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ABSTRACT

The CFC2 algorithm is a recently introduced analytical solution
for the blind MIMO channel identification problem, provided a
certain spectral diversity holds for the stochastic inputs of the MI-
MO system. Here, we develop a theoretical study to derive the
asymptotic performance of the CFC2 algorithm, in terms of mean-
square error. Asymptotic normality of the MIMO channel esti-
mate is proved, and the asymptotic error covariance matrix de-
rived. Computer simulation results are included to validate the
theoretical expressions.

1. PROBLEM STATEMENT

The closed-form correlative coding (hereafter, CFC2) was intro-
duced in [1, 2]. It provides an analytical solution for the blind
MIMO channel identification problem, under an appropriate pre-
filtering correlative framework which does not increase the trans-
mitted power nor decreases the original data rate. Also, only2nd
order statistics are used. We refer the reader to [1, 2] for details.
Here, we analyse the performance of the CFC2 algorithm, in order
to assess the asymptotic mean-square error (MSE) of the MIMO
channel estimate. For simplicity, we consider here the case of bi-
nary sources and zero-mean spatio-temporal white Gaussian noise.
The extension to the general case follows easily. The setT in (5)
of [1] is given here byT = f0; 1; : : : ; dg for some integerd.

Notation. We maintain the notation in [1]. In addition, we let
Im;n;p = [0n�mIn0n�p], Sp;n;i = Ip 
 I0;n;i, T p;n;i =
Ip 
 Ii;n;0 and1m�n is them� n matrix with all1’s. The sym-
bol� denotes the Khatri-Rao product: forA : m� n;B : p� n,
A � B = [a1 
 b1 � � �an 
 bn] : mp � n, whereai; bi de-
note theith column ofA, B, respectively. A[k] is the k-fold
Kronecker product ofA: A[k] = A 
 � � � 
 A (k times). For
A : m � n, vec(A) ; tr fAg ; kAk represent the vectorization
operator, the trace and the Frobenius norm ofA, respectively. Al-
so,in = vec(In) andKn;m is the commutation matrix [6]: for
A : n � m, Kn;mvec(A) = vec

�
A>
�
. For random vectors

x;y, E fxg is the statistical expectation operator,corr fxg =

E

�
xx>

	
andcov fx;yg = E

�
xy>

	 � E fxg E�y>	;
d!;?

stand for convergence in distribution and statistical independency,
respectively, andN (�;�) is the Gaussian distribution with mean
� and covariance�. Random matrices are viewed as random vec-
tors through the vec(�) operator. For matrix-to-matrix differen-
tiable mappingsY = F (X),Y : m�n,X : k� l, _F : mn�kl
denotes the usual derivative by interpreting bothY andX as vec-
tors, through vec(�).

2. PERFORMANCE ANALYSIS: OUTLINE

We view the CFC2 algorithm as a differentiable mapping� which
maps the set of sample correlation matrices

bRx � �bRx [0] ; bRx [1] ; : : : ; bRx [d]� (1)

into the corresponding MIMO channel estimatecH: cH = �

�bRx�.

Keep in mind that

bRx [� ] =
1

T

TX
t=1

x [t]x [t� � ]>

denote a sequence of random matrices indexed byT (the number
of observed data samples), although this dependency is not ex-
plicited here (to avoid cumbersome notation). The same applies
to the remaning random variables (bRx;cH, etc). Using the con-
cept ofm-dependent sequences [3], we start by establishing the
asymptotic normality ofbRx:

p
T
�bRx �Rx� d!N (0;�0) ; (2)

for a certain covariance matrix�0. Here,

Rx � (Rx[0];Rx[1]; : : : ;Rx[d])

denotes the expected value ofbRx. By the Delta method [5], we

have
p
T
�cH �H

�
d! N (0;�), � = _� (Rx)�0

_� (Rx)
>.

To obtain the derivative of the mapping�, we interpret� as the
composition ofn = 4 (simpler) differentiable mappings,� =
�4 Æ �3 Æ �2 Æ �1, each�i representing an intermediate step
of the CFC2 algorithm; _� is obtained by the chain rule:_� =
_�4 � _�3 � _�2 � _�1. In the following, we fill in the details of this

outline.

