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ABSTRACT

Whendialoguesystemdeveloperstacklea new domain,muchef-
fort is required;the developmentof differentpartsof the system
usuallyproceedsindependently. Yet it maybeprofitableto coor-
dinatedevelopmentefforts betweendifferentmodules.Here,we
focusour efforts on extendingsmall amountsof languagemodel
trainingdataby integratingsemanticclassesthatwerecreatedfor
a natural languageunderstandingmodule. By converting finite
stateparsesof a training corpusinto a probabilisticcontext free
grammarandsubsequentlygeneratingartificial datafrom thecon-
text freegrammar, wecansignificantlyreduceperplexity andASR
word errorfor situationswith little trainingdata.Experimentsare
presentedusingdatafrom the ATIS andDARPA Communicator
travel corpora.

1. INTRODUCTION

Building naturalspoken dialoguesystemsfor new domainshas
traditionallyrequiredgreateffort; developersusuallytrainanauto-
maticspeechrecognition(ASR) engine,naturallanguagecompo-
nents,andaspeechgenerationsystemfor thespecificdomain.One
wouldpreferautomatic(or semi-automatic)generationof dialogue
systemcomponentsfor database-driventasks;this requiresthein-
corporationof domainknowledgeextractedfrom thedatabaseinto
theindividual systemmodules.

Domainknowledgeis ofteneasierto codify for somemodules
thanfor others.We often canforeseethe typesof knowledgere-
quiredfor a databaseapplication(e.g., city namesanddatesin the
DARPA Communicatortravel task). Designersof a naturallan-
guageunderstandingmodulecanusethis knowledgein building
semanticparsers.On theotherhand,pre-specifieddomainknowl-
edgeismoredifficult to integrateinto thestatisticalmodelsof ASR
systems.Systemdesignerstypically requirea gooddealof “Wiz-
ard of Oz” data— datacollectedfrom usersinteractingwith a
personwhomimicstheoperationsof a computerizedsystem— in
order to bootstrapan automaticdialoguesystem. The ASR lan-
guagemodel(LM) usuallyrequiresmuchmoredomainadaptation
(in termsof numberof sentences)thanacousticmodelssincethere
are many fewer observations(cf. numberof words vs. number
of acousticframes). The researchwe presenthereusesdomain
knowledgefrom thesemanticparserin orderto reducetheamount
of Wizardof Oz dataneededfor LM training.

Class-basedgrammarshave beenusedto reducetheperplex-
ity of the languagemodelby introducingcategoriesof wordsand
phrases;theLM contextsfor theentireclassarecollectedto smooth
outestimatesof the � -gramprobabilitiesacrosstheclass.A proba-
bilistic context freegrammar(PCFG)extendsthisnotionby allow-
ing hierarchicalclusteringof classes.Jurafsky et al. [2] showed
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Fig. 1. Examplebest-pathparsefrom thefinite stateparser, start-
ing from the input on line 1 to the completedparseon line 4.
Highlightedarethetwo domainsof thestatisticalmodels:vertical
ruleprobabilitiesrepresentedby model ��� , andhorizontal� -gram
probabilitiesrepresentedby model ��� .
that,givenaPCFG,onecouldgenerateapseudo-corpusthatcould
beusedto smooththeoriginal corpusfor thetrainingof a bigram
grammar. Sucha systemhadtheadvantageof connectingtheex-
pectedinputof theparserto theLM of theASRsystem.However,
producinga completetop-down grammarwith goodcoveragefor
a domainis a laboriousprocedure.

Semanticislandparsers,on theotherhand,canbeconstructed
relatively quickly sincethe only neededrulesareonesthat parse
substringsof input into relevantsemanticclasses.In thiswork, we
extendthefinite stateislandparserof PotamianosandKuo [4] to
generatenew smoothingsentencesfor theconstructionof � -gram
grammars.A discussionof theirparserfollows in thenext section.
To augmentthepre-specifiedsemanticclassesprovidedby theun-
derstandingcomponentof thesystem,we alsoinvestigatetheau-
tomatic inductionof syntacticpatterns[3, 6, 1] within a system
for generatingnew LMs. In theseinitial experiments,we follow
on thework of PotamianosandKuo usingdatafrom ATIS travel
domain[5], andthenapply the modelsdevelopedto theDARPA
Communicatortravel task.

