
A NEW CRITICALLY SAMPLED NON-UNIFORM
SUBBAND ADAPTIVE STRUCTURE

Renata T. B. Vasconcellos
�

Mariane R. Petraglia
�

renatav@lps.ufrj.br mariane@lps.ufrj.br

�
FederalUniversityof Rio deJaneiro

COPPE- Programof ElectricalEngineering
CP68564,CEP21945-970
Rio deJaneiro,RJ- Brazil

Rogerio G. Alves
�

alves@ece.concordia.ca

�
ConcordiaUniversity

Dept.ElectricalandComputerEng.
GM-905- H3G-1M8

Montreal,Quebec- Canada

ABSTRACT

In thispaper, anon-uniformsubbandadaptive structurewith criti-
cal samplingof thesubbandsignalsis derived. With theassump-
tion of non-overlappingbetweennon-adjacentanalysisfilters, the
resultingstructureyieldsexactmodelingof anarbitraryFIR sys-
tem. An LMS-type adaptationalgorithm, which minimizesthe
sumof the subbandsquared-errors,is obtainedfor updatingthe
coefficientsof theproposedstructure,resultingin significantcon-
vergencerate improvementfor coloredinput signalswhencom-
paredto thefullbandLMS algorithm.Computersimulationsillus-
tratetheconvergencebehavior of the proposednon-uniformsub-
bandadaptivefilter in theapplicationsof systemidentificationand
acousticechocancellation.

1. INTRODUCTION

Adaptive filtering in subbandshasbeenextensively investigated
in orderto reducethecomputationalcomplexity andincreasethe
convergencerateof high-orderadaptive FIR filters. It hasbeen
mostlyappliedtoechocancellersfor audioteleconferencing,where
adaptive FIR filters of very largelengths(1000-4000coefficients)
areused.Subbandadaptive structureswith critical sampling[1]-
[3] andwith noncriticalsampling[4]-[6] have beenproposedin
the literature. In order to avoid aliasingproblems,the sampling
rateof thedecomposedsignalsis reducedby a factorsmallerthan
the numberof subbandsin the oversampledapproach[4], while
adaptivecross-filtersbetweenadjacentsubbandsareneededin the
critical sampledapproach[1]. In a recentlyproposedcritically
sampledsubbandstructure[2], the cross-filtersare identical to
the direct-pathadaptive filters and, therefore,do not needto be
adaptedseparately, resultingin an improved adaptationconver-
genceand a reducedcomputationalcomplexity when compared
to othercritically sampledsubbandstructures[3].

Most of the subbandadaptive filters employ uniform filter-
banks. A recentwork [6], however, hasshown that non-uniform
subbandadaptive filters might outperformtheuniform ones.The
non-uniformsubbandfilter presentedin [6] usedoversampledsub-
bandsignals. In this paper, we develop a non-uniformsubband
structurewith critical samplingof thesubbandsignals.Suchadap-
tive subbandstructureis a generalizationof theuniform subband
filter presentedin [2],[3]. Due to the non-uniformfrequency de-
compositionof the input signal, the distinct adaptive subfilters
work at differentrates,which leadsto someparticularitiesin the
adaptationalgorithm.

2. THE CRITICALLY SAMPLED NON-UNIFORM
SUBBAND ADAPTIVE STRUCTURE

The non-uniformsubbandadaptive filter with critical sampling
proposedin this paperis derived from anadaptive subbandstruc-
turewhich employs ananalysisfilterbankto decomposetheinput
signalandsparseadaptive filters in the subbands[3]. It is illus-
tratedin Fig. 1, where � ���	� is the input signal, 
�� ��
�� are the
analysisfiltersof anM-channelfilterbank, ��� ��
���� arethesparse
adaptivesubfilters,� ���	� is thedesiredsignal, � ���	� is theerrorsig-
nalusedin theadaptationalgorithm,and � is thedelayintroduced
in theinput signalby thefilterbank. It hasbeenshown in [3] that
thestructureof Fig. 1 is ableof modelinganarbitraryFIR system,
with theintroductionof adelay � , by properlychoosingthefilter-
bank(perfector near-perfectreconstructionbank)andthenumber
of adaptive coefficients.
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Figure 1: Adaptive structureusing an analysisfilterbank and
sparsesubfilters.

