT 2. PERFORMANCE ANALYSIS: OUTLINE

We view the CF@ algorithm as a differentiable mappidgwhich

The CFG algorithm is a recently introduced analytical solution maps the set of sample correlation matrices

for the blind MIMO channel identification problem, provided a

certain spectral diversity holds for the stochastic inputs of the MI- 5 — (D = B

MO system. Here, we develop a theoretical study to derive the R = (R“” [0, Be [1],-. , Re [d]> (1)
asymptotic performance of the Ck@lgorithm, in terms of mean-

square error. Asymptotic normality of the MIMO channel esti- into the corresponding MIMO channel estiméle H = & (R )
mate is proved, and the asymptotic error covariance matrix de-Keep in mind that
rived. Computer simulation results are included to validate the

theoretical expressions.

1. PROBLEM STATEMENT

’ﬂ |

T
Z t—T

The closed-form correlative coding (hereafter, GF@as intro- ~ denote a sequence of random matrices indexed e number
duced in [1, 2]. It provides an analytical solution for the blind ©f observed data samples), although this dependency is not ex-
MIMO channel identification problem, under an appropriate pre- plicited here (to avoid cumbersome notatlon) The same applies
filtering correlative framework which does not increase the trans- 10 the remaning random variableR{, H, etc). Using the con-
mitted power nor decreases the original data rate. Also, amiy ~ Cept ofm-dependent sequences [3], we start by establishing the
order statistics are used. We refer the reader to [1, 2] for details.asymptotic normality oR..:

Here, we analyse the performance of the @B@orithm, in order N

to assess the asymptotic mean-square error (MSE) of the MIMO VT (Rm - Rm) 4 N (0,%), (2)
channel estimate. For simplicity, we consider here the case of bi-

nary sources and zero-mean spatio-temporal white Gaussian noisdor a certain covariance matri%,. Here,

The extension to the general case follows easily. Thgset(5)

of [1] is given here byl = {0, 1, ... ,d} for some integed. R. = (R:[0], Rz[1], ... , Re[d])

?Iit:t;on; \f\éiz?}:tgrxi?? ;:ia?oi Ir}p[lé IIE jgd;,'::’iwi let denotes the expected value Bf.. By the Delta method [5], we

= 4 . )
I, ® Iin0andl, ., isthem x n matrix with all's. The sym-  havev/T (H - H) S N(0,2), 3 = &(R,) Zo® (Ra) .

bol X denotes the Khatri-Rao product: far: m x n, B : p X n, To obtain the derivative of the mappir®, we interpret® as the
AXB = [a1®b1---a, ®b,] : mp x n, wherea;, b; de- composition ofn = 4 (simpler) differentiable mappings® =
note theith column of A, B, respectively. A"l is the k-fold P4 0 P3 0 P, 0o P, each®; representing an intermediate step

Kronecker product ofdA: A*l = A ® ... ® A (k times). For of the CFG algorithm; & is obtained by the chain rule® =
A : m x n, vec(A),tr{A},||A| represent the vectorization @4 - ®3 - ®2 - ;. In the following, we fill in the details of this

operator, the trace and the Frobenius normiofespectively. Al- outline.

s0,i, = vec(I,) and K, ., is the commutation matrix [6]: for

A :nxm, Knnvec(A) = vec(AT). For random vectors 3. PERFORMANCE ANALYSIS: DETAILS

z,y, E{x} is the statistical expectation operategrr {m} =

E{zz'} andcov{z,y} = E{xy'} —E{z}E{y"}; 41 First, we prove the asymptotic normality of the sample statistics

stand for convergence in distribution and statistical |ndependency,Rm, and obtain the associated asymptotic covariance makix
respectively, andV’ (u, X) is the Gaussian distribution with mean  in (2). Then, we focus on each of the differentiable mappidgs
w© and covarianc&. Random matrices are viewed as random vec- ¢ = 1,... ,n, and obtain®;.

tors through the veg) operator. For matrix-to-matrix differen- R

tiable mapping®y” = F(X),Y :mxn, X : kxl,F: mnxkl Asymptotic normality of R,. We say that a random variakie~
denotes the usual derivative by interpreting bitland X asvec-  A(x) if E{a} = 0,E{a’} = 1,E{a’} = 0 andE {a'} = &.
tors, through ve¢:). Also, a = (a1, az,...,a,)" ~ A" (k) if a; L aj, fori # j,



anda; ~ A(k). Finally, = (af ;3 ,. .., ap) ~ Ay (),
wherek = (k1, ks, ... ,kp)  if ai L aj, fori # j, anda; ~

A™ (k;). We shall need lemma 1 concerning the second and fourth

moments of the distributiont;; («). The proof is omitted due to
paper length constraints.

