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ABSTRACT Model A2\

] ] 4.| SHOW ME THE FLI GHTS ON <Al RLI NE> <FROVCI TY>  <TI NE>|
Whendialoguesystemdeveloperstacklea nev domain,muchef- l l l l l I l I I
fort is required;the developmentof differentpartsof the system 3. SHOWNE THE FLIGHTS ON <Al RLINE> FROM <CI TY> <TI ME>
usuallyproceedsndependently Yet it may be profitableto coor l l l l l |
dinatedevelopmentefforts betweendifferentmodules. Here,we 2. SHOWNE THE FLIGHTS ON <airlines FROM <city> |N THE <ti nename>
focusour efforts on extendingsmall amountsof languagemodel l l l l l
training databy integratingsemanticclasseshatwere createdor 1. SHONME THE FLIGHTS ON T WA | FROM ATLANTA | N THE MORNI NG

a naturallanguageunderstandingnodule. By converting finite
stateparsesof a training corpusinto a probabilisticcontet free
grammarandsubsequentlgeneratingartificial datafrom the con-
text freegrammaywe cansignificantlyreduceperpleity andASR
word errorfor situationswith little trainingdata. Experimentsare
presentedising datafrom the ATIS and DARPA Communicator
travel corpora.

1. INTRODUCTION

Building natural spolen dialoguesystemsfor new domainshas
traditionallyrequiredgreateffort; developersusuallytrainanauto-
matic speechrecognition(ASR) engine,naturallanguagecompo-
nentsandaspeeclgeneratiorsystenfor thespecificdomain.One
would preferautomatiqor semi-automaticyeneratiorof dialogue
systemcomponentsor database-dventasks;this requiresthein-
corporationof domainknowledgeextractedfrom thedatabas@to
theindividual systemmodules.

Domainknowledgeis ofteneasietto codify for somemodules
thanfor others. We often canforeseethe typesof knowledgere-
quiredfor a databasepplication(e.g., city namesanddatesin the
DARPA Communicatortravel task). Designersof a naturallan-
guageunderstandingnodulecan usethis knowledgein building
semantigarsersOnthe otherhand,pre-specifiedlomainknowl-
edgeis moredifficult to integrateinto thestatisticaimodelsof ASR
systems . Systemdesignersypically requirea gooddealof “Wiz-
ard of Oz" data— datacollectedfrom usersinteractingwith a
persorwho mimicsthe operationof acomputerizedgystem— in
orderto bootstrapan automaticdialoguesystem. The ASR lan-
guagemodel(LM) usuallyrequiresmuchmoredomainadaptation
(in termsof numberof sentenceshanacoustianodelssincethere
are mary fewer obsenations (cf. numberof wordsvs. number
of acousticframes). The researchwe presenthereusesdomain
knowledgefrom the semantigarseiin orderto reducetheamount
of Wizardof Oz dataneededor LM training.

Class-basedrammarshave beenusedto reducethe perplec-
ity of thelanguagemodelby introducingcateyoriesof wordsand
phrasestheLM contetsfor theentireclassarecollectedo smooth
outestimate®f then-gramprobabilitiesacrosgheclass.A proba-
bilistic context freegrammai(PCFG)extendsthis notionby allow-
ing hierarchicalclusteringof classes.Jurafsly et al. [2] shaved

Fig. 1. Examplebest-pattparsefrom thefinite stateparser start-
ing from the input on line 1 to the completedparseon line 4.
Highlightedarethetwo domainsof the statisticalmodels:vertical
rule probabilitiesrepresentedy modelA;, andhorizontaln-gram
probabilitiesrepresentetly model ..

that,givena PCFG,onecouldgenerate pseudo-corputhatcould
be usedto smooththe original corpusfor the training of a bigram
grammar Sucha systemhadthe advantageof connectinghe ex-
pectednputof theparsetto theLM of the ASR system However,
producinga completetop-davn grammarwith goodcoveragefor
adomainis alaboriousprocedure.

