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ABSTRACT

In this paper, we present a new scheme for the acoustic mod-
eling of speech recognition applications requiring dynamic
vocabularies. It applies especially to the acoustic model-
ing of out-of-vocabulary words which need to be added to
a recognition lexicon based on the observation of a few
(say one or two) speech utterances of these words. Stan-
dard approaches to this problem derive a single pronuncia-
tion from each speech utterance by combining acoustic and
phone transition scores. In our scheme, multiple pronuncia-
tions are generated from each speech utterance of a word to
enroll by varying the relative weights assigned to the acous-
tic and phone transition models. In our experiments, the use
of these multiple baseforms dramatically outperforms the
standard approach with a relative decrease of the word error
rate ranging from 20% to 40% on all our test sets.

1. MOTIVATION

Speech recognition systems usually rely on a fixed lexi-
con where the pronunciations of the vocabulary words are
given by hand-crafted phonetic baseforms, i.e. sequences
of phones written by a phonetician. However, many ap-
plications require new words to be dynamically added to
the recognition vocabulary, or new pronunciations of in-
vocabulary words to be added to the lexicon. Hence the
need for techniques which can automatically derive pho-
netic baseforms. This occurs for example in dictation sys-
tems that allow personalized vocabularies, in name dialer
applications where the user enrolls the names he wants to
dial, and in any application where actual pronunciations dif-
fer from canonic pronunciations (like for non-native speak-
ers), so that the robustness of linguist-written pronuncia-
tions needs to be improved. In situations where the speech
recognition engine is embedded in a small device, there may
not be any interface media, such as a keyboard, to allow
the user to enter the spelling of the words he wants to add
to his/her personalized vocabulary [1]. And even if such
an interface were to be available, the spellings may not be

of very much help as these applications typically involve
words the pronunciation of which is highly unpredictable,
like proper names for example. In this context, it is difficult
to use a priori knowledge, such as letter-to-sound rules in a
reliable way. Consequently, the user is asked to utter once or
twice the words to add to his/her personalized vocabulary,
and phonetic baseforms for these words are derived from the
acoustic evidence provided by the user’s utterances. These
approaches ( [2], [3], [4], [5]) usually rely on the combined
use of: (i) an existing set of speaker-independent acoustic
models of subphone units, and (ii) a model of transition be-
tween these subphone units. The way to optimally combine
these models is an open issue as it is not known in advance
which of the models can most reliably describe the acoustic
evidence observed for each new word to enroll. For exam-
ple, when the enrolled words are proper names, the relia-
bility of the model of transition between the subphones is
questionable since proper names do not follow strict phono-
tactic rules. Current techniques of automatic baseform gen-
eration do not take into consideration the relative degree of
confidence that should be put in either component. The
scheme presented in this paper deviates from standard ap-
proaches in that: (i) the acoustic model and the transition
model which are combined to generate the baseforms are
assigned a weight, (ii) multiple baseforms are derived from
a single speech utterance by varying the relative weights of
the models. The basic idea behind this approach is twofold.
First, since we have to guess the pronunciation of the en-
rolled words from just one or two speech examples, we
may as well use multiple guesses to maximize the chance
of guessing right. Second, since we do not know a priori
how reliable each of the two models is relative to the other
model, we avoid arbitrarily favoring either one of the mod-
els by varying their relative weights when generating the
guesses. The distinct baseforms obtained from the speech
utterance of a word are added to the recognition lexicon as
pronunciation variants of that word. It has been extensively
investigated recently how, in standard recognition frame-
works, adding pronunciation variants to the canonic pro-
nunciations of a static lexicon can significantly improve the



recognition accuracy [7] [8]. We show that this applies also
in the context of dynamic vocabularies, where no canonic
pronunciations at all are available. On the other hand, as
multiple baseforms are added to the recognition lexicon, we
can expect the acoustic confusability between the entries of
the lexicon to increase with the risk of hurting the recogni-
tion accuracy. In this paper, we report on an extensive set
of speech recognition experiments showing the influence of
the number of automatically generated baseforms on the de-
coding accuracy. The structure of this paper is as follows. In
section 2 and 3, we describe our scheme to generate multi-
ple baseforms and build variable-size lexicons. In section 4,
we present speech recognition experiments comparing lexi-
cons of automatically generated baseforms on test data con-
sisting of either isolated or in-context words, and in both
quiet and noisy environments. Section 5 concludes on this
work.