2. FINITE STATE PARSER

Therecursive finite stateparser[4] usesa setof parsingrulesen-
codedasafinitestatetransducer(FST)to iteratively rewrite strings
from the input (Figure1, line 1) to a maximalparse(line 4). The
FSTsearchesfor potentialsubstrings(islands)thatmatchrulepat-
terns,convertingthepatterninto its parentnode.For example,the
FSTcontainedthepattern � timename 	�
 morning, licens-
ing theconversionof morning to � timename 	 in line 2. In a
subsequentiteration,thepatternis furtherreducedby therule� TIME 	�
 in the � timename 	 .

To decidebetweenambiguousparsestructures,theprobability



of a parsestructure
 is determinedby two models,����
�� ����� and����
�� ����� . Model � � is thePCFGprobabilitymodel:theprobabil-
ity of a parsetreeheadedby parentnode � is thejoint probability
of the parentnode � and all recursive expansionsof that node
down to the terminalnodes.In Figure1, for example,theproba-
bility of thetreeheadedby the � AIRLINE 	 nodein thetop line
is computedasfollows:1

����
�� � � ��� ����� AIRLINE 	����
����� AIRLINE 	�
�� AIRLINE 	����
����� AIRLINE 	�
�� airline 	����
����� airline 	�
 T W A �

Rulesareassumedto fire independentlyof eachother; however,
this assumptionlikely doesnot hold in practice. To compensate
for this,asecondmodel, � � , computestheprobabilityof eachline
of theparse,estimatingthe joint probabilityof thewordsandse-
manticclasseson theline with an � -gramgrammar. Thisassumes
an independencebetweendifferent levels of the parse. The two
modelsareintegratedby interpolatingwith exponentialweights:

����
�� ��� �!����
"� � � �$#�%&����
"� �����$#('
This systemis advantageousfor rapid developmentof dia-

logue systems,sinceone needsto encodeonly the relevant se-
manticattributesby hand.While a completePCFGcouldbeused
asa grammarwithin the system,a full-blown syntacticgrammar
of naturallanguageis unnecessaryaslocal syntacticknowledgeis
encodedvia � -gramprobabilities.

3. SENTENCE GENERATION

In contrastto the bottom-upparsingapproachdescribedabove,
generatingsentencesfrom a PCFGtypically requiresa top-down
approach.Thegenerationalgorithmtakesa randomwalk through
thesetof all possibleparsetrees:

) �*� START 	
while

)
containsnonterminals

foreachnonterminal+�,.- )
chooserandomrule + , 
/+ , ��+ ,0� 1�1�1
replace+�, with +�, � +�,2� 1�131 in )

Therulesthatfirearechosenrandomlyaccordingto theprobability
distribution ���4+ , 
5+ , ��+ ,2�6131�1 � .
3.1. Converting bottom-up parses into PCFGs
The bottom-upparserin our systemneednot producecomplete
parses(i.e., it will allow grammarsthatdo not reducetheinput to
a singlestartsymbol). In orderto usethePCFGgenerationalgo-
rithm, we mustproducea probalisticmodelthatconnectsa single� START 	 symbolto themaximalbottom-upparse.We have ex-
perimentedwith two modelsfor theprobabilityof startrules.
Method 1 (explicit start rules): for every maximalparsein our
training corpuswith symbols +7��+ � 1�131 +�8 , suggesta new rule� START 	9
:+ � +�� 1�1&1 + 8 . Figure 2 shows a new rule being

1The probability ;=<>� AIRLINE 	@?A� AIRLINE 	CB may seem
strangefor thoseusedto a PCFGframework, but parsingwith our finite
stategrammarincorporatesa “self-rule” probability, sinceeachword from
line DFEHG mustbe representedon line D eitherby itself, or by a parent
foundby a reductionpattern.

SHOW ME THE FLIGHTS ON   T W A   FROM ATLANTA IN THE MORNING

                       <AIRLINE>      <CITY>  <TIME>   

                                 <FROMCITY>

                       <airline>      <city>         <timename>

                    <START>

Fig. 2. Startrule induction,method1: postulatea new start rule
connectingall wordsin themaximalparse(shown on theexample
from Figure1).