Semantidslandparsersonthe otherhand,canbeconstructed
relatively quickly sincethe only neededulesare onesthat parse
substringf inputinto relevantsemanticclassesin thiswork, we
extendthe finite stateislandparserof PotamianosandKuo [4] to
generatsen smoothingsentencefor the constructionof n-gram
grammarsA discussiorof their parseffollowsin the next section.
To augmenthe pre-specifiedemanticlasseprovidedby theun-
derstandingcomponenof the system,we alsoinvestigatethe au-
tomatic induction of syntacticpatterns[3, 6, 1] within a system
for generatingnew LMs. In theseinitial experimentswe follow
on the work of Potamianosnd Kuo usingdatafrom ATIS travel
domain[5], andthenapply the modelsdevelopedto the DARPA
Communicatotravel task.

2. FINITE STATE PARSER

Therecursve finite stateparser{4] usesa setof parsingrulesen-
codedasafinite statetransduce(FST)to iteratively rewrite strings
from theinput (Figurel, line 1) to a maximalparse(line 4). The
FSTsearche$or potentialsubstringgislands)thatmatchrule pat-
terns,corvertingthe patterninto its parentnode.For example,the
FST containedthe pattern<t i menane> — nor ni ng, licens-
ing the conversionof nor ni ng to <ti nename> inline 2. In a
subsequeniteration,the patternis furtherreducecby therule
<TIME> —in the <tinmenanme>.

To decidebetweerambiguousgparsestructuresthe probability



of aparsestructureT’ is determinedy two models,P(T'|\;) and
P(T|A\z). Model \; is the PCFGprobabilitymodel:the probabil-
ity of aparsetreeheadedy parentnodeP is thejoint probability
of the parentnode P andall recursve expansionsof that node
down to the terminalnodes.In Figurel, for example,the proba-
bility of thetreeheadedy the <Al RLI NE> nodein thetopline
is computedasfollows:!

P(T|A\1) = P(<A RLINE>) %

P(<Al RLI NE> — <Al RLI NE>) *

P(<AIRLINE> — <ai rline>)*
(

P(<airline>—=T WA)

Rulesareassumedo fire independenthyof eachother; however,

this assumptioriikely doesnot hold in practice. To compensate

for this,asecondmodel,\2, computeshe probability of eachline
of the parse estimatingthe joint probability of the wordsandse-

manticclasse®ntheline with ann-gramgrammar Thisassumes

an independencéetweendifferentlevels of the parse. The two
modelsareintegratedby interpolatingwith exponentialweights:

P(T|X) = P(T|A\)™ P(T|A2)™

This systemis adwantageoudor rapid developmentof dia-
logue systems,since one needsto encodeonly the relevant se-
manticattributesby hand.While acompletePCFGcouldbe used
asa grammarwithin the system,a full-blown syntacticgrammar
of naturallanguagés unnecessargslocal syntacticknonledgeis
encodedvia n-gramprobabilities.

3. SENTENCE GENERATION

In contrastto the bottom-upparsingapproachdescribedabore,
generatingsentencefrom a PCFGtypically requiresa top-davn
approachThe generatioralgorithmtakesa randomwalk through
thesetof all possibleparsetrees:

W = <START>
while W containsnonterminals
foreachnonterminakw; € W
choosgandomrule w; — wiiw;s . ..
replacew; with wijiw;z ... iIn W

Therulesthatfire arechosemmrandomlyaccordingo theprobability
distribution P(w; — wiiwsz .. .).

3.1. Converting bottom-up parsesinto PCFGs

The bottom-upparserin our systemneednot producecomplete
parseqi.e., it will allow grammarghatdo notreducetheinputto
asinglestartsymbol). In orderto usethe PCFGgeneratioralgo-
rithm, we mustproducea probalisticmodelthatconnectsa single
<START> symbolto the maximalbottom-upparse We have ex-
perimentedvith two modelsfor the probability of startrules.
Method 1 (explicit start rules): for every maximalparsein our
training corpuswith symbolswiws ... w,, suggesta new rule
<START> — wiws...w,. Figure?2 shavs a new rule being

1The probability P(<Al RLI NE> — <Al RLI NE>) may seem
strangefor thoseusedto a PCFGframework, but parsingwith our finite
stategrammairincorporates “self-rule” probability sinceeachword from
line n — 1 mustbe representedn line n eitherby itself, or by a parent
foundby areductionpattern.