2. GENERATION OF MULTIPLE BASEFORMS

In this section, we present a scheme to derive multiple base-
forms from acoustic evidence, where it is attempted to make
the best possible use of our a priori knowledge, where our
a priori knowledge comprises a set of speaker independent
acoustic models of subphone units and a statistical model of
transitions between subphone units®. In the standard way,
the problem of deriving a baseform from acoustic evidence
is usually stated as the problem of retrieving the most likely
string U* of T subphone units, given the string O of T
acoustic observations:

U* = argmaxlog P(U,O
gmaxlog U,0)
= argr?[%clogP(O | U) +1log P(U)

The string U* is retrieved with a Viterbi algorithm. The
conditional probability of the acoustic observations given
the string of subphone units is computed as:

t=T

PO|U) = [] plow |uw)

t=1

The conditional probability of each acoustic observation-
p(o | u;) is computed with the acoustic model - in our ex-
periments speaker independent mixtures of gaussians. The
probability of observing the string of subphone units U is
computed with the transition model assumed between the
subphones - in our experiments a bigram model:

t=T

PU) = P(U(l)) H p(u(t) |U(t—1))
t=2

1Each subphone unit corresponds to roughly one third of a phone.

The bigram model of subphone units is estimated off-line
by aligning a large dataset of speech with a known tran-
scription on the acoustic models of the subphone units. The
probabilities {p(u; | u;)} are computed from the observed
relative counts of the subphone models in the alignment (in
our experiments, no backoff is used to smooth the bigram
probabilities). Note that both the duration of the units and
the transition between the units are modeled.

The modification that we introduce to this baseline approach
is to compute the log-likelihood of a baseform as a weighted
sum of the log-scores of the acoustic model and of the tran-
sition model, with weights respectively of (1 — A) and A:

Uy = argr?gic(l —A)1ogP(O|U) + Alog P(U)

Each value of A defines a distinct log-likelihood function
wich reaches its maximum value for possibly distinct strings
of subphone units. The parameter A can be seen as reflecting
the confidence put into each model. In a context where it is
not known which of the two models can most relevantly ac-
count for the observations, the generation of multiple strings
Uy for various values of A allows to compensate for a pos-
sible mismatch.

3. BUILDING LEXICONSWITH MULTIPLE
BASEFORMS

In our experiments, we define a set of A values by scanning
an interval [A1; A2] (0 < A1 < A2 < 1), with a step of 0.1.
Each string Uy is converted into a phonetic baseform by
replacing the subphone units with their phone counterpart
and by merging together repeated phones. All the distinct
phonetic baseforms obtained from the speech utterance of
a word by scanning a set of values of \ are added as pro-
nunciation variants in the recognition lexicon. Each interval
[A1; A2] thus results in a specific recognition lexicon, hence
raising the question of how to select a priori the best per-
forming lexicon. We can expect that accumulating multi-
ple baseforms for each enrollment speech utterance will im-
prove the recognition accuracy by allowing a broader mod-
elling of the pronunciation of the new words. However it
is well known that increasing the number of pronunciation
variants increases the acoustic confusability in the recogni-
tion lexicon, which eventually hurts the accuracy. In our
experiments, we noticed for example that the baseforms ob-
tained with X equal to or more than 0.8 tended to look more
and more alike, which we attributed to the prevailing influ-
ence of the subphone transition model. As a result, cumu-
lating baseforms with A values higher than 0.8 was resulting
in higher word error rates. In the following section, we re-
port on experiments where lexicons are build for each inter-
val [A1; A2] with A1 in {0.1;0.2;0.3;0.4;0.5;0.6; 0.7} and
A2 in {\1;..;0.7}. The selection of the most promising



lexicon thus resumes to selecting the appropriate interval
[AL; A2].

4. EXPERIMENTS

4.1. Baseform generation

We report on experiments with 2 different sets of enrolled
words: (i) the enrollment set E1 consists of 50 distinct
words, each word being repeated twice by 10 speakers, (ii)
the enrollment set E2 consists of 35 distinct words, each
word being repeated once by 20 speakers. All the data are
recorded using a push-to-talk button in a quiet environment
at 22kHz and downsampled to 11kHz. The front end com-
putes 12 cepstra + the energy + delta and delta-delta co-
efficients from 15ms frames. Baseforms are automatically
generated using a reduced-size acoustic model especially
designed to be used in portable devices, or in automotive
applications. It consists of a set of speaker-independent
acoustic models (156 subphones covering the phonetics of
English) with about 9,000 context-dependent gaussians (tri-
phone contexts tied by using a decision tree [9]), trained on
a few hundred hours of general English speech (about half
of these training data has either digitally added car noise,
or was recorded in a moving car at 30 and 60 mph). The
bigram model of subphones was estimated off-line on an
aligned corpus of about 17,000 sentences (essentially names,
addresses, digits). Speaker-dependent lexicons E1; x2(S)
and E2,1,x2(S) are formed for each speaker S in respec-
tively £1 and E2, following the procedure described in sec-
tion 3.

4.2. Baseform evaluation

The recognition lexicons E11 x2(S) derived for each spea-
ker in the enrollment set E1 are evaluated on 2 test sets: (i)
the test set 7'1.1 where each of the 50 words in E1 are re-
peated in isolation 10 times by each of the same 10 speakers,
(i) the test set T'1.2 where each of the 50 words in E1 are
repeated in 10 different short sentences (typically command
sentences like “ADD < name > TO THE LIST”, where
< name > is an enrolled word) by each of the same 10
speakers. The recognition lexicons E21,x2(S) derived for
each speaker in the enrollment set £2 are evaluated on 3 test
sets: (i) the test set 7'2.1 is recorded in a quiet environment,
(ii) the test set 7'2.2 is recorded in a car moving at 30mph,
(iii) the test set 7'2.3 is recorded in a car moving at 60mph.
All 3 sets T2.1, T'2.2 and T'2.3 consist of the 35 words in
E2 uttered once and preceded by either the word “CALL”,
“DIAL” or “EMAIL”, by each of the speakers in E2. The
baseforms of the command words “CALL”, “DIAL”... in
the test sets are linguist-written baseforms.

