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ABSTRACT

In this paper we present a time domain signal compression algo-
rithm based on the coding of line segments which are used to ap-
proximate the signal. These segments are fit in a way that is op-
timal in the rate distortion sense. The approach is applicable to
many types of signals, but in this paper we focus on the com-
pression of ElectroCardioGram (ECG) signals. As opposed to
traditional time-domain algorithms, where heuristics are used to
extract representative signal samples from the original signal, an
optimization algorithm is formulated in [1, 2, 3] for sample se-
lection using graph theory, with linear interpolation applied to the
reconstruction of the signal. In this paper the algorithm in [1, 2, 3]
is generalized by using second order polynomial interpolation for
the reconstruction of the signal from the extracted signal samples.
The polynomials are fitted in a way that guarantees minimum re-
construction error given an upper bound on the number of bits.
The method achieves good performance compared both to the case
where linear interpolation is used in reconstruction of the signal
and to other state-of-the-art ECG coders.

1. INTRODUCTION

An ECG signal is a graphic tracing of the variations in electrical
potential caused by the excitation of the heart muscle and detected
at the body surface. Such signals are often subject to transmission
or long time storage. This calls for their efficient compression in
order to keep their sizes manageable.

Time domain methods for ECG compression are based on the
idea of extracting a subset of significant signal samples from the
original sample set to represent the signal. Which signal samples
are significant, depends on the underlying criterion for the sample
selection process. To get a high performance time-domain com-
pression algorithm, much effort should be put into designing in-
telligent sample selection criteria. Decoding is based on interpo-
lating this subset of samples. There exist quite a few time domain
compression algorithms for ECG signals. A common character-
istic of most of them is that they are based on fast heuristics in
the sample selection process, at the expense of optimality. Ex-
amples of such algorithms are the popular FAN algorithm [4], the
well known AZTEC algorithm [5] and recent attempts in improv-
ing time domain algorithms, such as SLOPE [6] and AZTDIS [7].

Recently, optimization methods for ECG compression were
developed such as the Operational Rate Distortion and Variable

Length Coder (ORD-VLC) optimal approach presented in [1, 2, 3].
This method is based on a rigorous mathematical model of the en-
tire sample selection process. By modeling the signal samples as
nodes in a graph, ECG signals are compressed by using known
optimization theory to minimize the distortion in the reconstructed
signal given an upper bound on the available number of bits. The
approaches in [1, 2, 3] applied linear interpolation for the recon-
struction of the signal. This is a simple, but computationally ef-
fective way of reconstructing the signal. However, segments of
an ECG signal are not linear in their nature, but rather contain
higher frequencies. It is therefore interesting to investigate if bet-
ter approximations to the original signal can be obtained for the
same compression ratio, using a polynomial of higher degree for
interpolation. In this paper we demonstrate how the algorithm
in [1, 2, 3] can be extended in order to reconstruct the signal by
second order polynomials. The resulting solution is optimal in
the operational rate distortion (ORD) sense. Given the structure
of the coder, no other technique based on second order polyno-
mial interpolation will give a lower distortion for the same bit
rate. In addition, we apply an iterative procedure to find the un-
derlying parameter probability distribution resulting in the locally
most efficient ORD curve. Similar techniques, with and without
VLC optimization, have been used for compression of image con-
tours [8, 9, 10, 11, 12].

This paper is organized as follows: In the next section the
problem is defined mathematically. Section 3 is devoted to the
solution method. Finally, experimental results are reported, and in
the concluding section different aspects of the method, along with
future work, are discussed.

2. PROBLEM FORMULATION

Let us denote the set of sample points taken from a signal at con-
stant time intervals by S = f(1; y(1)); : : : ; (N; y(N))g. Let us
define the set of admissible points by Y = f(n; y(n; l)); n =
1; : : : ; N ; l = �p; : : : ; pg, where y(n;�p); : : : ; y(n; p) are evenly
distributed signal values with y(n; 0) = y(n), and let us denote
the cardinality of Y by NY = N(2p + 1). That is, Y is an ex-
tension of S representing all the points which can be used for the
signal approximation, and S � Y . Finally, let y(n; 1)�y(n; 0) =
�Q, the quantization step size of the quantizer applied to the orig-
inal signal. We seek a compression set C = fn1; : : : ; nMg �
f1; : : : ; Ng, the cardinality M of C, as well as, for each ni an
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Fig. 1. The original signal and the admissible sample set.

integer li 2 f�p; : : : ; pg; i = 1; : : : ;M . The above definitions
result in the original sample set S being replaced by the set Ŝ =
f(nk; y(nk; lk)) ; k = 1; : : : ;Mg implying a sample reduction ra-
tio equal to N=M .