<START>

<Al RLI NE> <CITY> <TI N>

<airline> <city> <ti mename>

SHOW ME THE FLI GHTS ON T WA FROM ATLANTA I N THE MORNI NG

Fig. 2. Startrule induction,methodl: postulatea new startrule
connectingall wordsin the maximalparse(shavn onthe example
from Figurel).

<START>
<FROMCI TY>
<Al RLI NE> <CITY> <TINME>
<Gl2> <@4> <airline> <city> <ti menane>

SHOWME THE FLIGHTS ON T WA  FROM ATLANTA I N THE MORNI NG

Fig. 3. Introducingsyntacticgeneralizationnto parsetrees

suggestedor theexamplein Figurel. The probability of the start
ruleis determinecempiricallyfrom the corpus.

Method 2 (semantic n-grams): insteadf calculatingexplicit rule

probabilities,we can computean n-gram grammaron the maxi-

mal parsef theentiretrainingcorpus(similarto model\; in the
Section2). To generate hen sentencewe generaterandomse-
guencefrom this semanticn-gramgrammay andthenrecursvely

expandnonterminalsasin the PCFGalgorithm. The novel max-

imal parsesequencegeneratedy this methodareusuallysome-
what aberrantat the global level (for instance,two destination
cities can be generated)but producerelatively good local word

collocationsfor n-gramstatistics.

Perpleity experimentsonthe ATIS corpusshav thatgenera-
tion from explicit rulesand semanticn-gramsis roughly equiva-
lent. For easeof implementationwe have conductedhe experi-
mentsdescribecherewith explicit startrules(Method 1), but the
methodof startrule generatioris animportantareafor future re-
search.

4. GENERALIZATION

Theremay exist additionalstructurein the databeyond the pre-
definedclasseshatshouldbe exploited by the sentencgeneratar
For example,in ATIS show nme andtel | me have the same
syntactic propertiesaswell ast he flights anda flight.
Our understandingnoduledoesnot interpretthesestructuresse-
mantically (otherwisethey would be classifiedby the semantic
grammar) but by introducingnew ruleswe cansyntacticallygen-
eralizethedata;for example,in Figure3, show ne hasbeengen-
eralizedinto class<Gl2>. The PCFGrule for <GL2> might
have productionsncludingthephraseshow ne,tel | ne
about ,orl i st.

Therehasbeensubstantialvork in thefield onlearningphrases
andphraserules;in this paperwe follow thework of McCandless
andGlasg[3] aswell asSiuandMeng[6] in determiningsyntactic
classesautomaticallyfrom data. The algorithm, describecbelaw,



hastwo parts.

4.1. Chunkinginto phrases

To find phraseswithin our training corpus,we usean extended
versionof the mutual information criterion for phraseselection.
We examineall frequentn-gram$ to find the mutualinformation
betweenra clusterandary of its subclusters:

MI(w;...wn) =
P(w; ... wy)log

P(w1-..wn)
maXmel...n—1 P(wl...wm)P(wm+1...wn)
Thiscriterionallows largerclustergo form while still discriminat-
ing againstthemin favor of smallerclusters;if a smallercluster
is favoredin an initial pass,larger clusterscan be formed later
by clusteringhierarchically Clusteringcontinuesuntil a predeter
minedminimum mutualinformationthresholds reached.

4.2. Generalizing

In the generalizatiorprocesswe grouptogethemordsor phrases
that sharesimilar syntacticcontexts. We utilize the Kullback-
Leibler (KL) distancebetweenbigram contets as a measureof
thesimilarity of two words. We train two bigramprobabilitymod-
els, P, andP,, correspondingo the probabilityof aword givenits
left or right contet, respectrely. To obtainasymmetricmeasure,
we estimatethe distanceébetweerntwo wordsw; andws as:

Dist(wi,w2) =
Di(w1||w2) + Di(w2|[w1) + Dy (wi||wz2) + Dy (w2|[w1)

with KL distancedD; and D, definedoverthevocalularyV as

Dy(willws) = Y, ¢y Po(v]wn) log Bl
We searchover all pairs of words/phraseshat occur sufiiciently
frequentlyin the corpusandfind the pair (w1, w2) thatminimizes
the distancemeasure We thenaddtwo new generalizationrules,
<G;> — wi and<G;> — ws, to the corpus. The optimal
numberof generalizectlustersformedby iteratingthis processs
determinedhroughexperimentation.