Lemmal. Fora ~ A; (k),E{a ® a} = P} (i, ® i,), Where
P =1, K,,®I, Also corr{a®a} = PICP}",
where
C = Ip2n2 + ip'l:; & iniz + Kp,p ® Kn,n+
diag[(m = 3) 2, (k2 = 3) I 2, ..., (Kp — 3)Ipn2] O

For further reference, we gk, = E{a ® a} andC} (k) =
corr {a ® a},fora ~ Aj (k). Forascalar signdlaft] : ¢t € Z}
and given lengt, we define the stacking operator

8" (aft]) = (aft],aft = 1],... ,aft = (n = 1)])"

Correspondingly, fop signals{a;[t] : ¢t € Z}and givern, we let

alt) = (8" (@), 8" (al)T)

We say that the random multivariate time sergg] has the dis-
tribution Z7 (), for & = (k1,k2,...,kp) ", Written a[] ~
Zy(K), if aft] = Sy (a1]t], ..., ap[t]), with a;[s] L «a;[t], for
i # jors #t, anda;[t] ~ A(k;), for allt.

Sg (Oél[t], N

Lemma2. Leta[] ~ Z;

{3

(k). We have

up> 4N (07 p I (n)) ,

where

K0+22Kl
=1

21T
crt (k)T o

n, nT

3 (k)= @2n—Dpypy,

with K; = S |

Proof. By definition, there exisp mutually independent random
signalsa;[t], ai[s] L a;ft], for s # ¢, anda;[t] ~ A(k;), such
thata[t] = Sy (aift], . .. , ap(t]). Within the context of this proof
we leta®[t] = SE(ailt], ..., apt]); thus,aft] = a™[t]. Let
At] = u” (aft] ® aft]), for arbitrary (fixed)u. From the given
assumptions, it is clear thaft] is a stationaryn — 1)-dependent
sequence [3]. Thus,

1 T
VT (f;w] -
p=E{At]},v? = vo+2 31" wi, andy; = cov {A[t], Alt — 1]},

forl = 0,1,...,n — 1 [4]. Sincealt] ~ Aj(k), we have
p =607 pu7. Using the identities

u) & N (0,07,

aft] = Spna ™) aft =1 =Thura[t],
we may write
afff@al] = S5, (o™t a" )

alf —lleaft-1] =

Thus,
E{A[t]A[t — 1]}

= uTSEZ]chorr {a"+l[t]® "+l }Tf]pTlu

= uTKm,

fori =0,1,... ,n —1. Finally

v = E{\1] }+22 {MEAE =07} = 2n— 1)
= u Z(k)u.

Sinceu was chosen arbitrarily, the CramWold device [5] con-
cludes the proof]

Rewrite the data model of equation (2) in [1] as
a; ]

z[t] = [,ﬁl,ﬁz"'ﬁPo'IN] ) (3)

~ i

'e

H bt]

=n[t]/o = (W[t],... ,bn[t]) ", H, = H,G, and
(mp + vp» — 1) is a Toeplitz matrix with first line given

whereb][t]
Gp,:1p X
by

(gp (0], 9p[vw —1] :01><(7—p71)) .

Recall from equation (3) in [1] thag, [-] denotes the correlative
filter associated with thgth user. In (3),
ap[t]=(ap[t],...,

L, = 7 + 7 — 1, where the scalar signal, [t] denotes the
(unfiltered) i.i.d. information symAboI sequence emitted byjitte
source. Withz[t] as in (3) andR. as in (1), we have, =

vec (ﬁm> = (IdH ® 7{[2]> 0, Where

ap [t — Ly — 1])T

o= A [ GM oo o Gt-deem) ]

But, 8]t — 7] = Z[r]at], for0 < 7 < d,

alt] = SpIx (ault],. .. ap[t], bilt], ... ,by[t]),
L =max{Ly,...,Lp}, and
I[r] = diag[Z.[7], Zy[7]]
T.[r] = diag[lrr,,04d—L,-7s -+ IrLp,L4d—Lp—7]
Iy[7] IN®I; 1 L4d—1-7-

Thus,?e = M#, WwhereM = (Idﬂ ® 7{[2]) T

I=[ (Z0]eI0)" T ezo)” ],

andia = =Y ;_, a[t] ® aft]. Applying Lemma 2 toa[] ~
Z 1% (), wherek = (11p,311xn) ' (due to our assumptions



of P binary sources and i.i.d. Gaussian entries it]), and by the
Delta method [5], we obtaiy/T (s — 7) > A (0, ), where
T2 =Vec(Rs), Bo = MEpH4 (k)M T,