To guide the selection of C and li; i = 1; : : : ; lM , we as-
sume a signal reconstruction based on second order polynomials
interpolating Ŝ. Assume n1 = 1 and nM = N . The approxi-
mation is then given by ŷ(n) = y(n; l) if n 2 C and ŷ(n) =

Q
�
fnklknk+1lk+1(n)

�
, where nk < n < nk+1 for all n =2

C; n 2 f1; 2; :::; Ng. Here fnklknk+1lk+1(n) denotes a presumed
reconstruction of y(n) based on y(nk; lk), y(nk+1; lk+1) and all
the intermediate samples to be precisely defined later in this sec-
tion, and Q denotes quantization to the nearest integer. Hence
all samples in the time interval [nk; nk+1] are represented by sec-
ond order polynomial interpolation between (nk; y(nk; lk)) and
(nk+1; y(nk+1; lk+1)). This is illustrated in Figure 1 where we
approximate the samples at time indices n = f4; : : : ; 9g by the
curve starting in nk = 4 and ending in nk+1 = 9. In this case,
y(nk; 1) belongs to Y , but not to S, while y(nk+1; 0) belongs to
both Y and S, which means that it is one of the original signal
samples.

The distortion measure we apply is the sum of squared dis-
tances between the original and the reconstructed signals. For
the segment between two arbitrary admissible sample points (n;
y(n; l)), and (n0; y(n0; l0)) 2 Y , with n < n0, it is given by

dnln0l0 =

( Pn0�1

t=n
(ŷ(t)� y(t))2 if n0 < N;Pn0

t=n
(ŷ(t)� y(t))2 if n0 = N:

(1)

We are using second order polynomials in reconstructing the
signal. Thus fnln0l0 (t) = a0nln0l0 + a1nln0l0 t + a2nln0l0 t

2; t 2
[n; n0]. If we interpolate between two end points i = (n; l) and
j = (n0; l0), we have for each arc (i; j):

dij =

( Pn0�1

t=n

�
a0ij + a1ijt+ a2ijt

2 � y(t)
�2

if n0 < N;Pn0

t=n

�
a0ij + a1ijt+ a2ijt

2 � y(t)
�2

if n0 = N:

(2)
a0ij + a1ijn+ a2ijn

2
= y(n; l) (3)

a0ij + a1ijn
0
+ a2ijn

02
= y(n0; l0): (4)

The optimal parameters a0ij; a1ij and a2ij are found by minimiz-
ing (2) under the constraints given in (3) and (4). By inserting these
optimal parameters into (2), the minimal dij is found for each arc.

The segment distortion measure established so far will serve
as a quality measure for parts of the signal. Based on the segment
distortion, it is clear that the total distortion of the reconstructed
signal, Dtot, is made up of the sum of the segment distortions of
the segments included in the final solution, that is,

Dtot =

M�1X
k=1

dnklknk+1lk+1 ; nk; nk+1 2 C. (5)

Using second order polynomials in reconstructing the signal,
three parameters must be encoded for each retained sample of the
signal. We choose to represent each segment of the signal by
two amplitudes and one position coordinate. We apply a sim-
ple predictive encoding scheme and encode the first order differ-
ence of all parameters (first order DPCM), that is, each segment
of the signal is represented by the three parameters �n(k) = nk�

nk�1, �1y(k) = ŷ(
nk�1+nk

2
) � ŷ(nk�1), and �2y(k) = ŷ(nk) �

ŷ(
nk�1+nk

2
); k = 2; 3; : : : ;M . In addition, we need to encode

the absolute amplitude of the first point, ŷ(n1). We choose to en-
code these symbols by two different coders; �1y(k) and �2y(k) by one
coder and �n(k) by another coder in this context.