4.3. Recognition scores

Figure 1 plots the Word Error Rate as a function of the in-
terval [A1; A2] : the points along the x axis correspond to the
intervals [0.1; 0.1], [0.1;0.2], ... ,[0.1;0.7], ..., ending with
the intervals [0.6; 0.6], [0.6;0.7] and [0.7;0.7]. The WER
corresponding to a standard generation system (A\1 = A2 =
0.5) are circled. The solid line represents the WER aver-
aged over all the speakers in both test sets 71.1 and 7'1.2,
i.e. decoding with the lexicons E1x1,x2(S). The dot line
represents the WER averaged over all the speakers in the
test sets 7'2.1, T'2.2 and 7'2.3, i.e. decoding with the lex-
icons E21 x2(S). As can be seen, both curves show the
same local patterns: the WER decreases along each portion
of the x axis going from an interval [A1; A1] to an interval
[A1;0.7], which indicates how accumulating baseforms sys-
tematically improves the overall accuracy. Also, the general
pattern of both WER curves is to increase towards the end-
ing intervals, intervals starting with a A1 more than 0.5. The
curves on Figure 1 tend to indicate that a close-to-optimal
accuracy can be obtained by building a lexicon using an in-
terval [A1;0.7], where A1 < 0.3.
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Fig. 1. WER as function of the chosen interval [A1; \2]
defining the set of values of \, averaged on the set 7'1.1
and 7'1.2 (solid line), and , averaged on the set 72.1, 7'2.2
and 7'2.3 (dot line).

In Table 1, we show WERs on 7T'1.1 and on 7T'1.2, (av-
eraged over all speakers): WER(worst) and WER(best) are
respectively the highest and the lowest WER over all inter-
vals [A1; \2]; WER(standard) is the standard WER obtained
with A1 = A2 = 0.5 ; and WER(0.1,0.7) is the WER ob-
tained with the interval [0.1;0.7]. Table 2 shows the same
statistics on the sets 7'2.1, 7'2.2 and 7'2.3. In both tables,
decoding with the lexicon obtained by scanning the inter-
val [0.1;0.7] usually equals the best performance that can



T1.1 | T1.2

WER(worst) 8.8 | 10.1
WER(standard) | 7.2 | 5.9
WER(best) 44| 39

WER(0.1,0.7) | 45| 39

Tablel. WER onT'1.1 and 7°1.2 with four lexicons selected
among all E1x; x2

T21 | T22 | T2.3
WER(worst) 13.1 | 129 | 16.3
WER(standard) | 10.5 | 10.6 | 12.9
WER(best) 73| 6.7 103
WER(0.1,0.7) 73| 6.7 105

Table 2. WER on T'2.1, 72.2 and T7'2.3 with four lexicons
selected among all 21,52

be obtained over all the lexicons. Besides, it yields a rel-
ative WER improvement of more than 30% over the stan-
dard approach on all test sets, except on the set 7'2.3 (test
data recorded in a car at 60mph) where the relative decrease
of the WER is 18%. Note that the WER could be further
decreased by pre-processing the speech data with speech
detection, and by post-processing the baseforms by auto-
matically filtering out the suspicious sequences of phones.
Indeed, these two techniques were shown to improve the
recognition accuracy [6].

5. CONCLUSIONSAND PERSPECTIVES

We have introduced a simple, but extremely powerful (from
an accuracy viewpoint) scheme to derive the pronunciation
of new words in dynamic vocabularies. Pronunciation vari-
ants of the words are automatically generated from a few
enrollment speech utterances. The variants are obtained by
varying the relative weights of the acoustic and transition
models combined to retrieve the pronunciation. In our ex-
periments, this approach yielded a relative decrease of the
word error rate ranging from 20% to 40% on all our test
sets.

One issue raised by this technique is the choice of the ap-
propriate range of weight values over which to accumulate
the pronunciations. In our experiments, the optimal range,
for a given acoustic and transition model, turns out to be
very stable across all test sets. It would however be de-
sirable to automatically detect the point where the bene-
fit of adding more pronunciation variants to the lexicon no
longer compensates the increase of the acoustic confusabil-
ity. Measures of acoustic confusability have been increas-
ingly investigated lately, with a special focus on how to es-

timate a Word Error Rate on test data without having to de-
code them. We are currently investigating the use of the the
Synthetic Acoustic Word Error Rate (SAWER) introduced
in [10], which fuses information from both a language and
an acoustic model.
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