Mapping ®:. We define®, as the mapping

(fzw [],... ,ﬁm[d]) ! (X,W,fzmu],... ,ﬁm[d]>,

whereX = (5\1, .
7, andW = [w,
and respective eigenvectors Bf[0]. Let X = (Aq,...
andW = [w; -+ ,wum

N “ “
,/\M> M =7114---+7p, Ai > Ajfori <
.-+ wyy ], denote theM biggest eigenvalues
)"
] denote the counterparts & W in

wheref = ve(F'). By the chain rule, the derivative é?[r] with
respect to\ at

(A, W, BJ[1],...,B[d]) = ® (R[0],... ,Rz[d]) (5)

is given by

95Blr] = (FONCI]" @ L + L @ F(NCIr]) G(N),
whereC[r] = W' R,[r ]W Using the same strategy, i.e., hold-
ing the pairs\, R [ ]and)\ Wflxed and applying standard cal-

culus rules, we obtain the derlvatlvesBI[r] with respect oW
andR, [7], at the point (5), respectively:

R-[0], and assume (for simplicity) thay > \;, fori < j, i.e., D _ T T

the M biggest eigenvalues d®.[0] are distinct. Then, the func- Ow Bll (F(A)W Rl ® F(A)> Ko+
tions \; (-) andw; (-) which extract theth biggest eigenvalue of F(A) @ FAOW ' R,[7]

X and associated eigenvector, respectively, are differentiable in a . T\ [2

neighborhood oR..[0], fori = 1,... , M [6]; the derivatives at Og, Bl = (F()\)W ) :

R [0] are given by

w?@wi
w] @ (MiIn — Ra[0])".

Xo=
w; =
Using these results we can write the derivativabafat R, [0] as
(WRW)" 0
wi! ® (MIy — Re[0])f 0
b, = : ;
wi ® Ay — R0)' 0
0 IdN2

Remark that, with the definition X andW as above, the matrix

~

G=Ww (fx - a2IN)1/2 , 4)

whereA = diag [5\1, .
in equation (6) of [1].

, S\M] , corresponds to the estimate@f

Mapping ®.. We let®, be the mapping defined by

(X,v’?,ﬁm[u,... ,ﬁm[d]) 22 (X,v’t?,ﬁu],... ,E[d]),
where B[r] = G'R. [T ]@‘TT corresponds to the estimate of
[ ](7) of [1]; 1§[ ]depends O\, WandRm[ ], asB[r] =
FOW ' Rm[] F(X), F(A )—dlag[ (A1), -+, g(Aar)] and

the functiong(z) = 1/1/(xz — *). The derivative ofF at X is

easily seen to be given by
G(\) = F = (In R Iy) diag[g(A1), - ., §(An)],
1

whereg(z) = —3% (z — 02)73/2. On the other hand, holding
‘/"\/,ﬁm[T] fixed, and definingC[r] = VAVTIA%E[O]W, we can
compute the derivative dB[r] with respect taF":

dB[r] = dFC[7|F + FC[r|dF

thus, lettingb[r] = vec (E[T]) , we have

db[r] = (FC[T]T ® I+ Tu ® FC[T]) df,

From all these considerations, the derivativebefat (5) is

Iy 0 0
0 Inum 0
&, | 9Bl 9xBll] el ®d5 Bl ,
95Bld] 8Bl e] ® 05, Bld)

wheree; denotes théth column ofI .

Mapping ®3. The mapping®; performs the operation
(X,va,B[l],... ,B[d]) 3 (X,ﬁf,ﬁ) :

whereU corresponds to the estimate of the matibat the end of

step 2 of the CFgalgorithm in [1]. Thus, i = [ﬁl ﬁp],

the submatri)ﬁp : M x 7 is the non-zero solution of the homo-
geneous linear system in the unknwodn: M x 7,

B[1]X — XA, [1] =0
B[1"x -x4,[1]" = 0
Bld)X — XA, [d] ~ 0
BldTX -XA,[d" = 0

scaled to norm/7,, see [1]; A, [r] was defined in equation (4)
of [1], and depends solely on the correlative filigf-]. It is s-

traighforward to see thak, = vec(ﬁp> can be obtained as

u, = \/7p0,, Wherev, denotes the eigenvector associated with
: - AT A

the smallest eigenvalue &f, = T', T',, where

T,=[ T,07 T2 - Td" ],
and
~ (1)
i’p[T] = |:Tp2 [T]:|
T, [7]
T, = I,Bil- Al Iy
1,)[r] = I,®Blr" - A,[r eIy



Let

()\,W,B[l] y e 7B[d]) = (QZ o Ql) (RE[OL s 7Rm[d])7

(6
and definer'\"[r], TS [r], T [7], T», Sp, v, as the direct coun-
terparts otf“z(,l) [7], IA"I(,Z) [7], Tp[r], Tp, Sp, by, i.€., the same def-

initions but without the(-). It can be seen [1, 2] that the smallest
eigenvalue ofS,, is 0 with multiplicity 1. Thus, from [6] again,
v, (-) is a differentiable function in a neighborhood 8§ and, at
the point (6), we have

s By =v, ®(=S,)"

p

Also, trivially
o T T
3,}? Sy, = (Tp ® IMT,,> Koanrp parp + Inir, @ T .