5. EXPERIMENTAL DESIGN

For our first setof experiments,we choseincreasingamountsof
datafrom the ATIS3 training set (from 25 to the full 1703 sen-
tences)asour LM training set. The model selectedas a “straw
man” wasa trigram LM trainedon the first k¥ sentence®f the
training set(with appropriatdrequeny cutofs). It is clear how-
ever, thattrainingann-gramon the datasetswith few sentences
would performquitepoorly, soasecondaselinavasdeveloped:a
class-based trigram, wherethe classearedeterminedy the se-
manticword classegrepresenteth our parsetreeswith lowercase
letters). This is equialentto training an n-gram on the second
lines of the finite-stateparseof the corpus(cf. line 2 of Figurel).
Thebestbaselingperformancavasobtainedoy linearly interpolat-
ing the trigram andclasstrigram models,optimizing the weights
basedbntheperpleity of aheld-outdevelopmentset.

In the parser class model, we parsedthe training corpusof
k sentencesvith the predefinedsemanticclasse® and calculated
probabilitiesfor all the rules. We then generatedl5 corporaof
1000sentencesisingthelearnedrule probabilitiesandtrained15

2For theseexperimentsyve usea maximumn, of 5.
3Sincewe cannotassumethat we have rule probabilities,the parsing
wasaccomplisheavith agreedystratgy [4].

Training set size vs. perplexity on ATIS3 Category A 1994 Test Set

T
— = (1) Trigram
~ — (2) Class trigram
~ —- (3) Parser class trigram + (2)
N (4) Generalized parser class trigram + (2) [overlaps with (3)]

< | == (5) Parser class trigram w/fragments + (2)
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=
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Number of training sentences

Grammar % perpleity reductionover (2)
4 # of sentences» | 25 50 100 | 200 | all
Parserclasstrigram(3) 2121 326|306 | 134 0.8
w/fragmentg5) 385|426 39.7| 16.1| 1.4
Generalizegarsercl. (4) | 20.6 | 32.2 | 30.6 | 149 | 1.6

Fig. 4. Perplity scoresandperpleity reductionpercentagesver
baselineclasstrigrammodel. The generalizegarserclasstrigram
modelis notshavn in thegraphasit closelyoverlapsthesemantic
classtrigramscores.

separaterigrammodels.A combinedmodelwasproducedy lin-
early interpolatingthesel5 models,tuning interpolationparame-
terson the developmentset. This tendsto work betterthanpool-
ing all datatogetherandbuilding onemodel;sincethe datais ran-
domly generatednterpolationcande-emphasizpoorly estimated
n-grams— averagingseveral modelsreduceshe varianceof the
combinedestimator In addition,the smoothingof trigram proba-
bilities in onemodelwith bigrambacloffs in othermodelsmakes
the estimateof the probabilitymorerobust. This combinedmodel
was subsequentlynterpolatedwith the classtrigram, sinceone
shouldalwaysincorporateasmuchreal dataaspossible.

Thegeneralized parser class modelwastrainedin a similar
fashion, except that the chunkingand generalizatioralgorithms
describedn Section4 wererun over the parsedcorpus. By opti-
mizing on the developmentset,we defineda maximumof 50 new
classesn thegeneralizatiorprocess.

We found that, particularlyfor small training setsizes,mary
classesverenotbeinggeneratedecaus¢hey did notappeain the
training set. The parser class model with fragments, is trained
identically to the parserclassmodel, exceptthat the <START >
symbolis additionallyallowedto expandto ary singleparseifrag-
ment.In thetravel domain for example,<START> — <TI ME>
would be onefragmentrule addedto the rule corpus.Both of the
above two classmodelswere alsointerpolatedwith the baseline
classtrigramgrammar