SHOW ME THE FLIGHTS ON   T W A   FROM ATLANTA IN THE MORNING

                       <AIRLINE>      <CITY>  <TIME>   

                                 <FROMCITY>

                    <START>

  <G12>    <G24>       <airline>      <city>         <timename>

Fig. 3. Introducingsyntacticgeneralizationsinto parsetrees

suggestedfor theexamplein Figure1. Theprobabilityof thestart
rule is determinedempiricallyfrom thecorpus.
Method 2 (semantic n-grams): insteadof calculatingexplicit rule
probabilities,we cancomputean � -gramgrammaron the maxi-
malparsesof theentiretrainingcorpus(similar to model ��� in the
Section2). To generatea new sentence,we generatea randomse-
quencefrom this semantic� -gramgrammar, andthenrecursively
expandnonterminalsasin the PCFGalgorithm. The novel max-
imal parsesequencesgeneratedby this methodareusuallysome-
what aberrantat the global level (for instance,two destination
cities can be generated),but producerelatively good local word
collocationsfor � -gramstatistics.

Perplexity experimentson theATIS corpusshow thatgenera-
tion from explicit rulesandsemantic� -gramsis roughly equiva-
lent. For easeof implementation,we have conductedtheexperi-
mentsdescribedherewith explicit startrules(Method1), but the
methodof startrule generationis an importantareafor future re-
search.

4. GENERALIZATION

Theremay exist additionalstructurein the databeyond the pre-
definedclassesthatshouldbeexploitedby thesentencegenerator.
For example, in ATIS show me andtell me have the same
syntactic properties,aswell asthe flights anda flight.
Our understandingmoduledoesnot interpretthesestructuresse-
mantically (otherwisethey would be classifiedby the semantic
grammar),but by introducingnew ruleswe cansyntacticallygen-
eralizethedata;for example,in Figure3,show me hasbeengen-
eralizedinto class � G12 	 . The PCFGrule for � G12 	 might
have productionsincludingthephrasesshow me, tell me
about, or list.

Therehasbeensubstantialwork in thefieldonlearningphrases
andphraserules;in thispaper, we follow thework of McCandless
andGlass[3] aswell asSiuandMeng[6] in determiningsyntactic
classesautomaticallyfrom data.Thealgorithm,describedbelow,



hastwo parts.

4.1. Chunking into phrases
To find phraseswithin our training corpus,we usean extended
versionof the mutual informationcriterion for phraseselection.
We examineall frequent� -grams2 to find themutualinformation
betweena clusterandany of its subclusters:I!J �4+ � 131�1 + 8 �K����4+ � 1�1�1 + 8 �MLONQP RTSOUV%3W W W UYXMZ[ \�]3^`_ %�a a a Xcb % RTSOUV%�W W W U ^ Z�R SdU ^.e % W W W U X Z
Thiscriterionallows largerclustersto form while still discriminat-
ing againstthemin favor of smallerclusters;if a smallercluster
is favored in an initial pass,larger clusterscan be formed later
by clusteringhierarchically. Clusteringcontinuesuntil a predeter-
minedminimummutualinformationthresholdis reached.

4.2. Generalizing
In thegeneralizationprocess,we grouptogetherwordsor phrases
that sharesimilar syntacticcontexts. We utilize the Kullback-
Leibler (KL) distancebetweenbigram contexts as a measureof
thesimilarity of two words.Wetrain two bigramprobabilitymod-
els, �gf and �Th , correspondingto theprobabilityof awordgivenits
left or right context, respectively. To obtaina symmetricmeasure,
we estimatethedistancebetweentwo words +7� and + � as:i�jlk3m �4+7�&no+ � �K�i f$�4+ � �O� +��&��p i f$�4+��q�O� + � ��p i hq�4+ � �r� +��s��p i hq�4+��q�O� + � �
with KL distances

i f and
i h definedover thevocabulary t asi�u �4+ � �O� +��&�6�wvyxszc{|� u �4}V� + � �MLONQP�Rq~cS x�� UV%�ZR ~ S x�� UY'3Z 1

We searchover all pairsof words/phrasesthat occursufficiently
frequentlyin thecorpusandfind thepair �4+ � no+���� thatminimizes
thedistancemeasure.We thenaddtwo new generalizationrules,���7,�	�
�+ � and ���7,�	�
�+�� , to the corpus. The optimal
numberof generalizedclustersformedby iteratingthis processis
determinedthroughexperimentation.