Let us denote the number of bits needed to encode the segment
between points (n; l) and (n0; l0) by rnln0l0 . The total bit rate, R,
can then be expressed as

R =

M�1X
k=1

rnklknk+1lk+1 : (6)

We are then faced with the following problem : Choose M ,
n1 < n2 < � � � < nM and l1; : : : ; lM 2 f�p; : : : ; pg which
minimize the distortion of the reconstructed signal, Dtot, under
the constraint that the total bit rate, R, is less than the maximum
allowable bit rate, Rmax. That is,

min
Ŝ2Y

Dtot; subject to R � Rmax: (7)

3. SOLUTION METHOD

In order to be able to apply a shortest path solution scheme to
our problem, we define the problem in terms of graph theory. We
build a graph, G, from the admissible sample set. The graph
is directed and is defined as G = (V;A) where the vertex set
V = f(n; l); n = 1; : : : ; N; l = �p; : : : ; pg and the arc set A
contains vertex pairs ((n; l); (n0; l0)), where (n; l); (n0; l0) 2 V ,
n < n0 and l; l0 2 f�p; : : : ; pg as described in Section 2. If
(n1; l1); (nM ; lM ) 2 V , the set (n1; l1); : : : ; (nM ; lM) is said to
be a path from (n1; l1) to (nM ; lM) inG if (n1; l1); : : : ; (nM ; lM)
2 V are distinct vertices and n1 < n2 < � � � < nM . Let P de-
note a path from vertex (n1; l1) up to vertex (nM ; lM ). The cost
of each arc ((n; l); (n0; l0)) 2 A is denoted wnln0l0 . It is made
up of a combination of distortion and bit rate and will be defined
later in this section. The length of P is thus the sum of the costs of
segments included in the path up to vertex (nM ; lM). Defining the
problem this way, we are looking for the shortest path from vertex
(n1; l1) to vertex (N; lM ).

We apply a shortest path algorithm to the graph to solve the
problem stated in (7). The algorithm is a modified version of Dijk-
stra’s shortest path algorithm [13], where the modification consists



of taking into account the fact that we are working with a directed
acyclic graph. This occurs as a natural consequence of the data
we are working with. The shortest path algorithm is thoroughly
described in [2]. In order to be able to solve the problem given
in Equation (7) efficiently and optimally we use the Lagrangian
multiplier approach [14]. The basic idea behind the approach is to
include the constraint into the objective function with a Lagrangian
multiplier �. This results in a Lagrangian cost function of the fol-
lowing form

JC� = DC
+ � � RC ; (8)

where � is the Lagrange multiplier and the superscript C denotes
that the expression is a function of the compression set C un-
der consideration. Minimization of the expression given in Equa-
tion (8) is well suited to be performed with the shortest path algo-
rithm.

It has been shown in [14, 15] that if there is a �� such that

C�
= arg min

C
JC�� ; (9)

and which leads to RC
�

= Rmax, then C� is also an optimal so-
lution to (7). As � sweeps from zero to infinity, the solution to (9)
traces the convex hull of the operational rate distortion function,
which is a nonincreasing function. Therefore, by solving the un-
constrained problem (9) repeatedly for different �’s we can find
the optimal solution to the constrained problem (7).

Having introduced the Lagrangian multiplier approach, the
edge weight between any two graph vertices (n; l) and (n0; l0),
n < n0, l; l0 2 f�p; : : : ; pg, is given by wnln0l0 = dnln0l0 + � �
rnln0l0 :

Applying the shortest path algorithm with this definition of an
edge weight, leads to the minimization ofPM�1

k=1
wnklknk+1lk+1 ; nk 2 C, lk 2 [�p; p], (10)

and, hence, to an optimal solution to the unconstrained problem
(9). By solving this unconstrained problem repeatedly for different
�’s we can find the optimal solution to the constrained problem (7).

Our claim of optimality is clearly dependent on the chosen
code structure, the width of the admissible sample point band, the
size of our window restricting how far apart two consecutive points
of C may be, and, to a great extent, on the VLC tables. If we
base the algorithm on fixed VLC tables generated off line, this will
clearly make the performance of the encoder signal dependent as
it is hard to find one VLC table to match the characteristics of
different ECG waveforms.