6. EVALUATION

6.1. Perplexity

Weevaluatedhetwo baselinenodelsandthreeexperimentamod-
elsonthe category A sentencefrom the 1994 ATIS testset;Fig-

ure 4 shaws the perpleity of all modelsexceptthe generalized



Training set size vs. ASR word error rate on ATIS3 Category A 1994 Test Set
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Fig. 5. ASR resultsfor the 1994 ATIS test set with varying
amountsof LM training data. Resultsincluding fragmentswere
notavailable.

parserclasstrigram, which was indistinguishableon the graph
from the ungeneralizegharserclasstrigram model. As expected,
using classinformation greatly decreaseshe perpleity over a
plain trigram, especiallywith very few training sentences.The
useof semanticclassinformationgivesanadditionalboostin this
region, particularlywhenfragmentrulesareaddedo thegrammar

It is somavhat surprisingthatthe additionalmachineryof the
automaticgeneralizationiechniqueslescribedn Section4 do not
improve the LM over the semanticclassesalone. Siu and Meng
[6] notethattheir methodis semi-automatic; they hand-correcthe
postulatedCFG rules. We suspecthatthis methodmay assistin
developingrulesfor anew domain;onecoulditeratively applythe
entiretraining procedurepresentedhereto simultaneouslynduce
rulesfor theparserandASR LM in a supervisedashion.

While it appeardrom Figure 4 that the modelsare roughly
comparablevhentrainedon the full ATIS testset,addingparser
classnformationdoesmprove robustnes®nothertestsets.When
the ATIS-trainedmodelsare evaluatedon DARPA Communica-
tor travel datafrom Bell Labs and the University of Colorado,
the parserclassegeducethe perpleity of non out-of-vocatulary
wordsby 8% overtheclasstrigram(86.8— 80.0);addingthefrag-
mentsinto the grammarresultsin a 18% reductionin perpleity
(86.8— 71.3). Thissuggestshatthe parserclass-basegrammars
might bea goodstartingpoint for domainadaptation.

6.2. ASR

We alsoevaluatedthe ATIS modelsby performingspeectrecogni-
tion on the 1994testset. The acousticmodelsfor this experiment
weretrainedon acoustiaddataindependenof the ATIS domainand
wereheldconstanfor all languagemodeltraining setsizes.
Figure5 illustratesthatthe ASR word error rate parallelsthe
perpl«ity resultsof Figure4. For a training setsize of 50-100
sentencesthe parserclassgrammarreducesword error over the
classtrigram by 7-9%relative (significantatp < 0.05). As the
numberof availableLM trainingsentencemcreaseshowever, the
differencein errorratesbecomesndistinguishableIncludingthe
generalizatiortechniquedid not improve ASR resultsover the

plain parserclassgrammar Resultsfor the parserclassgrammar
with fragmentsverenot availableasof thewriting of this paper

7. SUMMARY

Thetechniquegroposedn thispaperattempto reduceheamount
of requiredwizardof Oz datafor building languagemodels.Using
the semanticclasseslefinedfor the understandingnoduleof the
dialoguesystemcanimprove the performancef languagenodels
trainedonly onalimited numbermf sentencesVe have alsofound,
usingthe DARPA Communicatordata, that integrating semantic
classinformationin a modeltrainedon a related(but different)
domaincanprovide agoodstartingpoint for domainadaptation.
The automaticgeneralizatiortechniquedound in the litera-
turedid notimprove performancef the parserclassmodel. How-
ever, we hopethatwe canusegeneralizationo helpbuild semantic
classesn anew domain,anditeratethis techniqueasnen domain
databecomesvailable. Onedravbackto the generalizatioriech-
niquespresentechereis that they requirea suficient numberof
examplesto generalize at which point thereis probablyenough
datato train the n-gramaryway; animportantfuture directionfor
thiswork is to find waysto clusterrareevents.
Rapiddialoguesystendevelopmenis acontinuingfocuswithin
our lab. The parserusedin this work wasdesignedo requirethe
encodingof aminimal amountof domaininformation(in theform
of regularexpressionsjo produceagrammarfor naturallanguage
understandingWe have extendedthis work by incorporatingthis
encodednformationinto the ASR system.While it is premature
to declaresuccessn this area,theinitial resultspresentedn this
studyarea promisingsteptowardsquick systemdevelopment.
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