3. PERFORMANCE ANALYSIS: DETAILS

First, we prove the asymptotic normality of the sample statisticsbRx, and obtain the associated asymptotic covariance matrix�0

in (2). Then, we focus on each of the differentiable mappings�i,
i = 1; : : : ; n, and obtain_�i.

Asymptotic normality of bRx. We say that a random variable� �
A(�) if E f�g = 0, E

�
�2
	
= 1, E

�
�3
	
= 0 andE

�
�4
	
= �.

Also,� = (�1; �2; : : : ; �n)
> � An (�) if �i ? �j , for i 6= j,



and�i � A(�). Finally,� =
�
�>1 ;�

>
2 ; : : : ;�

>
p

�> � An
p (�),

where� = (�1; �2; : : : ; �p)
> if �i ? �j , for i 6= j, and�i �

An (�i). We shall need lemma 1 concerning the second and fourth
moments of the distributionAn

p (�). The proof is omitted due to
paper length constraints.

Lemma 1. For� � An
p (�), E f�
�g = P n

p (ip 
 in), where
P n

p = Ip 
Kp;n 
 In. Also, corr f�
�g = P n
pCP

n>
p ,

where

C = Ip2n2 + ipi
>
p 
 ini>n +Kp;p 
Kn;n+

diag
�
(�1 � 3)Ipn2 ; (�2 � 3)Ipn2 ; : : : ; (�p � 3)Ipn2

�
�

For further reference, we let�np = E f�
�g andCnp (k) =
corr f�
�g, for� � An

p (�). For a scalar signalf�[t] : t 2 Zg
and given lengthn, we define the stacking operator

Sn (�[t]) = (�[t]; �[t� 1]; : : : ; �[t� (n� 1)])> :

Correspondingly, forp signalsf�i[t] : t 2 Zgand givenn, we let

Snp (�1[t]; : : : ; �p[t]) =
�
Sn(�1[t])

>; : : : ;Sn(�p[t])>
�>

:

We say that the random multivariate time series�[t] has the dis-
tribution Zn

p (�), for � = (�1; �2; : : : ; �p)
>, written �[�] �

Zn
p (�), if �[t] = Snp (�1[t]; : : : ; �p[t]), with �i[s] ? �j [t], for

i 6= j or s 6= t, and�i[t] � A(�i), for all t.

Lemma 2. Let�[�] � Zn
p (�). We have

p
T

 
1

T

TX
t=1

� [t]
� [t]� �np
!

d!N �0;�n
p (�)

�
;

where

�
n
p (�) =K0 + 2

n�1X
l=1

Kl � (2n� 1)�np�
n>
p ;

withKl = S
[2]
p;n;l C

n+l
p (�)T

[2]>
p;n;l �

Proof. By definition, there existp mutually independent random
signals�i[t], �i[s] ? �i[t], for s 6= t, and�i[t] � A(�i), such
that�[t] = Snp (�1[t]; : : : ; �p[t]). Within the context of this proof
we let�k[t] = Skp (�1[t]; : : : ; �p[t]); thus,�[t] = �n[t]. Let
� [t] = uT (�[t] 
�[t]), for arbitrary (fixed)u. From the given
assumptions, it is clear that�[t] is a stationary(n� 1)-dependent
sequence [3]. Thus,

p
T

 
1

T

TX
t=1

�[t]� �

!
d!N (0; �2);

� = E f�[t]g, �2 = �0+2
Pn�1

l=1 �l, and�l = cov f�[t]; �[t� l]g,
for l = 0; 1; : : : ; n � 1 [4]. Since�[t] � An

p (�), we have
� = �>�np . Using the identities

�[t] = Sp;n;l�
n+l[t] �[t� l] = T p;n;l�

n+l[t];

we may write

�[t]
�[t] = S
[2]
p;n;l

�
�
n+l[t]
�n+l[t]

�
�[t� l]
�[t� l] = T

[2]
p;n;l

�
�
n+l[t]
�n+l[t]

�
:

Thus,

E f�[t]�[t� l]g
= u

>
S
[2]
n;p;lcorr

n
�
n+l[t]
�n+l[t]

o
T

[2]>
n;p;lu

= u
>
Klu;

for l = 0; 1; : : : ; n� 1. Finally

�2 = E

�
�[t]2

	
+ 2

n�1X
l=1

E

n
�[t]�[t� l]>

o
� (2n� 1)�2

= u
>
�
n
p (�)u:

Sinceu was chosen arbitrarily, the Cram´er-Wold device [5] con-
cludes the proof�

Rewrite the data model of equation (2) in [1] as

x [t] =
hfH1

fH2 � � �fHP �IN
i

| {z }
H

26664
a1 [t]

...
aP [t]
b [t]

37775
| {z }

�[t]

; (3)

whereb[t] = n[t]=� = (b1[t]; : : : ; bN [t])>, fHp = HpGp and
Gp : �p � (�p + 
p � 1) is a Toeplitz matrix with first line given
by �

gp [0] ; : : : ; gp [
p � 1] ;01�(�p�1)
�
:

Recall from equation (3) in [1] thatgp [�] denotes the correlative
filter associated with thepth user. In (3),

ap [t] = (ap [t] ; : : : ; ap [t� Lp � 1])> ;

Lp � �p + 
p � 1, where the scalar signalap [t] denotes the
(unfiltered) i.i.d. information symbol sequence emitted by thepth
source. Withx[t] as in (3) andbRx as in (1), we havêrx =

vec
�bRx� =

�
Id+1 
H[2]

�
r̂�, where

r̂� =
1

T

TX
t=1

�
(�[t]
 �[t])> � � � (�[t� d]
 �[t])> �>

:

But,�[t� � ] = I[� ]�[t], for 0 � � � d,

�[t] = SL+dP+N (a1[t]; : : : ; aP [t]; b1[t]; : : : ; bN [t]) ;

L � max fL1; : : : ; LP g, and

I[� ] = diag[Ia[� ];Ib[� ] ]

Ia[� ] = diag[I�;L1;L+d�L1�� ; : : : ; I�;LP ;L+d�LP�� ]

Ib[� ] = IN 
 I�;1;L+d�1�� :

Thus,r̂x =Mr̂�, whereM =
�
Id+1 
H[2]

�
I,

I =
�
(I[0] 
 I[0])> � � � (I[d]
 I[0])> �>

;

and r̂� = 1
T

PT
t=1�[t] 
 �[t]. Applying Lemma 2 to�[�] �

ZL+d
P+N (�), where� = (11�P ; 311�N )> (due to our assumptions



of P binary sources and i.i.d. Gaussian entries inn [t]), and by the

Delta method [5], we obtain
p
T (brx � rx) d!N (0;�0), where

rx = vec(Rx),�0 =M�
L+d
P+N(�)M>.

Mapping�1. We define�1 as the mapping�bRx [0] ; : : : ; bRx[d]� �17!
�b�;cW ; bRx[1]; : : : ; bRx[d]� ;

whereb� =
�
�̂1; : : : ; �̂M

�>
,M = �1+� � �+�P , �̂i � �̂j for i <

j, andcW = [ bw1 � � � bwM ], denote theM biggest eigenvalues
and respective eigenvectors ofbRx[0]. Let � = (�1; : : : ; �M)>

andW = [w1 � � � ;wM ] denote the counterparts ofb�;cW in
Rx[0], and assume (for simplicity) that�i > �j , for i < j, i.e.,
theM biggest eigenvalues ofRx[0] are distinct. Then, the func-
tions�i(�) andwi(�) which extract theith biggest eigenvalue of
X and associated eigenvector, respectively, are differentiable in a
neighborhood ofRx[0], for i = 1; : : : ;M [6]; the derivatives at
Rx[0] are given by

_�i = w
>
i 
wi

_wi = w
>
i 
 (�iIN �Rx[0])y :

Using these results we can write the derivative of�1 atRx [0] as

_�1 =

2666664
(W �W )> 0

w>1 
 (�1IN �Rx[0])y 0

...
...

w>M 
 (�MIN �Rx[0])y 0

0 IdN2

3777775 :

Remark that, with the definition ofb� andcW as above, the matrix

bG = cW �b�� �2IN
�1=2

; (4)

whereb� = diag
h
�̂1; : : : ; �̂M

i
, corresponds to the estimate ofG

in equation (6) of [1].