Recently, in [7], thesubbandadaptivefilter of Fig. 1 wasgen-
eralized,suchthata non-uniformanalysisfilterbank(or adiscrete
wavelet) was usedto decomposethe input signal, resultingin a
structurewhich employs sparseadaptive subfilterswith different
lengthsand sparsityfactors. This non-uniformsubbandfilter is
illustratedin Fig. 2, wherewe consider, for simplicity, a three-
channelfilterbankimplementedby a two-level treestructure.The
equivalentanalysisfilters of thethree-channelfilterbankof Fig. 2
are
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Figure2: Non-uniformsubbandfilter usinga two-level treestruc-
tureanalysisfilterbankandsparseadaptive subfilters.
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where 
 � ��
�� and 
 � ��
�� representthe analysisfilters of a two-
channelperfect reconstructionfilterbank. The delay ��� in the
third bandis includedto compensatefor the smallerdelay into-
ducedin this bandby the filterbank. The generalizationof the
structureof Fig. 2 resultsin adaptivesubfilterswith differentspar-
sity factors,thatis, � � ��
��"!#� . Thelengthof suchsubfiltersshould
beat least[7] $ � �&%�')( �+* %-, ! ')( �+*/. � (2)

where
%

is theorderof theunknown systemand
% , ! is theorder

of the 0 -thsubfilter12� ��
�� of thecorrespondingsynthesisfilterbank.
For thethree-channelstructureof Fig. 2, thesynthesisfiltersare

1 � ��
���� 1 � ��
 � � 1 � ��
����
1 � ��
���� 1 � ��
 � � 1 � ��
����
1 � ��
���� 1 � ��
���� (3)

where 1 � ��
�� and 1 � ��
�� arethecorrespondingsynthesisfilters of
the two-channelmultiratesystemwith analysisfilters 
 � ��
�� and
 � ��
�� .

In the sparsesubbandadaptive structureof Fig. 2, the sam-
pling ratesof thesubbandsignalsarenot reduced.In orderto de-
rive a critically sampledsubbandstructure,a non-uniformperfect
reconstructionmultiratesystemis includedfollowing eachadap-
tive filter of the sparsesubbandfilter of Fig. 2, asillustratedfor
the 3 -th bandin Fig. 3. Consideringthat the analysisfilters are
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Figure3: Illustrationof the 3 -th bandof thestructureof Fig. 2 fol-
lowedby anon-uniformthree-channelperfect-reconstructionmul-
tiratesystem.

sufficiently selective,sothatit canbeassumedthattheir frequency
responsesdonotoverlapwith thoseof non-adjacentsubbands,and

usingthenobleidentity [8], we obtainthesimplifiedstructuresof
Fig. 4 for the threebandsof the non-uniformcritically sampled
subbandfilter. Thedelays� � , � � and ��4 in Fig. 4 areneededin
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Figure 4: Subbandsof the three-channelnon-uniformcritically
sampledstructure.

orderto matchthedelaysintroducedby thedifferentlengthsanal-
ysis filters. Consideringorthogonalfilterbankswith analysisand
synthesisfilters, 
 � ��
�� and 1 � ��
�� , of order

% � , with
% � �5% � ,

thedelaysof Fig. 4 aregivenby

� � � � � � % �76 % �8 �
(4)

��4 � � �8 � % � 6 % �9 : (5)

Combiningthethreebandsshown in Fig. 4, andconsidering
thesystemidentificationapplication,weobtainthecompletethree-
channelnon-uniformsubbandadaptive filter of Fig. 5. In this
figure, the filters 
;��< = ��
�� arerelatedto the analysisfilters 
;� ��
��
by


 ��< = ��
��>� 
 � ��
�� 
 = ��
���� (6)

andthedelays��? and �;@ appliedto thedecomposeddesiredsig-
nalsaregivenby

� ? � % �9 � (7)

� @ � � � * % �9 � % �8 6 % �9 : (8)

Theoverall input-outputdelayintroducedby thestructureof Fig.
5 is � � 8 % � .

3. ADAPTATION ALGORITHM

We now derive anLMS-typealgorithmfor updatingthesubfilters
coefficientsof theproposedcritically sampledstructure.For sim-
plicity, weconsiderhereonly thethree-channelcaseshown in Fig.
5. Thealgorithmderivationcanbeextendedin a straigthforward
mannerto otherfilter bankconfigurations.
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Figure5: Completesubbandadaptive structureconsideringtheidentificationsystemproblem.

The adaptationis performedat the lowest rate (one fourth
of the input rate for the three-channelstructure). DenotingasA ��< = ��BC� thedownsampledsignalattheoutputof thefilters 
���< = ��
��
(seeFig. 5), as D ��< = ��BC� thevectorcontainingthemostrecent

$ �
samplesof

A ��< = ��BC� , andas EF� ��BG� thevectorcontainingtheco-
efficientsof thesubfilter � � ��
�� at iteration

B
, andconsideringas

cost function the sumof the instantaneoussquared-errorsof the
first two subbandsandof the averageof the two samplesof the
squared-errorof thethird subband(which is working at twice the
adaptationrate),thatis,

H ��BG�>�JI �� ��BG� * I �� ��BC� * .8LK I �� � 8 B 6 . � * I �� � 8 BG�NMO� (9)

thegeneralform for theLMS-typeadaptationalgorithmthatmin-
imizes

H ��BC�
is givenby

P � ��B *&. ��� P � ��BC� *RQ ��S TU� < � ��BC�VI � ��BG�
* T � < � ��BG�VI � ��BG�NW�� (10)