5. EXPERIMENTAL DESIGN

For our first setof experiments,we choseincreasingamountsof
datafrom the ATIS3 training set (from 25 to the full 1703 sen-
tences)asour LM training set. The model selectedasa “straw
man” was a trigram LM trainedon the first � sentencesof the
trainingset(with appropriatefrequency cutoffs). It is clear, how-
ever, that trainingan � -gramon the datasetswith few sentences
wouldperformquitepoorly, soasecondbaselinewasdeveloped:a
class-based trigram, wheretheclassesaredeterminedby these-
manticwordclasses(representedin ourparsetreeswith lowercase
letters). This is equivalent to training an � -gram on the second
linesof thefinite-stateparseof thecorpus(cf. line 2 of Figure1).
Thebestbaselineperformancewasobtainedby linearly interpolat-
ing the trigram andclasstrigram models,optimizing the weights
basedon theperplexity of a held-outdevelopmentset.

In the parser class model,we parsedthe training corpusof� sentenceswith the predefinedsemanticclasses3 andcalculated
probabilitiesfor all the rules. We then generated15 corporaof
1000sentencesusingthelearnedrule probabilitiesandtrained15

2For theseexperiments,weuseamaximum D of 5.
3Sincewe cannotassumethat we have rule probabilities,the parsing

wasaccomplishedwith agreedystrategy [4].
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Training set size vs. perplexity on ATIS3 Category A 1994 Test Set
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(1) Trigram                                                   
(2) Class trigram                                             
(3) Parser class trigram + (2)                                
(4) Generalized parser class trigram + (2) [overlaps with (3)]
(5) Parser class trigram w/fragments + (2)                    

Grammar % perplexity reductionover (2)�
# of sentences
 25 50 100 200 all

Parserclasstrigram(3) 21.2 32.6 30.6 13.4 0.8
w/fragments(5) 38.5 42.6 39.7 16.1 1.4

Generalizedparsercl. (4) 20.6 32.2 30.6 14.9 1.6

Fig. 4. Perplexity scoresandperplexity reductionpercentagesover
baselineclasstrigrammodel.Thegeneralizedparserclasstrigram
modelis notshown in thegraphasit closelyoverlapsthesemantic
classtrigramscores.

separatetrigrammodels.A combinedmodelwasproducedby lin-
early interpolatingthese15 models,tuning interpolationparame-
terson thedevelopmentset. This tendsto work betterthanpool-
ing all datatogetherandbuilding onemodel;sincethedatais ran-
domlygenerated,interpolationcande-emphasizepoorlyestimated� -grams— averagingseveral modelsreducesthevarianceof the
combinedestimator. In addition,thesmoothingof trigramproba-
bilities in onemodelwith bigrambackoffs in othermodelsmakes
theestimateof theprobabilitymorerobust. This combinedmodel
was subsequentlyinterpolatedwith the classtrigram, sinceone
shouldalwaysincorporateasmuchrealdataaspossible.

Thegeneralized parser class modelwastrainedin a similar
fashion,except that the chunkingand generalizationalgorithms
describedin Section4 wererun over theparsedcorpus.By opti-
mizing on thedevelopmentset,we defineda maximumof 50 new
classesin thegeneralizationprocess.

We found that,particularlyfor small trainingsetsizes,many
classeswerenotbeinggeneratedbecausethey didnotappearin the
training set. The parser class model with fragments, is trained
identically to the parserclassmodel,except that the � START 	
symbolis additionallyallowedto expandto any singleparserfrag-
ment.In thetravel domain,for example, � START 	�
/� TIME 	
would beonefragmentrule addedto therule corpus.Both of the
above two classmodelswerealso interpolatedwith the baseline
classtrigramgrammar.