Mapping�2. We let�2 be the mapping defined by�b�;cW ; bRx[1]; : : : ; bRx[d]� �2!
�b�;cW ; bB [1] ; : : : ; bB [d]

�
;

where bB [� ] = bGy bRx [� ] bGy>, corresponds to the estimate of
B [� ] (7) of [1]; bB [� ] depends onb�, cW and bRx[� ], as bB [� ] =

F (b�)cW> bRx[� ]cWF (b�),F (�) � diag[g(�1); : : : ; g(�M)] and
the functiong(x) = 1=

p
(x � �2). The derivative ofF at� is

easily seen to be given by

G(�) � _F = (IM � IM ) diag[ _g(�1); : : : ; _g(�M )] ;

where _g(x) = � 1
2

�
x� �2

��3=2
. On the other hand, holdingcW ; bRx[� ] fixed, and definingC[� ] = cW> bRx[0]cW , we can

compute the derivative ofbB[� ] with respect toF :

d bB[� ] = dFC[� ]F + FC[� ]dF ;

thus, lettingbb[� ] = vec
� bB[� ]

�
, we have

dbb[� ] = �FC[� ]> 
 IM + IM 
 FC[� ]
�
df ;

wheref = vec(F ). By the chain rule, the derivative ofbB[� ] with
respect tob� at

(�;W ;B[1]; : : : ;B[d]) = �1 (Rx[0]; : : : ;Rx[d]) (5)

is given by

@
b�
bB[� ] =

�
F (�)C[� ]> 
 IM + IM 
 F (�)C[� ]

�
G(�);

whereC[� ] =W>Rx[� ]W . Using the same strategy, i.e., hold-
ing the pairsb�; bRx[� ] andb�;cW fixed, and applying standard cal-
culus rules, we obtain the derivatives ofbB[� ] with respect tocW
and bRx[� ], at the point (5), respectively:

@
cW
bB[� ] =

�
F (�)W>

Rx[� ]
> 
 F (�)

�
KN;M +

F (�)
 F (�)W>
Rx[� ]

@
bRx[� ]

bB[� ] =
�
F (�)W>

�[2]
:

From all these considerations, the derivative of�2 at (5) is

_�2 =

26666664
IM 0 0

0 INM 0

@
b�
bB[1] @

cW
bB[1] e>1 
 @ bRx[1] bB[1]

...
...

...
@
b�
bB[d] @

cW
bB[d] e>d 
 @ bRx[d] bB[d]

37777775 ;

whereei denotes theith column ofId.

Mapping�3. The mapping�3 performs the operation�b�;cW ; bB [1] ; : : : ; bB [d]
�
�3!
�b�;cW ; bU� ;

wherebU corresponds to the estimate of the matrixU at the end of

step 2 of the CFC2 algorithm in [1]. Thus, inbU =
h bU 1 � � � bUP

i
,

the submatrixbUp : M � �p is the non-zero solution of the homo-
geneous linear system in the unknwownX : M � �p8>>>>>><>>>>>>:

bB[1]X �XAp [1] = 0bB[1]>X �XAp [1]
> = 0

...bB[d]X �XAp [d] = 0bB[d]>X �XAp [d]
> = 0

;

scaled to norm
p
�p, see [1];Ap [� ] was defined in equation (4)

of [1], and depends solely on the correlative filtergp[�]. It is s-

traighforward to see thatbup = vec
� bUp

�
can be obtained asbup =

p
�pbvp, wherebvp denotes the eigenvector associated with

the smallest eigenvalue ofbSp = bT>p bT p, where

bT p =
� bT p[1]

> bT p[2]
> � � � bT p[d]

>
�>

;

and

bT p[� ] =

" bT (1)

p [� ]bT (2)

p [� ]

#
bT (1)

p [� ] = I�p 
 bB[� ]�Ap [� ]
> 
 IMbT (2)

p [� ] = I�p 
 bB[� ]> �Ap [� ]
 IM :