P � ��B */. �+� P � ��BC� *XQ � S T � < � ��BC�VI � ��BC� * T � < � ��BC�VI � ��BC�
* .8 � TZY � < � � 8 B 6 . �VI � � 8 B 6 . �
* T Y � < � � 8 BC�VI � � 8 BG�[�NW\� (11)

P � ��B */. ��� P � ��BC� *LQ � S T � < � ��BC�VI � ��BC�
* .8 � T � < � � 8 B 6 . 6 � � �VI � � 8 B 6 . �
* T � < � � 8 B 6 � � �VI � � 8 BG�[�NW\� (12)

wherethevector T Y � < � containsthemostrecent
$ � evensamples

of thesignal
A � < � . In thelastequations,theerrorsignalsaregiven

byI � ��BG�+�^] � ��B 6 � ? � 6�S TZ_� < � ��BG� P � ��BG� * TZ_� < � ��BC� P � ��BC�NW��
(13)

I � ��BC�`�R] � ��B 6 � ? � 6�S T/_� < � ��BC� P � ��BC� * TU_ � < � ��BC� P � ��BC�
* TZ_ � < � � 8 B 6 � � � P � ��B 6 � � �NW�� (14)

I � ��B�ab�`�R] � ��Bca 6 � @ � 6�S T Y[d� < � ��B�ab� P � ��BC�
* TZ_� < � ��B a 6 � � � P � ��B 6 � � �NW�� (15)

for
B a � 8 B

and
B a � 8 B 6 . . In orderto improve the con-

vergencerateof the adaptationalgorithmfor colorednoiseinput
signals,thestep-sizesaremadeinverselyproportionalto thesum
of thepowersof thesignalsinvolvedin theadaptationof thecoef-
ficients,thatis:

Q	� � Qe � < � * e � < � �
Q � � Qe � < � * e � < � * e � < � �
Q � � Qe � < � * e � < � � (16)

where
e ��< = is thepower estimateof thesignal

A ��< = .
4. SIMULATION RESULTS

Computersimulationsarepresentedin orderto illustratethecon-
vergencebehavior of thenon-uniformsubbandadaptive filter pro-
posedin this paper. In the first experiment,the identificationof
a length

%f� 9�ghg
FIR systemis considered.The input signal



wasa colorednoisesequencegeneratedby passinga white noise
sequenceby a first-orderIIR filter with its pole locatedat


/�g : i . The non-uniformsubbandfilter of Fig. 5 wasimplemented
by a two-level tree structure(as in Fig. 2) with near perfect-
reconstructionprototypefilters ( 
 � ��
�� and 
 � ��
�� ) of order jk.
[8] andadaptationstep-sizeQ � g : l ' $ � . Figure6 presentsthe
mean-squareerror (MSE) evolution for thenon-uniformsubband
structure(NUSB)andfor thefullbandLMS algorithm(LMS). We
canseefrom Fig. 6 that the non-uniformsubbandfilter hassig-
nificantly betterperformancethanthe fullbandLMS for colored-
noiseinput. The steady-stateMSE of the non-uniformsubband
structureis determinedby the stopbandattenuationof the analy-
sis filters, sinceit wasassumedthat therewasno overlapamong
non-adjacentsubbands.
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Figure6: Resultsfor thesystemidentificationsimulations.

Anotherexperimentwith the non-uniformsubbandadaptive
filter and with the fullband LMS algorithm was carriedout for
echocancellingin a teleconferenceroom. The microphoneand
loudspeaker signalswere sampledat m KHz. In order to imple-
menta length . 8 ghg impulseresponse,thenumberof coefficients
of the subfilterwere

$ � � $ � � j 8 j and
$ � �on 9 n

. To vi-
sualizethe improvementobtainedwith the non-uniformsubband
structure,the residualechowasdecomposedinto two subbands.
In the low frequency band,the LMS and the NUSB algorithms
hadthesameperformance.However, in thehigh frequency band,
theresidualechoof theNUSBwassignificantlysmaller, ascanbe
seenin Fig. 7.

5. CONCLUSIONS

In thispaper, wehavedevelopedanew critically sampledsubband
adaptive filter, which employs a non-uniformfilterbank(or a dis-
cretewavelet) to decomposethe input signal. The adaptationis
performedat the lowestsamplingrate,usingan LMS-type algo-
rithm. Simulationresultsin systemidentificationandechocan-
cellationapplicationswerepresented.In thesystemidentification
simulation,it wasshown that, besidesexactly modeling,signifi-
cantconvergenceimprovementcanbeachieved for coloredinput
signalswhencomparedto theconventionalLMS algorithm.In the
acousticechocancellationsimulation,thehigh frequency residual
echoof the proposednon-uniformsubbandstructurewassignifi-
cantlysmallerthanthatof thefullbandLMS algorithm.
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Figure7: Resultsfor theacousticechocancellingsimulations.
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