6. EVALUATION

6.1. Perplexity
Weevaluatedthetwobaselinemodelsandthreeexperimentalmod-
elson thecategory A sentencesfrom the1994ATIS testset;Fig-
ure 4 shows the perplexity of all modelsexcept the generalized
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(2) Class trigram                         
(3) Parser class trigram + (2)            
(4) Generalized parser class trigram + (2)

Fig. 5. ASR results for the 1994 ATIS test set with varying
amountsof LM training data. Resultsincluding fragmentswere
notavailable.

parserclasstrigram, which was indistinguishableon the graph
from the ungeneralizedparserclasstrigram model. As expected,
using classinformation greatly decreasesthe perplexity over a
plain trigram, especiallywith very few training sentences.The
useof semanticclassinformationgivesanadditionalboostin this
region,particularlywhenfragmentrulesareaddedto thegrammar.

It is somewhatsurprisingthattheadditionalmachineryof the
automaticgeneralizationtechniquesdescribedin Section4 do not
improve the LM over the semanticclassesalone. Siu andMeng
[6] notethattheirmethodis semi-automatic; they hand-correctthe
postulatedCFG rules. We suspectthat this methodmay assistin
developingrulesfor anew domain;onecoulditeratively applythe
entiretrainingprocedurepresentedhereto simultaneouslyinduce
rulesfor theparserandASRLM in a supervisedfashion.

While it appearsfrom Figure 4 that the modelsare roughly
comparablewhentrainedon the full ATIS testset,addingparser
classinformationdoesimproverobustnessonothertestsets.When
the ATIS-trainedmodelsare evaluatedon DARPA Communica-
tor travel data from Bell Labs and the University of Colorado,
the parserclassesreducethe perplexity of non out-of-vocabulary
wordsby8%overtheclasstrigram(86.8 
 80.0);addingthefrag-
mentsinto the grammarresultsin a 18% reductionin perplexity
(86.8 
 71.3).Thissuggeststhattheparserclass-basedgrammars
mightbea goodstartingpoint for domainadaptation.

6.2. ASR
WealsoevaluatedtheATIS modelsby performingspeechrecogni-
tion on the1994testset.Theacousticmodelsfor this experiment
weretrainedonacousticdataindependentof theATIS domainand
wereheldconstantfor all languagemodeltrainingsetsizes.

Figure5 illustratesthat theASR word error rateparallelsthe
perplexity resultsof Figure4. For a training setsizeof 50–100
sentences,the parserclassgrammarreducesword error over the
classtrigram by 7–9%relative (significantat ����� 1 �Q� ). As the
numberof availableLM trainingsentencesincreases,however, the
differencein error ratesbecomesindistinguishable.Including the
generalizationtechniquesdid not improve ASR resultsover the

plain parserclassgrammar. Resultsfor theparserclassgrammar
with fragmentswerenotavailableasof thewriting of thispaper.

7. SUMMARY

Thetechniquesproposedin thispaperattemptto reducetheamount
of requiredWizardof Ozdatafor building languagemodels.Using
the semanticclassesdefinedfor theunderstandingmoduleof the
dialoguesystemcanimprove theperformanceof languagemodels
trainedonly onalimitednumberof sentences.Wehavealsofound,
using the DARPA Communicatordata,that integratingsemantic
classinformation in a model trainedon a related(but different)
domaincanprovidea goodstartingpoint for domainadaptation.

The automaticgeneralizationtechniquesfound in the litera-
turedid not improve performanceof theparserclassmodel.How-
ever, wehopethatwecanusegeneralizationto helpbuild semantic
classesin anew domain,anditeratethis techniqueasnew domain
databecomesavailable.Onedrawbackto thegeneralizationtech-
niquespresentedhereis that they requirea sufficient numberof
examplesto generalize,at which point thereis probablyenough
datato train the � -gramanyway; animportantfuturedirectionfor
this work is to find waysto clusterrareevents.

Rapiddialoguesystemdevelopmentisacontinuingfocuswithin
our lab. Theparserusedin this work wasdesignedto requirethe
encodingof aminimalamountof domaininformation(in theform
of regularexpressions)to produceagrammarfor naturallanguage
understanding.We have extendedthis work by incorporatingthis
encodedinformationinto theASR system.While it is premature
to declaresuccessin this area,the initial resultspresentedin this
studyarea promisingsteptowardsquick systemdevelopment.
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