In our case we iterate on the VLC table as a part of the com-
pression scheme as shown in Figure 2. For each � we find the
VLC tables matching the frequencies of the output symbols. To
start out the iterative process, depicted in Figure 2, the proposed
ORD optimal encoder processes the ECG signal with an initial
fixed rate distortion tradeoff, �, and initial probability mass func-
tions for (�1y(k); �

2
y(k)jV LC

1
init) and (�n(k)jV LC

2
init). Having

encoded the input sequence at iteration t, based on the probability
mass functions ft1() and ft2() we use the frequency of the output
symbols to compute ft+1i (); i = 1; 2 and then use ft+1i () as basis
for the VLC tables in iteration t+ 1. The iterative process of Fig-
ure 2 stops when the cost improvement is less than �. At this point
an outer loop checks if the total bit rate R, is close enough to the
target bit rate,Rmax. If it is, the symbols are encoded by a variable
length coder. If not, another guess for � is made, and the process is
repeated. It can be shown that cost Ct is a non-increasing function
of iteration t, and, hence, the iterative process converges to a local
minimum.
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Fig. 2. The structure of the encoder.
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Fig. 3. Coding performance for the different coders. Solid line
with circles: Poly ORD-VLC optimal approach with p = 3. Solid
line with stars: Lin ORD-VLC optimal approach with p = 3. Dot-
ted line: ECG optimized filter bank. Solid line with crosses: FAN

4. EXPERIMENTAL RESULTS

For evaluation of the performance of the coders, the commonly
used Percentage Root-mean-square Difference distortion measure,
given by

PRD =

sPN

l=1
[y(l)� ŷ(l)]2PNS

l=1
[y(l)� �y]2

� 100%; (11)

is applied, where y is the mean value of the original signal y, ŷ is
the reconstructed signal and N is the original signal length. We
evaluate PRD as a function of bit rate which is defined as the av-
erage number of bits used to represent one signal sample in the
original signal.

We present results for two test signals. The records are ten
minutes long, corresponding to 216 000 samples. The sampling
frequency is 360 Hz with 12 bits per sample.
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Fig. 4. Short segment of reconstructed signal (taken from
mit100 1000) at 1.0 bits per sample.

Figure 3 presents PRD’s for the various coders for bit rates be-
tween 0.2 and 1.4 bits per sample (bps). We refer to the method
introduced in this paper as joint operational rate distortion and
VLC (ORD-VLC) optimal approach. We distinguish between the
method proposed in this paper and the method presented in [1, 2, 3]
where straight lines are used in reconstruction of the signal by
denoting them Poly ORD-VLC and Lin ORD-VLC, respectively.
We compare the results from these two compression schemes to
the results from the FAN algorithm [4], a traditional time domain
ECG compression method, as well as a 32-tap ECG optimized fil-
ter bank. This is a parallel, nonunitary FIR filter bank optimized
with respect to coding gain, as well as, visual criteria [16].

Results show that the FAN method is outperformed by a wide
margin by all the other methods. The ORD-VLC methods outper-
form all the other methods by a significant margin, especially for
low bit rates (below 0.8 bps). The Poly ORD-VLC method per-
forms marginally better than the Lin ORD-VLC optimal approach
for most bit rates.

Evaluation of the performance of the different coders is ac-
companied by visual inspection of the reconstructed signals. This
is to show coding artifacts as they appear for the different coders.
We have chosen a short segment of the mit100 1000 signal (“mit
xxx yyyy” denotes record number xxx starting at time yy:yy). The
reconstructed signal is shown at a bit rate of 1.0 bits per sample in
Figure 4. We see that all coders smooth out some of the details in
the original signal. This is particularly evident with the FAN coder,
where the line pieces are also most prominent in the reconstructed
signal. The ORD-VLC optimal approaches smooth out the ripple
noise which can be seen in the original signal.

5. CONCLUSIONS

In this paper we demonstrate how the rate distortion optimal ap-
proach presented in [1, 2, 3] can be further developed in order to
apply second order polynomials in the reconstruction of the signal.

We compare the performance of the coder presented in this
paper to the method presented in [1, 2, 3] in addition to a tradi-
tional ECG compression method as well as a state-of-the-art filter

bank coder. Coding experiments show that the traditional time do-
main ECG compression algorithm cannot compete with the opti-
mal operational rate distortion (ORD) coding techniques nor with
the filter bank approach. The ORD coding techniques has superior
performance compared to other time domain methods, as well as,
frequency domain compression methods in terms of PRD. Com-
pared to the algorithm in [1, 2, 3] where linear interpolation is ap-
plied in reconstruction of the signal, the algorithm presented here
shows promising results. For most bit rates, the algorithm based
on polynomial interpolation gives smaller reconstruction error than
the one based on linear interpolation. This result is verified by vi-
sual inspection of the reconstructed signal.
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