Lettingﬁ . ,ﬁ[d]) we have, after some calculus,

2d

|:Z (ei ® IMT,,)T ® (ei ®IMTP)

i=1

95T, = I,®V,

. . T 17
wheree; is theith column ofI»,;, V = [’P (PK ) ] )

andP = [(In ® Ku,r,)vec(I-, ® Ins)] ® In. All these
partial results can be collected by the chain rule to yield the deriva-
tive of u,, with respect taB,

V, = aﬁﬁp = \/ﬁaﬁTp . 3,%?51, . ag.pﬁp.

Finally, the derivative of the mappind; at (6) is

Iy 0 0
0 Iny 0
'i)?): 0 0 Vi
0 0 Vp

Mapping ®4. The mapping®, is defined by
(W.0)% &
Here, H = GUR,[0] '/?, where R,[0] depends only on the

correlative fiters, see [1f¥ was defined in (4). The derivatives of
H at the point

AW, U)=(®30P20®1)(R2[0],... ,R[d]) (7)
are easily obtained as
dsH = (Iy®Iy)dagh(h),...,h(Aw)]
85H = R.0]V’U @0
dH = R,0]7V*oU0OW),
whereh(z) = 1/(2vz — 02), andO(X) = diag[i, ... , Am] —

oI ,r. The derivative of®, at (7) is

b= 0;H 0zH 0,H |.

4. COMPUTER SIMULATIONS

Numerical experiments were conducted to validate the theoreti-
cal expressions. Respecting the notation in [1], we considered
a scenario withP? = 2 binary users. The entries of a MIMO
channel matrixd : N x (11 + ) (N = 4,71 = 2,12 = 1)

were randomly generated as i.i.d. samples from a zero-mean unit-
power Gaussian distribution. User 1 uses no correlative filter, i.e.,
~v1 = 1 (g1[0] = 1); user 2 uses a correlative filter with = 2

taps g2[0] = 1/v/2,92[1] = —1/+/2); n]t] is taken as a zero-
mean spatio-temporal white Gaussian noise with variaficdhe

SNR = tr (H"H) /No* was fixed atl0dB. The number of
samplesl’ was varied betweeffi,in = 200 andTimax = 1000 in

steps ofT.p, = 50 samples. For each, K = 1000 independent
Monte-Carlo runs were simulated; for théh run, CFG alggrithm
producedﬁgc) and the square-errmﬁl“) = Hﬁgﬁ) — ﬁH was
recorded. The mean of thed& = 1000 errors is denoted by,

and is the estimate of MSE of the CFEMIMO channel estimate,

for T'samples. Figure 1 shows the results obtained numerically for
ér (dashed line) against the asymptotic theoretical expressions de-
rived in section 3 (solid line). The curves show a good agreement.

0.

Mean-Square Error (MSE)

0.01
200

; ; ; ; ;
500 600 700 800 900
T (number of samples)

L L
300 400 1000

Fig. 1. MSE for the MIMO channel estimate: theoretical (solid)
and observed (dashed)

5. REFERENCES

[1] J. Xavier and V. Barroso, “Correlative coding approach
for blind identification of MIMO systems,” inProc. 2nd
|EEE Signal Processing Workshop on Signal Processing Ad-
vances in Wireless Communications (SPAWC’ 99), pp. 263—
266, May 1999.

[2] J. Xavier, V. Barroso and J. M. F. Moura, “Closed-form blind
identification of MIMO channels by correlative coding: an
isometry fitting to second order statistics,” submittetEBE
Transactions on Sgnal Processing.

[3] W. Fuller,Introduction to Statistical Time Series, John Wiley
& Sons.

[4] T. W. Anderson,The Statistical Analysisof Time Series, John

Wiley & Sons.

P. Sen and J. Singdrarge Sample Methods in Statistics: An

Introduction with Applications, Chapman & Hall.

[6] J. Magnus and H. Neudeckd¥atrix Differential Calculus
with Applications to Satistics and Econometrics, Wiley Se-
ries in Probability and Statistics.

(5]