Let

(�;W ;B [1] ; : : : ;B [d]) = (�2 Æ�1) (Rx[0]; : : : ;Rx[d]) ;
(6)

and defineT (1)
p [� ];T

(2)
p [� ];T p[� ];T p;Sp;vp as the direct coun-

terparts ofbT (1)

p [� ], bT (2)

p [� ], bT p[� ], bT p; bSp; bvp, i.e., the same def-

initions but without thec(�). It can be seen [1, 2] that the smallest
eigenvalue ofSp is 0 with multiplicity 1. Thus, from [6] again,
vp(�) is a differentiable function in a neighborhood ofSp and, at
the point (6), we have

@
bSp
bvp = v

>
p 
 (�Sp)y:

Also, trivially

@
bTp

bSp =
�
T
>
p 
 IM�p

�
K2dM�p;M�p + IM�p 
 T>p :

Letting bB =
�bB[1]; : : : ; bB[d]

�
we have, after some calculus,

@
bB
bT p =

"
2dX
i=1

�
ei 
 IM�p

�> 
 �ei 
 IM�p

�#
Id 
r;

whereei is theith column ofI2d,r =
h
P
> (PKM;M )>

i>
,

andP =
��
IM 
KM;�p

�
vec
�
I�p 
 IM

�� 
 IM . All these
partial results can be collected by the chain rule to yield the deriva-
tive of bup with respect tobB,

rp � @ bBbup =
p
�p @ bB

bT p � @ bTp bSp � @ bSpbvp:
Finally, the derivative of the mapping�3 at (6) is

_�3 =

2666664
IM 0 0

0 INM 0

0 0 r1

...
...

...
0 0 rP

3777775 :

Mapping�4. The mapping�4 is defined by�b�;cW ; bU� �4! cH:

Here,cH = bG bURs[0]�1=2, whereRs[0] depends only on the
correlative fiters, see [1];bG was defined in (4). The derivatives ofcH at the point

(�;W ;U) = (�3 Æ�2 Æ�1) (Rx[0]; : : : ;Rx[d]) (7)

are easily obtained as

@
b�
cH = (IM � IM) diag[h(�1); : : : ; h(�M)]

@
cW
cH = Rs[0]

�1=2
U
> 
O (�)

@
bU
cH = Rs[0]

�1=2 
UO(�);

whereh(x) = 1=(2
p
x� �2), andO(�) = diag[�1; : : : ; �m]�

�2IM . The derivative of�4 at (7) is

_�4 =
h
@
b�
cH @

cW
cH @

bU
cH i

:

4. COMPUTER SIMULATIONS

Numerical experiments were conducted to validate the theoreti-
cal expressions. Respecting the notation in [1], we considered
a scenario withP = 2 binary users. The entries of a MIMO
channel matrixH : N � (�1 + �2) (N = 4; �1 = 2; �2 = 1)
were randomly generated as i.i.d. samples from a zero-mean unit-
power Gaussian distribution. User 1 uses no correlative filter, i.e.,

1 = 1 (g1[0] = 1); user 2 uses a correlative filter with
2 = 2

taps (g2[0] = 1=
p
2; g2[1] = �1=

p
2); n[t] is taken as a zero-

mean spatio-temporal white Gaussian noise with variance�2. The
SNR = tr

�
H>H

�
=N�2 was fixed at10 dB. The number of

samplesT was varied betweenTmin = 200 andTmax = 1000 in
steps ofTstep = 50 samples. For eachT , K = 1000 independent
Monte-Carlo runs were simulated; for thekth run, CFC2 algorithm

producedcH(k)

T and the square-error�(k)T =



cH(k)

T �cH


2 was

recorded. The mean of theseK = 1000 errors is denoted by��T
and is the estimate of MSE of the CFC2 ’s MIMO channel estimate,
for T samples. Figure 1 shows the results obtained numerically for
��T (dashed line) against the asymptotic theoretical expressions de-
rived in section 3 (solid line). The curves show a good agreement.
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Fig. 1. MSE for the MIMO channel estimate: theoretical (solid)
and observed (dashed)
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